तितली प्रभाव (बटरफ्लाई इफेक्ट): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(37 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{short description|Idea that small causes can have large effects}}
{{short description|Idea that small causes can have large effects}}
{{Other uses}}
{{Other uses}}
[[File:Lorenz attractor yb.svg|thumb|upright=1.25|ρ=28, σ = 10, β = 8/3 मानों के लिए लॉरेंज के [[अजीब आकर्षण]] का एक प्लॉट। प्रारंभिक स्थितियों पर बटरफ्लाई इफेक्ट या संवेदनशील निर्भरता एक [[गतिशील प्रणाली]] की संपत्ति है, जो आकर्षित करने वाले पर विभिन्न मनमाने ढंग से बंद वैकल्पिक प्रारंभिक स्थितियों में से किसी से शुरू होकर पुनरावृत्ति #गणित एक दूसरे से मनमाने ढंग से फैल जाएगी।]]
[[File:Lorenz attractor yb.svg|thumb|upright=1.25|ρ=28, σ = 10, β = 8/3 मानों के लिए लॉरेंज के [[अजीब आकर्षण]] का एक प्लॉट। प्रारंभिक स्थितियों पर "बटरफ्लाई इफेक्ट" या संवेदनशील निर्भरता एक [[गतिशील प्रणाली]] की संपत्ति है, जो आकर्षित करने वाले पर विभिन्न मनमाने ढंग से बंद वैकल्पिक प्रारंभिक स्थितियों में से किसी से शुरू होकर पुनरावृत्ति #गणित एक दूसरे से मनमाने ढंग से फैल जाएगी।]]


[[File:Double pendulum simultaneous realisations.ogv|thumb|upright=1.25|एक ही डबल पेंडुलम की विभिन्न रिकॉर्डिंग के साथ बटरफ्लाई इफेक्ट का प्रायोगिक प्रदर्शन। प्रत्येक रिकॉर्डिंग में, पेंडुलम लगभग उसी प्रारंभिक स्थिति से शुरू होता है। समय के साथ गतिकी में अंतर लगभग ध्यान देने योग्य से बढ़कर कठोर हो जाता है।]][[अराजकता सिद्धांत]] में, बटरफ्लाई इफेक्ट प्रारंभिक स्थितियों पर संवेदनशील निर्भरता है जिसमें [[नियतात्मक प्रणाली]] के एक राज्य में एक छोटे से बदलाव के बाद के राज्य में बड़े अंतर हो सकते हैं।
[[File:Double pendulum simultaneous realisations.ogv|thumb|upright=1.25|एक ही डबल पेंडुलम की विभिन्न रिकॉर्डिंग के साथ "बटरफ्लाई इफेक्ट" का प्रायोगिक प्रदर्शन। प्रत्येक रिकॉर्डिंग में, पेंडुलम लगभग उसी प्रारंभिक स्थिति से शुरू होता है। समय के साथ गतिकी में अंतर लगभग ध्यान देने योग्य से बढ़कर कठोर हो जाता है।]][[अराजकता सिद्धांत|अक्रम सिद्धान्त]] में, '''"बटरफ्लाई इफेक्ट"''' प्रारंभिक स्थितियों पर संवेदनशील निर्भरता है जिसमें [[नियतात्मक प्रणाली]] के एक राज्य में एक छोटे से बदलाव के बाद के राज्य में बड़े अंतर हो सकते हैं।


यह शब्द गणितज्ञ और मौसम वैज्ञानिक [[एडवर्ड नॉर्टन लॉरेंस]] के काम से निकटता से जुड़ा हुआ है। उन्होंने कहा कि बटरफ्लाई इफेक्ट एक [[बवंडर]] के विवरण (गठन का सही समय, लिया गया सही रास्ता) के रूपक उदाहरण से लिया गया है, जो मामूली गड़बड़ी से प्रभावित होता है जैसे कि दूर की तितली कई हफ्ते पहले अपने पंख फड़फड़ाती है। लॉरेंज ने मूल रूप से तूफान पैदा करने वाली सीगल का इस्तेमाल किया था, लेकिन 1972 तक तितली और बवंडर के उपयोग के साथ इसे और अधिक काव्यात्मक बनाने के लिए राजी कर लिया गया।<ref name=":1">{{cite web |url=https://mathsciencehistory.com/wp-content/uploads/2020/03/132_kap6_lorenz_artikel_the_butterfly_effect.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://mathsciencehistory.com/wp-content/uploads/2020/03/132_kap6_lorenz_artikel_the_butterfly_effect.pdf |archive-date=2022-10-09 |url-status=live |title=भविष्यवाणी: क्या ब्राजील में एक तितली के पंखों का फड़फड़ाहट टेक्सास में एक बवंडर का कारण बनता है?|access-date=23 December 2021}}</ref><ref>{{cite web |url=https://www.bbvaopenmind.com/en/science/leading-figures/when-lorenz-discovered-the-butterfly-effect/ |title=जब लॉरेंज ने तितली प्रभाव की खोज की|date=22 May 2015 |access-date=23 December 2021}}</ref> उन्होंने प्रभाव की खोज की जब उन्होंने प्रारंभिक स्थिति डेटा के साथ अपने संख्यात्मक मौसम पूर्वानुमान के रनों का अवलोकन किया, जो एक प्रतीत होता है कि अप्रासंगिक तरीके से गोल किया गया था। उन्होंने नोट किया कि संख्यात्मक मौसम की भविष्यवाणी रन के परिणामों को पुन: पेश करने में असफल होगी, जिसमें प्रारंभिक स्थिति डेटा शामिल नहीं होगा। प्रारंभिक स्थितियों में एक बहुत छोटे से बदलाव ने काफी अलग परिणाम पैदा कर दिया था।<ref name=":0">{{cite journal |last=Lorenz |first=Edward N. |title=नियतात्मक गैर-आवधिक प्रवाह|journal=Journal of the Atmospheric Sciences |date=March 1963 |volume=20 |issue=2 |pages=130–141 |doi=10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2 |bibcode=1963JAtS...20..130L |doi-access=free}}</ref>
यह शब्द गणितज्ञ और मौसम वैज्ञानिक [[एडवर्ड नॉर्टन लॉरेंस]] के काम से निकटता से जुड़ा हुआ है। उन्होंने कहा कि "बटरफ्लाई इफेक्ट" एक [[बवंडर]] के विवरण (गठन का सही समय, लिया गया सही रास्ता) के रूपक उदाहरण से लिया गया है, जो मामूली गड़बड़ी से प्रभावित होता है जैसे कि दूर की तितली कई हफ्ते पहले अपने पंख फड़फड़ाती है। लॉरेंज ने मूल रूप से तूफान पैदा करने वाली सीगल का इस्तेमाल किया था, लेकिन 1972 तक तितली और बवंडर के उपयोग के साथ इसे और अधिक काव्यात्मक बनाने के लिए राजी कर लिया गया।<ref name=":1">{{cite web |url=https://mathsciencehistory.com/wp-content/uploads/2020/03/132_kap6_lorenz_artikel_the_butterfly_effect.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://mathsciencehistory.com/wp-content/uploads/2020/03/132_kap6_lorenz_artikel_the_butterfly_effect.pdf |archive-date=2022-10-09 |url-status=live |title=भविष्यवाणी: क्या ब्राजील में एक तितली के पंखों का फड़फड़ाहट टेक्सास में एक बवंडर का कारण बनता है?|access-date=23 December 2021}}</ref><ref>{{cite web |url=https://www.bbvaopenmind.com/en/science/leading-figures/when-lorenz-discovered-the-butterfly-effect/ |title=जब लॉरेंज ने तितली प्रभाव की खोज की|date=22 May 2015 |access-date=23 December 2021}}</ref> उन्होंने प्रभाव की खोज की जब उन्होंने प्रारंभिक स्थिति डेटा के साथ अपने संख्यात्मक मौसम पूर्वानुमान के रनों का अवलोकन किया, जो एक प्रतीत होता है कि अप्रासंगिक तरीके से गोल किया गया था। उन्होंने ध्यान दिया कि मौसम मॉडल असंबद्ध प्रारंभिक स्थिति डेटा के साथ चलते हुए  परिणामों को पुन: उत्पन्न करने में विफल रहता है। प्रारंभिक स्थितियों में बहुत छोटे से बदलाव ने काफी अलग परिणाम उत्पन्न दिए थे।<ref name=":0">{{cite journal |last=Lorenz |first=Edward N. |title=नियतात्मक गैर-आवधिक प्रवाह|journal=Journal of the Atmospheric Sciences |date=March 1963 |volume=20 |issue=2 |pages=130–141 |doi=10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2 |bibcode=1963JAtS...20..130L |doi-access=free}}</ref>


यह विचार कि छोटे कारणों का मौसम में बड़ा प्रभाव हो सकता है, पहले फ्रांसीसी गणितज्ञ और इंजीनियर हेनरी पॉइनकेयर द्वारा पहचाना गया था। अमेरिकी गणितज्ञ और दार्शनिक [[नॉर्बर्ट वीनर]] ने भी इस सिद्धांत में योगदान दिया। लॉरेंज के काम ने पृथ्वी के वातावरण की अस्थिरता की अवधारणा को रखा। पृथ्वी के वायुमंडल को एक मात्रात्मक आधार पर रखा और अस्थिरता की अवधारणा को गतिशील प्रणालियों के बड़े वर्गों के गुणों से जोड़ा जो गैर-रैखिक गतिशीलता और अराजकता सिद्धांत से गुजर रहे हैं।<ref name="scholarpedia">{{cite encyclopedia |last1=Rouvas-Nicolis |first1=Catherine |last2=Nicolis |first2=Gregoire |title=तितली प्रभाव|encyclopedia=[[Scholarpedia]] |date=4 May 2009 |volume=4 |issue=5 |page=1720 |doi=10.4249/scholarpedia.1720 |bibcode=2009SchpJ...4.1720R |url=http://www.scholarpedia.org/article/Butterfly_effect |access-date=2016-01-02 |url-status=live |archive-url=https://web.archive.org/web/20160102214427/http://www.scholarpedia.org/article/Butterfly_effect |archive-date=2016-01-02|doi-access=free }}</ref>
यह विचार कि छोटे कारणों का मौसम में बड़ा प्रभाव हो सकता है, पहले फ्रांसीसी गणितज्ञ और इंजीनियर हेनरी पॉइनकेयर द्वारा पहचाना गया था। अमेरिकी गणितज्ञ और दार्शनिक [[नॉर्बर्ट वीनर]] ने भी इस सिद्धांत में योगदान दिया। लॉरेंज के काम ने पृथ्वी के वातावरण की अस्थिरता की अवधारणा को रखा। पृथ्वी के वायुमंडल को एक मात्रात्मक आधार पर रखा और अस्थिरता की अवधारणा को गतिशील प्रणालियों के बड़े वर्गों के गुणों से जोड़ा जो गैर-रैखिक गतिशीलता और अराजकता सिद्धांत से गुजर रहे हैं।<ref name="scholarpedia">{{cite encyclopedia |last1=Rouvas-Nicolis |first1=Catherine |last2=Nicolis |first2=Gregoire |title=तितली प्रभाव|encyclopedia=[[Scholarpedia]] |date=4 May 2009 |volume=4 |issue=5 |page=1720 |doi=10.4249/scholarpedia.1720 |bibcode=2009SchpJ...4.1720R |url=http://www.scholarpedia.org/article/Butterfly_effect |access-date=2016-01-02 |url-status=live |archive-url=https://web.archive.org/web/20160102214427/http://www.scholarpedia.org/article/Butterfly_effect |archive-date=2016-01-02|doi-access=free }}</ref>


तब से बटरफ्लाई इफेक्ट अवधारणा का उपयोग मौसम विज्ञान के संदर्भ में किसी भी स्थिति के लिए एक व्यापक शब्द के रूप में किया जाता है जहां एक छोटा परिवर्तन बड़े परिणामों का कारण माना जाता है।
तब से "बटरफ्लाई इफेक्ट" अवधारणा का उपयोग मौसम विज्ञान के संदर्भ में किसी भी स्थिति के लिए एक व्यापक शब्द के रूप में किया जाता है जहां एक छोटा परिवर्तन बड़े परिणामों का कारण माना जाता है।


== इतिहास ==
== इतिहास ==
Line 15: Line 15:


अराजकता सिद्धांत और प्रारंभिक स्थितियों पर संवेदनशील निर्भरता को साहित्य के कई रूपों में वर्णित किया गया है। इसका प्रमाण 1890 में पोंकारे द्वारा [[तीन-शरीर की समस्या]] के मामले से मिलता है।<ref name="wolframscience.com">[https://www.wolframscience.com/reference/notes/971c Some Historical Notes: History of Chaos Theory] {{webarchive |url=https://web.archive.org/web/20060719234031/http://www.wolframscience.com/reference/notes/971c |date=2006-07-19}}</ref> उन्होंने बाद में प्रस्तावित किया कि ऐसी घटनाएँ सामान्य हो सकती हैं, उदाहरण के लिए, मौसम विज्ञान में।<ref>{{cite book |last1=Steves |first1=Bonnie |last2=Maciejewski |first2=AJ |date=September 2001 |title=द रेस्टलेस यूनिवर्स एप्लिकेशन ऑफ़ ग्रेविटेशनल एन-बॉडी डायनेमिक्स टू प्लैनेटरी स्टेलर एंड गैलेक्टिक सिस्टम्स|url=https://books.google.com/books?id=-wa120qRW5wC |location=USA |publisher=CRC Press |isbn=0750308222 |access-date=January 6, 2014}}</ref>
अराजकता सिद्धांत और प्रारंभिक स्थितियों पर संवेदनशील निर्भरता को साहित्य के कई रूपों में वर्णित किया गया है। इसका प्रमाण 1890 में पोंकारे द्वारा [[तीन-शरीर की समस्या]] के मामले से मिलता है।<ref name="wolframscience.com">[https://www.wolframscience.com/reference/notes/971c Some Historical Notes: History of Chaos Theory] {{webarchive |url=https://web.archive.org/web/20060719234031/http://www.wolframscience.com/reference/notes/971c |date=2006-07-19}}</ref> उन्होंने बाद में प्रस्तावित किया कि ऐसी घटनाएँ सामान्य हो सकती हैं, उदाहरण के लिए, मौसम विज्ञान में।<ref>{{cite book |last1=Steves |first1=Bonnie |last2=Maciejewski |first2=AJ |date=September 2001 |title=द रेस्टलेस यूनिवर्स एप्लिकेशन ऑफ़ ग्रेविटेशनल एन-बॉडी डायनेमिक्स टू प्लैनेटरी स्टेलर एंड गैलेक्टिक सिस्टम्स|url=https://books.google.com/books?id=-wa120qRW5wC |location=USA |publisher=CRC Press |isbn=0750308222 |access-date=January 6, 2014}}</ref>
1898 में, [[जैक्स हैडमार्ड]] ने नकारात्मक वक्रता वाले स्थानों में प्रक्षेपवक्रों के सामान्य विचलन का उल्लेख किया। [[पियरे ड्यूहेम]] ने 1908 में इसके संभावित सामान्य महत्व पर चर्चा की।<ref name="wolframscience.com"/>
 
1898 में, [[जैक्स हैडमार्ड]] ने नकारात्मक वक्रता वाले स्थानों में प्रक्षेपवक्रों के सामान्य विचलन का उल्लेख किया। [[पियरे ड्यूहेम]] ने 1908 में इसके संभावित सामान्य महत्व पर चर्चा की।<ref name="wolframscience.com" />


1950 में, [[एलन ट्यूरिंग]] ने कहा: एक पल में एक सेंटीमीटर के एक अरबवें हिस्से द्वारा एक इलेक्ट्रॉन का विस्थापन एक साल बाद एक हिमस्खलन से मारे गए या बच निकलने वाले व्यक्ति के बीच का अंतर बना सकता है।<ref name="turing1950">[https://academic.oup.com/mind/article/LIX/236/433/986238 Computing Machinery and Intelligence]</ref>
1950 में, [[एलन ट्यूरिंग]] ने कहा: एक पल में एक सेंटीमीटर के एक अरबवें हिस्से द्वारा एक इलेक्ट्रॉन का विस्थापन एक साल बाद एक हिमस्खलन से मारे गए या बच निकलने वाले व्यक्ति के बीच का अंतर बना सकता है।<ref name="turing1950">[https://academic.oup.com/mind/article/LIX/236/433/986238 Computing Machinery and Intelligence]</ref>
यह विचार कि एक तितली की मृत्यु का अंततः बाद की ऐतिहासिक घटनाओं पर दूरगामी प्रभाव पड़ सकता है, [[रे ब्रैडबरी]] की 1952 की लघु कहानी [[थंडर की एक आवाज]] में इसका सबसे पहला ज्ञात रूप सामने आया। ए साउंड ऑफ थंडर में समय यात्रा की सुविधा है।<ref>{{cite web |title=रे ब्रैडबरी की "ए साउंड ऑफ़ थंडर" की भौतिकी|last=Flam |first=Faye |work=[[The Philadelphia Inquirer]] |date=2012-06-15 |url=https://www.inquirer.com/philly/blogs/evolution/Time-and-The-Physics-of-Ray-Bradbury--.html |access-date=2015-09-02 |url-status=live |archive-url=https://web.archive.org/web/20150924130717/http://www.philly.com/philly/blogs/evolution/Time-and-The-Physics-of-Ray-Bradbury--.html |archive-date=2015-09-24}}</ref>
 
यह विचार कि एक तितली की मृत्यु का अंततः बाद की ऐतिहासिक घटनाओं पर दूरगामी प्रभाव पड़ सकता है, [[रे ब्रैडबरी]] की 1952 की लघु कहानी [[थंडर की एक आवाज]] में इसका सबसे पहला ज्ञात रूप सामने आया। "ए साउंड ऑफ थंडर" में समय यात्रा की सुविधा है।<ref>{{cite web |title=रे ब्रैडबरी की "ए साउंड ऑफ़ थंडर" की भौतिकी|last=Flam |first=Faye |work=[[The Philadelphia Inquirer]] |date=2012-06-15 |url=https://www.inquirer.com/philly/blogs/evolution/Time-and-The-Physics-of-Ray-Bradbury--.html |access-date=2015-09-02 |url-status=live |archive-url=https://web.archive.org/web/20150924130717/http://www.philly.com/philly/blogs/evolution/Time-and-The-Physics-of-Ray-Bradbury--.html |archive-date=2015-09-24}}</ref>
 
अधिक सटीक, हालांकि, लगभग सटीक विचार और सटीक वाक्यांश - पूरे वातावरण की हवाओं को प्रभावित करने वाले एक छोटे कीट के पंख का - एक बच्चों की किताब में प्रकाशित किया गया था जो 1962 में लॉरेंज के प्रकाशित होने से एक साल पहले बेहद सफल और विश्व स्तर पर प्रसिद्ध हो गया था:
अधिक सटीक, हालांकि, लगभग सटीक विचार और सटीक वाक्यांश - पूरे वातावरण की हवाओं को प्रभावित करने वाले एक छोटे कीट के पंख का - एक बच्चों की किताब में प्रकाशित किया गया था जो 1962 में लॉरेंज के प्रकाशित होने से एक साल पहले बेहद सफल और विश्व स्तर पर प्रसिद्ध हो गया था:
{{blockquote|"...हम जो कुछ भी करते हैं वह सब कुछ और हर किसी को प्रभावित करता है, भले ही वह सबसे छोटे तरीके से ही क्यों न हो। क्यों, जब एक घरेलू मक्खी अपने पंख फड़फड़ाती है, तो एक हवा दुनिया भर में चक्कर लगाती है।"
{{blockquote|"...हम जो कुछ भी करते हैं वह सब कुछ और हर किसी को प्रभावित करता है, भले ही वह सबसे छोटे तरीके से ही क्यों न हो। क्यों, जब एक घरेलू मक्खी अपने पंख फड़फड़ाती है, तो एक हवा दुनिया भर में चक्कर लगाती है।"
Line 26: Line 29:
}}
}}
1961 में, लॉरेंज शॉर्टकट के रूप में पिछले रन के मध्य से मौसम की भविष्यवाणी को फिर से करने के लिए एक संख्यात्मक कंप्यूटर मॉडल चला रहा था। उन्होंने पूर्ण परिशुद्धता 0.506127 मान दर्ज करने के बजाय प्रिंटआउट से प्रारंभिक स्थिति 0.506 दर्ज की। परिणाम पूरी तरह से अलग मौसम परिदृश्य था।<ref>{{cite book |last=Gleick |first=James |title=अराजकता: एक नया विज्ञान बनाना|publisher=Viking |year=1987 |isbn=0-8133-4085-3 |page=16}}</ref>
1961 में, लॉरेंज शॉर्टकट के रूप में पिछले रन के मध्य से मौसम की भविष्यवाणी को फिर से करने के लिए एक संख्यात्मक कंप्यूटर मॉडल चला रहा था। उन्होंने पूर्ण परिशुद्धता 0.506127 मान दर्ज करने के बजाय प्रिंटआउट से प्रारंभिक स्थिति 0.506 दर्ज की। परिणाम पूरी तरह से अलग मौसम परिदृश्य था।<ref>{{cite book |last=Gleick |first=James |title=अराजकता: एक नया विज्ञान बनाना|publisher=Viking |year=1987 |isbn=0-8133-4085-3 |page=16}}</ref>
लॉरेंज ने लिखा:
लॉरेंज ने लिखा:
एक बिंदु पर मैंने कुछ संगणनाओं को दोहराने का फैसला किया ताकि यह जांचा जा सके कि क्या हो रहा था और अधिक विस्तार से। मैंने कंप्यूटर को बंद कर दिया, संख्याओं की एक पंक्ति में टाइप किया जिसे उसने थोड़ी देर पहले प्रिंट किया था, और उसे फिर से चालू कर दिया। मैं एक कप कॉफी के लिए हॉल में गया और लगभग एक घंटे के बाद लौटा, इस दौरान कंप्यूटर ने लगभग दो महीने के मौसम का अनुकरण किया था। छपे जा रहे नंबर पुराने जैसे नहीं थे। मुझे तुरंत एक कमजोर निर्वात नली या कुछ अन्य कंप्यूटर समस्या का संदेह हुआ, जो असामान्य नहीं था, लेकिन सेवा के लिए कॉल करने से पहले मैंने यह जानने का फैसला किया कि गलती कहाँ हुई थी, यह जानते हुए कि यह सर्विसिंग प्रक्रिया को गति दे सकता है। अचानक विराम के बजाय, मैंने पाया कि नए मूल्यों ने पहले पुराने को दोहराया, लेकिन जल्द ही एक और फिर अंतिम [दशमलव] स्थान में कई इकाइयों से भिन्न हो गए, और फिर अंतिम स्थान के बगल में भिन्न होने लगे और फिर उससे पहले की जगह में। वास्तव में, अंतर कमोबेश लगातार हर चार दिनों में आकार में दोगुना हो जाता है, जब तक कि मूल आउटपुट के साथ सभी समानताएं दूसरे महीने में कहीं गायब नहीं हो जातीं। यह मुझे यह बताने के लिए पर्याप्त था कि क्या हुआ था: जो संख्याएँ मैंने टाइप की थीं, वे सटीक मूल संख्याएँ नहीं थीं, बल्कि मूल प्रिंटआउट में दिखाई देने वाले राउंड-ऑफ मान थे। शुरुआती राउंड-ऑफ त्रुटियां अपराधी थीं; जब तक वे समाधान पर हावी नहीं हो जाते, तब तक वे लगातार बढ़ रहे थे।
_E. N. Lorenz, The Essence of Chaos<nowiki>''</nowiki>, U. Washington Press, Seattle (1993), page 134
{{blockquote|
{{blockquote|
At one point I decided to repeat some of the computations in order to examine what was happening in greater detail. I stopped the computer, typed in a line of numbers that it had printed out a while earlier, and set it running again. I went down the hall for a cup of coffee and returned after about an hour, during which time the computer had simulated about two months of weather. The numbers being printed were nothing like the old ones. I immediately suspected a weak [[vacuum tube]] or some other computer trouble, which was not uncommon, but before calling for service I decided to see just where the mistake had occurred, knowing that this could speed up the servicing process. Instead of a sudden break, I found that the new values at first repeated the old ones, but soon afterward differed by one and then several units in the last [decimal] place, and then began to differ in the next to the last place and then in the place before that. In fact, the differences more or less steadily doubled in size every four days or so, until all resemblance with the original output disappeared somewhere in the second month. This was enough to tell me what had happened: the numbers that I had typed in were not the exact original numbers, but were the rounded-off values that had appeared in the original printout. The initial round-off errors were the culprits; they were steadily amplifying until they dominated the solution. |author=E. N. Lorenz |source=The Essence of Chaos'', U. Washington Press, Seattle (1993), page 134<ref>{{cite journal |title=Chaos at fifty |journal=Physics Today |volume=66 |issue=5 |pages=27–33 |doi=10.1063/PT.3.1977 |year=2013 |last1=Motter |first1=Adilson E. |last2=Campbell |first2=David K. |bibcode=2013PhT....66e..27M |arxiv=1306.5777 |s2cid=54005470}}</ref>
At one point I decided to repeat some of the computations in order to examine what was happening in greater detail. I stopped the computer, typed in a line of numbers that it had printed out a while earlier, and set it running again. I went down the hall for a cup of coffee and returned after about an hour, during which time the computer had simulated about two months of weather. The numbers being printed were nothing like the old ones. I immediately suspected a weak [[vacuum tube]] or some other computer trouble, which was not uncommon, but before calling for service I decided to see just where the mistake had occurred, knowing that this could speed up the servicing process. Instead of a sudden break, I found that the new values at first repeated the old ones, but soon afterward differed by one and then several units in the last [decimal] place, and then began to differ in the next to the last place and then in the place before that. In fact, the differences more or less steadily doubled in size every four days or so, until all resemblance with the original output disappeared somewhere in the second month. This was enough to tell me what had happened: the numbers that I had typed in were not the exact original numbers, but were the rounded-off values that had appeared in the original printout. The initial round-off errors were the culprits; they were steadily amplifying until they dominated the solution. |author=E. N. Lorenz |source=The Essence of Chaos'', U. Washington Press, Seattle (1993), page 134<ref>{{cite journal |title=Chaos at fifty |journal=Physics Today |volume=66 |issue=5 |pages=27–33 |doi=10.1063/PT.3.1977 |year=2013 |last1=Motter |first1=Adilson E. |last2=Campbell |first2=David K. |bibcode=2013PhT....66e..27M |arxiv=1306.5777 |s2cid=54005470}}</ref>
}}
}}
1963 में, लॉरेंज ने इस आशय का एक सैद्धांतिक अध्ययन प्रकाशित किया, जिसे एक अत्यधिक उद्धृत, सेमिनल पेपर कहा जाता है, जिसे नियतात्मक गैर-आवधिक प्रवाह कहा जाता है।<ref name=":0"/><ref>[https://scholar.google.com/scholar_lookup?title=Deterministic+non-periodic+flow&author=E.+N.+Lorenz&publication_year=1963 Google Scholar citation record]</ref> (गणना एक [[Royal McBee]] [[LGP-30]] कंप्यूटर पर की गई थी)।<ref>{{cite web |title=भाग 19|publisher=Cs.ualberta.ca |date=1960-11-22 |url=http://www.cs.ualberta.ca/~smillie/ComputerAndMe/Part19.html |access-date=2014-06-08 |url-status=dead |archive-url=https://web.archive.org/web/20090717061640/http://www.cs.ualberta.ca/~smillie/ComputerAndMe/Part19.html |archive-date=2009-07-17}}</ref><ref name="Lorenz1963"/>अन्यत्र उन्होंने कहा:
1963 में, लॉरेंज ने इस आशय का एक सैद्धांतिक अध्ययन प्रकाशित किया, जिसे एक अत्यधिक उद्धृत, सेमिनल पेपर कहा जाता है, जिसे नियतात्मक गैर-आवधिक प्रवाह कहा जाता है।<ref name=":0"/><ref>[https://scholar.google.com/scholar_lookup?title=Deterministic+non-periodic+flow&author=E.+N.+Lorenz&publication_year=1963 Google Scholar citation record]</ref> (गणना एक [[Royal McBee]] [[LGP-30]] कंप्यूटर पर की गई थी)।<ref>{{cite web |title=भाग 19|publisher=Cs.ualberta.ca |date=1960-11-22 |url=http://www.cs.ualberta.ca/~smillie/ComputerAndMe/Part19.html |access-date=2014-06-08 |url-status=dead |archive-url=https://web.archive.org/web/20090717061640/http://www.cs.ualberta.ca/~smillie/ComputerAndMe/Part19.html |archive-date=2009-07-17}}</ref><ref name="Lorenz1963"/>अन्यत्र उन्होंने कहा:
एक मौसम वैज्ञानिक ने टिप्पणी की कि यदि सिद्धांत सही थे, तो एक सीगल के पंखों का एक फड़फड़ाना हमेशा के लिए मौसम के पाठ्यक्रम को बदलने के लिए पर्याप्त होगा। विवाद अभी तक सुलझा नहीं है, लेकिन सबसे हालिया सबूत सीगल के पक्ष में प्रतीत होते हैं।
{{Blockquote|text=One meteorologist remarked that if the theory were correct, one flap of a [[gull|sea gull]]'s wings would be enough to alter the course of the weather forever. The controversy has not yet been settled, but the most recent evidence seems to favor the sea gulls.<ref name="Lorenz1963">{{cite journal |last=Lorenz |first=Edward N. |date=1963 |title=The Predictability of Hydrodynamic Flow |journal=Transactions of the New York Academy of Sciences |volume=25 |issue=4 |pages=409–432 |url=https://eapsweb.mit.edu/sites/default/files/Predictability_hydrodynamic_flow_1963.pdf |access-date=1 September 2014 |url-status=live |archive-url=https://web.archive.org/web/20141010161512/http://eaps4.mit.edu/research/Lorenz/Predictability_hydrodynamic_flow_1963.pdf |archive-date=10 October 2014 |doi=10.1111/j.2164-0947.1963.tb01464.x}}</ref>}}
{{Blockquote|text=One meteorologist remarked that if the theory were correct, one flap of a [[gull|sea gull]]'s wings would be enough to alter the course of the weather forever. The controversy has not yet been settled, but the most recent evidence seems to favor the sea gulls.<ref name="Lorenz1963">{{cite journal |last=Lorenz |first=Edward N. |date=1963 |title=The Predictability of Hydrodynamic Flow |journal=Transactions of the New York Academy of Sciences |volume=25 |issue=4 |pages=409–432 |url=https://eapsweb.mit.edu/sites/default/files/Predictability_hydrodynamic_flow_1963.pdf |access-date=1 September 2014 |url-status=live |archive-url=https://web.archive.org/web/20141010161512/http://eaps4.mit.edu/research/Lorenz/Predictability_hydrodynamic_flow_1963.pdf |archive-date=10 October 2014 |doi=10.1111/j.2164-0947.1963.tb01464.x}}</ref>}}
सहकर्मियों के सुझावों के बाद, बाद के भाषणों और पत्रों में, लॉरेंज ने अधिक काव्यात्मक तितली का इस्तेमाल किया। लॉरेंज के अनुसार, जब वह 1972 में [[विज्ञान की प्रगति के लिए अमेरिकन एसोसिएशन]] की 139वीं बैठक में उपस्थित होने वाले एक भाषण के लिए एक शीर्षक प्रदान करने में विफल रहे, तो फिलिप मेरिलेस ने मनगढ़ंत कहानी बनाई क्या ब्राजील में एक तितली के पंखों के फड़फड़ाने से एक बवंडर खड़ा हो गया टेक्सास में? एक शीर्षक के रूप में।<ref name=":1"/>हालांकि इस अवधारणा की अभिव्यक्ति में एक तितली अपने पंखों को फड़फड़ाती रही है, लेकिन तितली का स्थान, परिणाम और परिणामों का स्थान व्यापक रूप से भिन्न है।<ref>{{cite web |title=द बटरफ्लाई इफेक्ट्स: वैरिएशन ऑन अ मेमे|url=http://blog.ap42.com/2011/08/03/the-butterfly-effect-variations-on-a-meme/ |access-date=3 August 2011 |work=AP42 ...and everything |url-status=dead |archive-url=https://web.archive.org/web/20111111132249/http://blog.ap42.com/2011/08/03/the-butterfly-effect-variations-on-a-meme/ |archive-date=11 November 2011}}</ref>
सहकर्मियों के सुझावों के बाद, बाद के भाषणों और पत्रों में, लॉरेंज ने अधिक काव्यात्मक तितली का इस्तेमाल किया। लॉरेंज के अनुसार, जब वह 1972 में [[विज्ञान की प्रगति के लिए अमेरिकन एसोसिएशन]] की 139वीं बैठक में उपस्थित होने वाले एक भाषण के लिए एक शीर्षक प्रदान करने में विफल रहे, तो फिलिप मेरिलेस ने मनगढ़ंत कहानी बनाई क्या ब्राजील में एक तितली के पंखों के फड़फड़ाने से एक बवंडर खड़ा हो गया टेक्सास में? एक शीर्षक के रूप में।<ref name=":1"/>हालांकि इस अवधारणा की अभिव्यक्ति में एक तितली अपने पंखों को फड़फड़ाती रही है, लेकिन तितली का स्थान, परिणाम और परिणामों का स्थान व्यापक रूप से भिन्न है।<ref>{{cite web |title=द बटरफ्लाई इफेक्ट्स: वैरिएशन ऑन अ मेमे|url=http://blog.ap42.com/2011/08/03/the-butterfly-effect-variations-on-a-meme/ |access-date=3 August 2011 |work=AP42 ...and everything |url-status=dead |archive-url=https://web.archive.org/web/20111111132249/http://blog.ap42.com/2011/08/03/the-butterfly-effect-variations-on-a-meme/ |archive-date=11 November 2011}}</ref>
वाक्यांश इस विचार को संदर्भित करता है कि एक तितली के पंख पृथ्वी के वातावरण में छोटे परिवर्तन कर सकते हैं जो अंततः बवंडर के मार्ग को बदल सकते हैं या देरी कर सकते हैं, तेज कर सकते हैं, या किसी अन्य स्थान पर बवंडर की घटना को रोक सकते हैं। तितली बिजली नहीं देती है या सीधे बवंडर नहीं बनाती है, लेकिन इस शब्द का अर्थ यह है कि तितली के पंखों का फड़कना बवंडर का कारण बन सकता है: इस अर्थ में कि पंखों का फड़कना एक परस्पर जटिल की प्रारंभिक स्थितियों का एक हिस्सा है वेब; स्थितियों का एक सेट बवंडर की ओर ले जाता है, जबकि अन्य स्थितियों का सेट नहीं होता है। फ़्लैपिंग विंग सिस्टम की प्रारंभिक स्थिति में एक छोटे से बदलाव का प्रतिनिधित्व करता है, जो बड़े पैमाने पर घटनाओं के परिवर्तन (तुलना करें: डोमिनोज़ प्रभाव) को कैस्केड करता है। अगर तितली ने अपने पंख नहीं फड़फड़ाए होते, तो सिस्टम का [[प्रक्षेपवक्र]] बहुत अलग हो सकता था - लेकिन यह भी समान रूप से संभव है कि तितली के पंख फड़फड़ाए बिना परिस्थितियों का सेट वह सेट है जो बवंडर की ओर ले जाता है।


बटरफ्लाई इफेक्ट भविष्यवाणी के लिए एक स्पष्ट चुनौती प्रस्तुत करता है, क्योंकि मौसम जैसी प्रणाली के लिए प्रारंभिक स्थितियों को पूर्ण सटीकता के लिए कभी नहीं जाना जा सकता है। इस समस्या ने समेकन पूर्वानुमान के विकास को प्रेरित किया, जिसमें परेशान प्रारंभिक स्थितियों से कई पूर्वानुमान किए गए हैं।<ref>{{cite book |last=Woods |first=Austin |title=मध्यम अवधि के मौसम की भविष्यवाणी: यूरोपीय दृष्टिकोण; यूरोपियन सेंटर फॉर मीडियम-रेंज वेदर फोरकास्ट की कहानी|url=https://archive.org/details/mediumrangeweath00wood |url-access=limited |page=[https://archive.org/details/mediumrangeweath00wood/page/n131 118] |location=New York |publisher=Springer |year=2005 |isbn=978-0387269283}}</ref>
वाक्यांश इस विचार को संदर्भित करता है कि एक तितली के पंख पृथ्वी के वातावरण में छोटे परिवर्तन कर सकते हैं जो अंततः बवंडर के मार्ग को बदल सकते हैं या देरी कर सकते हैं,या तेज कर सकते हैं, या किसी अन्य स्थान पर बवंडर की घटना को रोक सकते हैं। तितली बिजली नहीं देती है या सीधे बवंडर नहीं बनाती है, लेकिन इस शब्द का अर्थ यह है कि तितली के पंखों का फड़कना बवंडर का कारण बन सकता है: इस अर्थ में कि पंखों का फड़कना एक परस्पर जटिलता की प्रारंभिक स्थितियों का एक हिस्सा है वेब; स्थितियों का एक समूह बवंडर की ओर ले जाता है, जबकि अन्य स्थितियों का समूह  नहीं होता है। फ़्लैपिंग विंग सिस्टम की प्रारंभिक स्थिति में एक छोटे से बदलाव का प्रतिनिधित्व करता है, जो बड़े पैमाने पर घटनाओं के परिवर्तन (तुलना करें: डोमिनोज़ प्रभाव) का कारण बनता है। अगर तितली ने अपने पंख नहीं फड़फड़ाए होते, तो सिस्टम का [[प्रक्षेपवक्र]] बहुत अलग हो सकता था - लेकिन यह भी समान रूप से संभव है कि तितली के पंख फड़फड़ाए बिना परिस्थितियों का समूह  वह समूह  है जो बवंडर की ओर ले जाता है।
कुछ वैज्ञानिकों ने तब से तर्क दिया है कि मौसम प्रणाली प्रारंभिक स्थितियों के प्रति उतनी संवेदनशील नहीं है जितनी पहले मानी जाती थी।<ref>{{cite journal |last1=Orrell |first1=David |last2=Smith |first2=Leonard |last3=Barkmeijer |first3=Jan |last4=Palmer |first4=Tim |title=मौसम पूर्वानुमान में मॉडल त्रुटि|journal=Nonlinear Processes in Geophysics |year=2001 |volume=9 |issue=6 |pages=357–371 |doi=10.5194/npg-8-357-2001 |bibcode=2001NPGeo...8..357O |doi-access=free}}</ref> [[डेविड ऑरेल]] का तर्क है कि मौसम पूर्वानुमान त्रुटि में प्रमुख योगदानकर्ता मॉडल त्रुटि है, जिसमें प्रारंभिक स्थितियों की संवेदनशीलता अपेक्षाकृत छोटी भूमिका निभाती है।<ref>{{cite journal |last=Orrell |first=David |title=पूर्वानुमान त्रुटि वृद्धि में मीट्रिक की भूमिका: मौसम कितना अराजक है?|journal=Tellus |year=2002 |volume=54A |issue=4 |pages=350–362 |doi=10.3402/tellusa.v54i4.12159 |bibcode=2002TellA..54..350O |doi-access=free}}</ref><ref>{{cite book |last=Orrell |first=David |title=सत्य या सौंदर्य: विज्ञान और आदेश की खोज|page=208 |location=New Haven |publisher=Yale University Press |year=2012 |isbn=978-0300186611}}</ref> [[स्टीफन वोल्फ्राम]] यह भी नोट करते हैं कि लॉरेंज समीकरण अत्यधिक सरलीकृत हैं और इसमें चिपचिपा प्रभाव का प्रतिनिधित्व करने वाले शब्द शामिल नहीं हैं; उनका मानना ​​​​है कि ये शर्तें छोटी-छोटी गड़बड़ियों को कम कर देंगी।<ref>{{cite book |last=Wolfram |first=Stephen |title=एक नए तरह का विज्ञान|page=[https://archive.org/details/newkindofscience00wolf/page/998 998] |publisher=Wolfram Media |year=2002 |isbn=978-1579550080 |url-access=registration |url=https://archive.org/details/newkindofscience00wolf}}</ref> सामान्यीकृत लॉरेंज मॉडल का उपयोग करते हुए हाल के अध्ययनों में अतिरिक्त विघटनकारी शब्द और गैर-रैखिकता शामिल हैं, ने सुझाव दिया कि अराजकता की शुरुआत के लिए एक बड़ा हीटिंग पैरामीटर आवश्यक है।<ref>{{cite journal |last=Shen |first=Bo-Wen |date=2019 |title=सामान्यीकृत लॉरेंज मॉडल में एकत्रित नकारात्मक प्रतिक्रिया|url=https://www.worldscientific.com/doi/abs/10.1142/S0218127419500378 |journal=International Journal of Bifurcation and Chaos |volume=29 |issue=3 |pages=1950037–1950091|doi=10.1142/S0218127419500378 |bibcode=2019IJBC...2950037S |s2cid=132494234 }}</ref>
 
जबकि बटरफ्लाई इफेक्ट को अक्सर लोरेंज द्वारा अपने 1963 के पेपर (और पहले पॉइंकेयर द्वारा देखे गए) में वर्णित प्रकार की प्रारंभिक स्थितियों पर संवेदनशील निर्भरता के पर्याय के रूप में समझाया जाता है, तितली रूपक मूल रूप से लागू किया गया था<ref name=":1"/>काम करने के लिए उन्होंने 1969 में प्रकाशित किया<ref name=":2">{{cite journal |last=Lorenz |first=Edward N. |date=June 1969 |title=एक प्रवाह की पूर्वानुमेयता जिसमें गति के कई पैमाने होते हैं|journal=Tellus |volume=XXI |issue=3 |pages=289–297 |bibcode=1969Tell...21..289L |doi=10.1111/j.2153-3490.1969.tb00444.x}}</ref> जिसने इस विचार को एक कदम आगे बढ़ाया। लॉरेंज ने एक गणितीय मॉडल प्रस्तावित किया कि कैसे वायुमंडल में छोटी-छोटी गतियां बड़ी प्रणालियों को प्रभावित करती हैं। उन्होंने पाया कि उस मॉडल में सिस्टम को केवल भविष्य में एक विशिष्ट बिंदु तक ही भविष्यवाणी की जा सकती है, और इससे परे, प्रारंभिक स्थितियों में त्रुटि को कम करने से भविष्यवाणी में वृद्धि नहीं होगी (जब तक कि त्रुटि शून्य न हो)। इसने प्रदर्शित किया कि पूर्वानुमेयता के संदर्भ में एक नियतात्मक प्रणाली एक गैर-नियतात्मक प्रणाली से अवलोकनीय रूप से अप्रभेद्य हो सकती है। इस पत्र की हाल की पुन: जांच से पता चलता है कि इसने इस विचार को एक महत्वपूर्ण चुनौती दी है कि हमारा ब्रह्मांड नियतात्मक है, क्वांटम भौतिकी द्वारा दी गई चुनौतियों के बराबर है।<ref name=":3">{{cite web |title=तितली प्रभाव - यह वास्तव में क्या दर्शाता है?|last=Tim |first=Palmer |website=Oxford U. Dept. of Mathematics Youtube Channel |date=19 May 2017 |url=https://www.youtube.com/watch?v=vkQEqXAz44I |access-date=13 February 2019 |url-status=live |archive-url=https://ghostarchive.org/varchive/youtube/20211031/vkQEqXAz44I |archive-date=2021-10-31}}{{cbignore}}</ref><ref name=":4">{{cite web |title=एडवर्ड एन. लॉरेंज एंड द एंड ऑफ़ द कार्टेशियन यूनिवर्स|last=Emanuel |first=Kerry |website=MIT Department of Earth, Atmospheric, and Planetary Sciences Youtube channel |date=26 March 2018 |url=https://www.youtube.com/watch?v=FvWeK_PfDE4 |access-date=13 February 2019 |url-status=live |archive-url=https://ghostarchive.org/varchive/youtube/20211031/FvWeK_PfDE4 |archive-date=2021-10-31}}{{cbignore}}</ref>
"बटरफ्लाई इफेक्ट" भविष्यवाणी के लिए एक स्पष्ट चुनौती प्रस्तुत करता है, क्योंकि मौसम जैसी प्रणाली के लिए प्रारंभिक स्थितियों को पूर्ण सटीकता के लिए कभी नहीं जाना जा सकता है। इस समस्या ने समेकन पूर्वानुमान के विकास को प्रेरित किया, जिसमें परेशान प्रारंभिक स्थितियों से कई पूर्वानुमान किए जाते हैं।<ref>{{cite book |last=Woods |first=Austin |title=मध्यम अवधि के मौसम की भविष्यवाणी: यूरोपीय दृष्टिकोण; यूरोपियन सेंटर फॉर मीडियम-रेंज वेदर फोरकास्ट की कहानी|url=https://archive.org/details/mediumrangeweath00wood |url-access=limited |page=[https://archive.org/details/mediumrangeweath00wood/page/n131 118] |location=New York |publisher=Springer |year=2005 |isbn=978-0387269283}}</ref>
1993 में प्रकाशित "द एसेंस ऑफ कैओस" नामक पुस्तक में,<ref name=":5" />लॉरेंज ने बटरफ्लाई इफेक्ट को इस प्रकार परिभाषित किया: "यह घटना कि एक गतिशील प्रणाली की स्थिति में एक छोटा परिवर्तन बाद के राज्यों को उन राज्यों से बहुत अलग कर देगा जो परिवर्तन के बिना पालन करेंगे।" यह सुविधा प्रारंभिक स्थितियों (एसडीआईसी) पर समाधानों की संवेदनशील निर्भरता के समान है।<ref name=":0" />उसी पुस्तक में, लॉरेंज ने स्कीइंग की गतिविधि को लागू किया और शुरुआती स्थितियों के लिए समय-भिन्न रास्तों की संवेदनशीलता को प्रकट करने के लिए एक आदर्श स्कीइंग मॉडल विकसित किया। एसडीआईसी की शुरुआत से पहले एक पूर्वानुमानित क्षितिज निर्धारित किया जाता है।<ref>{{Cite journal |last1=Shen |first1=Bo-Wen |last2=Pielke |first2=Roger A. |last3=Zeng |first3=Xubin |date=2022-05-07 |title=लॉरेंज 1963 और 1969 मॉडल के भीतर एक सैडल प्वाइंट और दो प्रकार की संवेदनशीलता|journal=Atmosphere |volume=13 |issue=5 |pages=753 |doi=10.3390/atmos13050753 |bibcode=2022Atmos..13..753S |issn=2073-4433|doi-access=free }}</ref>
 
कुछ वैज्ञानिकों ने तब से तर्क दिया है कि मौसम प्रणाली प्रारंभिक स्थितियों के प्रति उतनी संवेदनशील नहीं है जितनी पहले मानी जाती थी।<ref>{{cite journal |last1=Orrell |first1=David |last2=Smith |first2=Leonard |last3=Barkmeijer |first3=Jan |last4=Palmer |first4=Tim |title=मौसम पूर्वानुमान में मॉडल त्रुटि|journal=Nonlinear Processes in Geophysics |year=2001 |volume=9 |issue=6 |pages=357–371 |doi=10.5194/npg-8-357-2001 |bibcode=2001NPGeo...8..357O |doi-access=free}}</ref> [[डेविड ऑरेल]] का तर्क है कि मौसम पूर्वानुमान त्रुटि में प्रमुख योगदानकर्ता मॉडल त्रुटि है, जिसमें प्रारंभिक स्थितियों की संवेदनशीलता अपेक्षाकृत छोटी भूमिका निभाती है।<ref>{{cite journal |last=Orrell |first=David |title=पूर्वानुमान त्रुटि वृद्धि में मीट्रिक की भूमिका: मौसम कितना अराजक है?|journal=Tellus |year=2002 |volume=54A |issue=4 |pages=350–362 |doi=10.3402/tellusa.v54i4.12159 |bibcode=2002TellA..54..350O |doi-access=free}}</ref><ref>{{cite book |last=Orrell |first=David |title=सत्य या सौंदर्य: विज्ञान और आदेश की खोज|page=208 |location=New Haven |publisher=Yale University Press |year=2012 |isbn=978-0300186611}}</ref> [[स्टीफन वोल्फ्राम]] यह भी नोट करते हैं कि लॉरेंज समीकरण अत्यधिक सरलीकृत हैं और इसमें चिपचिपा प्रभाव का प्रतिनिधित्व करने वाले शब्द सम्मिलित नहीं हैं; उनका मानना ​​​​है कि ये शर्तें छोटी-छोटी गड़बड़ियों को कम कर देंगी।<ref>{{cite book |last=Wolfram |first=Stephen |title=एक नए तरह का विज्ञान|page=[https://archive.org/details/newkindofscience00wolf/page/998 998] |publisher=Wolfram Media |year=2002 |isbn=978-1579550080 |url-access=registration |url=https://archive.org/details/newkindofscience00wolf}}</ref> सामान्यीकृत लॉरेंज मॉडल का उपयोग करते हुए हाल के अध्ययनों में अतिरिक्त विघटनकारी शब्द और गैर-रैखिकता सम्मिलित हैं, ने सुझाव दिया कि अराजकता की शुरुआत के लिए एक बड़ा हीटिंग पैरामीटर आवश्यक है।<ref>{{cite journal |last=Shen |first=Bo-Wen |date=2019 |title=सामान्यीकृत लॉरेंज मॉडल में एकत्रित नकारात्मक प्रतिक्रिया|url=https://www.worldscientific.com/doi/abs/10.1142/S0218127419500378 |journal=International Journal of Bifurcation and Chaos |volume=29 |issue=3 |pages=1950037–1950091|doi=10.1142/S0218127419500378 |bibcode=2019IJBC...2950037S |s2cid=132494234 }}</ref>


जबकि "बटरफ्लाई इफेक्ट" को अक्सर लोरेंज द्वारा अपने 1963 के पेपर (और पहले पॉइंकेयर द्वारा देखे गए) में वर्णित प्रकार की प्रारंभिक स्थितियों पर संवेदनशील निर्भरता के पर्याय के रूप में समझाया जाता है, तितली रूपक मूल रूप से लागू किया गया था<ref name=":1" />काम करने के लिए उन्होंने 1969 में प्रकाशित किया<ref name=":2">{{cite journal |last=Lorenz |first=Edward N. |date=June 1969 |title=एक प्रवाह की पूर्वानुमेयता जिसमें गति के कई पैमाने होते हैं|journal=Tellus |volume=XXI |issue=3 |pages=289–297 |bibcode=1969Tell...21..289L |doi=10.1111/j.2153-3490.1969.tb00444.x}}</ref> जिसने इस विचार को एक कदम आगे बढ़ाया। लॉरेंज ने एक गणितीय मॉडल प्रस्तावित किया कि कैसे वायुमंडल में छोटी-छोटी गतियां बड़ी प्रणालियों को प्रभावित करती हैं। उन्होंने पाया कि उस मॉडल में सिस्टम को केवल भविष्य में एक विशिष्ट बिंदु तक ही भविष्यवाणी की जा सकती है, और इससे परे, प्रारंभिक स्थितियों में त्रुटि को कम करने से भविष्यवाणी में वृद्धि नहीं होगी (जब तक कि त्रुटि शून्य न हो)। इसने प्रदर्शित किया कि पूर्वानुमेयता के संदर्भ में एक नियतात्मक प्रणाली एक गैर-नियतात्मक प्रणाली से अवलोकनीय रूप से अप्रभेद्य हो सकती है। इस पत्र की हाल की पुन: जांच से पता चलता है कि इसने इस विचार को एक महत्वपूर्ण चुनौती दी है कि हमारा ब्रह्मांड नियतात्मक है, क्वांटम भौतिकी द्वारा दी गई चुनौतियों के बराबर है।<ref name=":3">{{cite web |title=तितली प्रभाव - यह वास्तव में क्या दर्शाता है?|last=Tim |first=Palmer |website=Oxford U. Dept. of Mathematics Youtube Channel |date=19 May 2017 |url=https://www.youtube.com/watch?v=vkQEqXAz44I |access-date=13 February 2019 |url-status=live |archive-url=https://ghostarchive.org/varchive/youtube/20211031/vkQEqXAz44I |archive-date=2021-10-31}}{{cbignore}}</ref><ref name=":4">{{cite web |title=एडवर्ड एन. लॉरेंज एंड द एंड ऑफ़ द कार्टेशियन यूनिवर्स|last=Emanuel |first=Kerry |website=MIT Department of Earth, Atmospheric, and Planetary Sciences Youtube channel |date=26 March 2018 |url=https://www.youtube.com/watch?v=FvWeK_PfDE4 |access-date=13 February 2019 |url-status=live |archive-url=https://ghostarchive.org/varchive/youtube/20211031/FvWeK_PfDE4 |archive-date=2021-10-31}}{{cbignore}}</ref>


1993 में प्रकाशित "द एसेंस ऑफ कैओस" नामक पुस्तक में,<ref name=":5" />लॉरेंज ने  "बटरफ्लाई इफेक्ट" को इस प्रकार परिभाषित किया: "यह घटना कि एक गतिशील प्रणाली की स्थिति में एक छोटा परिवर्तन बाद के राज्यों को उन राज्यों से बहुत अलग कर देगा जो परिवर्तन के बिना पालन करेंगे।" यह सुविधा प्रारंभिक स्थितियों (एसडीआईसी) पर समाधानों की संवेदनशील निर्भरता के समान है।<ref name=":0" />उसी पुस्तक में, लॉरेंज ने स्कीइंग की गतिविधि को लागू किया और शुरुआती स्थितियों के लिए समय-भिन्न रास्तों की संवेदनशीलता को प्रकट करने के लिए एक आदर्श स्कीइंग मॉडल विकसित किया। एसडीआईसी की शुरुआत से पहले एक पूर्वानुमानित क्षितिज निर्धारित किया जाता है।<ref>{{Cite journal |last1=Shen |first1=Bo-Wen |last2=Pielke |first2=Roger A. |last3=Zeng |first3=Xubin |date=2022-05-07 |title=लॉरेंज 1963 और 1969 मॉडल के भीतर एक सैडल प्वाइंट और दो प्रकार की संवेदनशीलता|journal=Atmosphere |volume=13 |issue=5 |pages=753 |doi=10.3390/atmos13050753 |bibcode=2022Atmos..13..753S |issn=2073-4433|doi-access=free }}</ref>
== चित्रण ==
== चित्रण ==
:{|class="wikitable" width=100%
:{|class="wikitable" width=100%
Line 52: Line 64:
| style="text-align:center;"|[[File:LorenzCoordinatesSmall.jpg|300px]]
| style="text-align:center;"|[[File:LorenzCoordinatesSmall.jpg|300px]]
|-
|-
|colspan=3| These figures show two segments of the three-dimensional evolution of two trajectories (one in blue, and the other in yellow) for the same period of time in the Lorenz attractor starting at two initial points that differ by only 10<sup>−5</sup> in the [[x-coordinate]]. Initially, the two trajectories seem coincident, as indicated by the small difference between the ''z'' coordinate of the blue and yellow trajectories, but for ''t''&nbsp;>&nbsp;23 the difference is as large as the value of the trajectory. The final position of the cones indicates that the two trajectories are no longer coincident at ''t''&nbsp;=&nbsp;30.
|colspan=3| ये आंकड़े लोरेंज अट्रैक्टर में समान अवधि के लिए दो प्रक्षेपवक्र (एक नीले रंग में और दूसरा पीले रंग में) के त्रि-आयामी विकास के दो खंडों को दिखाते हैं जो दो प्रारंभिक बिंदुओं से शुरू होते हैं जो x में केवल 10<sup>−5</sup> से भिन्न होते हैं। -समन्वय। प्रारंभ में, दो प्रक्षेपवक्र संयोग प्रतीत होते हैं, जैसा कि नीले और पीले प्रक्षेपवक्र के z निर्देशांक के बीच छोटे अंतर से संकेत मिलता है, लेकिन t > 23 के लिए अंतर प्रक्षेपवक्र के मान जितना बड़ा है। शंकु की अंतिम स्थिति इंगित करती है कि दो प्रक्षेपवक्र अब संपाती नहीं हैं
 
 
These figures show two segments of the three-dimensional evolution of two trajectories (one in blue, and the other in yellow) for the same period of time in the Lorenz attractor starting at two initial points that differ by only 10<sup>−5</sup> in the [[x-coordinate]]. Initially, the two trajectories seem coincident, as indicated by the small difference between the ''z'' coordinate of the blue and yellow trajectories, but for ''t''&nbsp;>&nbsp;23 the difference is as large as the value of the trajectory. The final position of the cones indicates that the two trajectories are no longer coincident at ''t''&nbsp;=&nbsp;30.
|-
|-
| style="text-align:center;" colspan="3"| An animation of the [[Lorenz attractor]] shows the continuous evolution.
| style="text-align:center;" colspan="3"| लोरेंज अट्रैक्टर निरंतर विकास का एक एनीमेशन दिखाता है।
An animation of the [[Lorenz attractor]] shows the continuous evolution.
|}
|}
== सिद्धांत और गणितीय परिभाषा ==
== सिद्धांत और गणितीय परिभाषा ==
पोंकारे पुनरावर्तन प्रमेय, प्रारंभिक स्थितियों पर संवेदनशील निर्भरता के साथ-साथ प्रारंभिक स्थितियों की ओर एक प्रणाली की अनुमानित वापसी, अराजक गति के लिए दो मुख्य तत्व हैं। उनके पास जटिल प्रणाली बनाने का व्यावहारिक परिणाम है, जैसे [[मौसम]], एक निश्चित समय सीमा (मौसम के मामले में लगभग एक सप्ताह) की भविष्यवाणी करना मुश्किल है क्योंकि शुरुआती वायुमंडलीय स्थितियों को पूरी तरह सटीक रूप से मापना असंभव है।
आवर्तन, प्रारंभिक स्थितियों पर संवेदनशील निर्भरता के साथ-साथ प्रारंभिक स्थितियों की ओर एक प्रणाली की अनुमानित वापसी,अराजक गति के लिए दो मुख्य तत्व हैं। उनके पास जटिल प्रणाली बनाने का व्यावहारिक परिणाम है, जैसे [[मौसम]], एक निश्चित समय सीमा (मौसम के मामले में लगभग एक सप्ताह) की भविष्यवाणी करना मुश्किल है क्योंकि शुरुआती वायुमंडलीय स्थितियों को पूरी तरह सटीक रूप से मापना असंभव है।


एक गतिशील प्रणाली प्रारंभिक स्थितियों पर संवेदनशील निर्भरता प्रदर्शित करती है यदि अंक मनमाने ढंग से एक साथ एक घातीय दर पर समय के साथ अलग हो जाते हैं। परिभाषा सामयिक नहीं है, लेकिन अनिवार्य रूप से मीट्रिक है। लोरेन्ज<ref name=":5">{{cite book |last=Lorenz |first=Edward N. |url=https://www.worldcat.org/title/essence-of-chaos/oclc/56620850 |title=अराजकता का सार|date=1993 |publisher=UCL Press |isbn=0-203-21458-7 |location=London |oclc=56620850}}</ref> परिभाषित संवेदनशील निर्भरता इस प्रकार है:
एक गतिशील प्रणाली प्रारंभिक स्थितियों पर संवेदनशील निर्भरता प्रदर्शित करती है यदि अंक मनमाने ढंग से एक साथ एक घातीय दर पर समय के साथ अलग हो जाते हैं। परिभाषा सामयिक नहीं है, लेकिन अनिवार्य रूप से मापीय है। लोरेन्ज<ref name=":5">{{cite book |last=Lorenz |first=Edward N. |url=https://www.worldcat.org/title/essence-of-chaos/oclc/56620850 |title=अराजकता का सार|date=1993 |publisher=UCL Press |isbn=0-203-21458-7 |location=London |oclc=56620850}}</ref> परिभाषित संवेदनशील निर्भरता इस प्रकार है:


एक कक्षा (अर्थात, एक समाधान) को चिह्नित करने वाला गुण यदि किसी बिंदु पर उसके पास से गुजरने वाली अधिकांश अन्य कक्षाएँ समय के आगे बढ़ने के साथ उसके करीब नहीं रहती हैं।
एक कक्षा की विशेषता बताने वाला गुण(अर्थात, ..समाधान) यदि अधिकांश अन्य कक्षाएँ जो किसी बिंदु पर इसके करीब से गुजरती हैं, समय बढ़ने के बाद इसके पास नहीं रहती हैं।


यदि एम मानचित्र के लिए राज्य स्थान (गतिशील प्रणाली) है <math>f^t</math>, तब <math>f^t</math> प्रारंभिक स्थितियों के प्रति संवेदनशील निर्भरता प्रदर्शित करता है यदि M में कोई x और कोई δ > 0, M में दूरी के साथ y हैं {{math|''d''(. , .)}} ऐसा है कि <math>0 < d(x, y) < \delta </math> और ऐसा है
यदि एम मानचित्र के लिए राज्य स्थान (गतिशील प्रणाली) है <math>f^t</math>, तब <math>f^t</math> प्रारंभिक स्थितियों के प्रति संवेदनशील निर्भरता प्रदर्शित करता है यदि M में कोई x और कोई δ > 0, M में दूरी के साथ y हैं {{math|''d''(. , .)}} ऐसा है कि <math>0 < d(x, y) < \delta </math> और ऐसा है
:<math>d(f^\tau(x), f^\tau(y)) > \mathrm{e}^{a\tau} \, d(x,y)</math>
:<math>d(f^\tau(x), f^\tau(y)) > \mathrm{e}^{a\tau} \, d(x,y)</math>
कुछ सकारात्मक पैरामीटर ए के लिए। परिभाषा की आवश्यकता नहीं है कि पड़ोस के सभी बिंदु आधार बिंदु x से अलग हों, लेकिन इसके लिए एक सकारात्मक Lyapunov प्रतिपादक की आवश्यकता होती है। एक सकारात्मक Lyapunov प्रतिपादक के अलावा, अराजक प्रणालियों के भीतर परिबद्धता एक और प्रमुख विशेषता है।<ref>{{cite book |last=W. |first=Jordan, Dominic |url=https://www.worldcat.org/title/nonlinear-ordinary-differential-equations-an-introduction-for-scientists-and-engineers/oclc/772641393 |title=अरैखिक साधारण अंतर समीकरण: वैज्ञानिकों और इंजीनियरों के लिए एक परिचय|date=2011 |publisher=Oxford Univ. Press |isbn=978-0-19-920825-8 |oclc=772641393}}</ref>
कुछ सकारात्मक पैरामीटर ए के लिए। परिभाषा की आवश्यकता नहीं है कि पड़ोस के सभी बिंदु आधार बिंदु x से अलग हों, लेकिन इसके लिए एक सकारात्मक Lyapunov प्रतिपादक की आवश्यकता होती है। एक सकारात्मक Lyapunov प्रतिपादक के अलावा, अराजक प्रणालियों के भीतर परिबद्धता एक और प्रमुख विशेषता है।<ref>{{cite book |last=W. |first=Jordan, Dominic |url=https://www.worldcat.org/title/nonlinear-ordinary-differential-equations-an-introduction-for-scientists-and-engineers/oclc/772641393 |title=अरैखिक साधारण अंतर समीकरण: वैज्ञानिकों और इंजीनियरों के लिए एक परिचय|date=2011 |publisher=Oxford Univ. Press |isbn=978-0-19-920825-8 |oclc=772641393}}</ref>
प्रारंभिक स्थितियों पर संवेदनशील निर्भरता प्रदर्शित करने वाला सबसे सरल गणितीय ढांचा [[रसद मानचित्र]] के एक विशेष पैरामीट्रिजेशन द्वारा प्रदान किया गया है:
प्रारंभिक स्थितियों पर संवेदनशील निर्भरता प्रदर्शित करने वाला सबसे सरल गणितीय ढांचा [[रसद मानचित्र]] के एक विशेष पैरामीट्रिजेशन द्वारा प्रदान किया गया है:
:<math>x_{n+1} = 4 x_n (1-x_n) , \quad 0\leq x_0\leq 1,</math>
:<math>x_{n+1} = 4 x_n (1-x_n) , \quad 0\leq x_0\leq 1,</math>
जो, अधिकांश अराजक नक्शों के विपरीत, एक बंद-रूप समाधान है:
जो, अधिकांश अराजक नक्शों के विपरीत, एक बंद-रूप समाधान है:
:<math>x_{n}=\sin^{2}(2^{n} \theta \pi)</math>
:<math>x_{n}=\sin^{2}(2^{n} \theta \pi)</math>
जहां प्रारंभिक स्थिति पैरामीटर <math>\theta</math> द्वारा दिया गया है <math>\theta = \tfrac{1}{\pi}\sin^{-1}(x_0^{1/2})</math>. तर्कसंगत के लिए <math>\theta</math>[[पुनरावृत्त समारोह]] की एक सीमित संख्या के बाद <math>x_n</math> एक [[आवधिक बिंदु]] में मानचित्र। लेकिन [[लगभग सभी]] <math>\theta</math> तर्कहीन हैं, और, तर्कहीन के लिए <math>\theta</math>, <math>x_n</math> कभी भी स्वयं को दोहराता नहीं है - यह गैर-आवधिक है। यह समाधान समीकरण अराजकता की दो प्रमुख विशेषताओं को स्पष्ट रूप से प्रदर्शित करता है - खिंचाव और तह: कारक 2<sup>n</sup> खिंचाव की घातीय वृद्धि को दर्शाता है, जिसके परिणामस्वरूप प्रारंभिक स्थितियों (बटरफ्लाई इफेक्ट) पर संवेदनशील निर्भरता होती है, जबकि चुकता साइन फ़ंक्शन रहता है <math>x_n</math> सीमा [0, 1] के भीतर मुड़ा हुआ।
जहां प्रारंभिक स्थिति पैरामीटर <math>\theta</math> द्वारा दिया गया है <math>\theta = \tfrac{1}{\pi}\sin^{-1}(x_0^{1/2})</math>. तर्कसंगत के लिए <math>\theta</math>[[पुनरावृत्त समारोह]] की एक सीमित संख्या के बाद <math>x_n</math> एक [[आवधिक बिंदु]] में मानचित्र। लेकिन [[लगभग सभी]] <math>\theta</math> बेतुका हैं, और, बेतुके के लिए <math>\theta</math>, <math>x_n</math> कभी भी स्वयं को दोहराता नहीं है - यह गैर-आवधिक है। यह समाधान समीकरण अराजकता की दो प्रमुख विशेषताओं को स्पष्ट रूप से प्रदर्शित करता है - खिंचाव और तह: कारक 2<sup>n</sup> खिंचाव की घातीय वृद्धि को दर्शाता है, जिसके परिणामस्वरूप प्रारंभिक स्थितियों ( "बटरफ्लाई इफेक्ट") पर संवेदनशील निर्भरता होती है, जबकि चुकता साइन फ़ंक्शन रहता है <math>x_n</math> सीमा [0, 1] के भीतर मुड़ा हुआ।


== भौतिक प्रणालियों में ==
== भौतिक प्रणालियों में ==
Line 78: Line 93:
=== मौसम में ===
=== मौसम में ===


मौसम के संदर्भ में तितली का प्रभाव सबसे अधिक परिचित है; उदाहरण के लिए, इसे मानक मौसम पूर्वानुमान मॉडल में आसानी से प्रदर्शित किया जा सकता है। जलवायु वैज्ञानिक जेम्स अन्नान और विलियम कॉनॉली बताते हैं कि मौसम की भविष्यवाणी के तरीकों के विकास में अराजकता महत्वपूर्ण है; मॉडल प्रारंभिक स्थितियों के प्रति संवेदनशील होते हैं। वे चेतावनी जोड़ते हैं: बेशक एक अज्ञात तितली के पंख फड़फड़ाने का मौसम के पूर्वानुमान पर कोई सीधा असर नहीं पड़ता है, क्योंकि इस तरह के एक छोटे से गड़बड़ी को एक महत्वपूर्ण आकार तक बढ़ने में बहुत लंबा समय लगेगा, और हमारे पास कई और तत्काल अनिश्चितताएं हैं के बारे में चिंता करना। इसलिए मौसम की भविष्यवाणी पर इस घटना का सीधा प्रभाव अक्सर कुछ हद तक गलत होता है।<ref>{{cite web |title=अराजकता और जलवायु|publisher=RealClimate |date=4 November 2005 |url=https://www.realclimate.org/index.php/archives/2005/11/chaos-and-climate/ |access-date=2014-06-08 |url-status=live |archive-url=https://web.archive.org/web/20140702105624/http://www.realclimate.org/index.php/archives/2005/11/chaos-and-climate/ |archive-date=2014-07-02}}</ref> प्रारंभिक स्थितियों पर संवेदनशील निर्भरता सहित दो प्रकार के बटरफ्लाई इफेक्ट,<ref name=":0"/>और बड़ी दूरी पर एक संगठित संचलन बनाने के लिए एक छोटे से गड़बड़ी की क्षमता,<ref name=":1"/>बिल्कुल एक जैसे नहीं हैं।<ref>{{cite journal |last=Shen |first=Bo-Wen |date=2014-05-01 |title=फाइव-डायमेंशनल लॉरेंज मॉडल में नॉनलाइनियर फीडबैक|url=https://journals.ametsoc.org/view/journals/atsc/71/5/jas-d-13-0223.1.xml |journal=Journal of the Atmospheric Sciences |language=EN |volume=71 |issue=5 |pages=1701–1723 |doi=10.1175/JAS-D-13-0223.1 |bibcode=2014JAtS...71.1701S |s2cid=123683839 |issn=0022-4928}}</ref> दो प्रकार के बटरफ्लाई इफेक्टों की तुलना<ref name=":1"/><ref name=":0"/>और तीसरे प्रकार का बटरफ्लाई इफेक्ट<ref name=":2"/><ref name=":3"/><ref name=":4"/>प्रलेखित किया गया है।<ref>{{cite journal |last1=Shen |first1=Bo-Wen |last2=Pielke |first2=Roger A. |last3=Zeng |first3=Xubin |last4=Cui |first4=Jialin |last5=Faghih-Naini |first5=Sara |last6=Paxson |first6=Wei |last7=Atlas |first7=Robert |date=2022-07-04 |title=लॉरेंज मॉडल के भीतर तीन प्रकार के तितली प्रभाव|journal=[[Encyclopedia (journal)|Encyclopedia]] |language=en |volume=2 |issue=3 |pages=1250–1259 |doi=10.3390/encyclopedia2030084 |issn=2673-8392|doi-access=free }}</ref>
मौसम के संदर्भ में तितली का प्रभाव सबसे अधिक परिचित है; उदाहरण के लिए, इसे मानक मौसम पूर्वानुमान मॉडल में आसानी से प्रदर्शित किया जा सकता है। जलवायु वैज्ञानिक जेम्स अन्नान और विलियम कॉनॉली बताते हैं कि मौसम की भविष्यवाणी के तरीकों के विकास में अराजकता महत्वपूर्ण है; मॉडल प्रारंभिक स्थितियों के प्रति संवेदनशील होते हैं। वे चेतावनी जोड़ते हैं: बेशक एक अज्ञात तितली के पंख फड़फड़ाने का मौसम के पूर्वानुमान पर कोई सीधा असर नहीं पड़ता है, क्योंकि इस तरह की एक छोटी सी गड़बड़ी को एक महत्वपूर्ण आकार तक बढ़ने में बहुत लंबा समय लगेगा, और हमारे पास कई और तत्काल अनिश्चितताएं हैं जिनके बारे में चिंता करनी है । इसलिए मौसम की भविष्यवाणी पर इस घटना का सीधा प्रभाव अक्सर कुछ हद तक गलत होता है।<ref>{{cite web |title=अराजकता और जलवायु|publisher=RealClimate |date=4 November 2005 |url=https://www.realclimate.org/index.php/archives/2005/11/chaos-and-climate/ |access-date=2014-06-08 |url-status=live |archive-url=https://web.archive.org/web/20140702105624/http://www.realclimate.org/index.php/archives/2005/11/chaos-and-climate/ |archive-date=2014-07-02}}</ref> प्रारंभिक स्थितियों पर संवेदनशील निर्भरता सहित दो प्रकार के "बटरफ्लाई इफेक्ट",<ref name=":0"/>और बड़ी दूरी पर एक संगठित संचलन बनाने के लिए एक छोटे से गड़बड़ी की क्षमता,<ref name=":1"/>बिल्कुल एक जैसे नहीं हैं।<ref>{{cite journal |last=Shen |first=Bo-Wen |date=2014-05-01 |title=फाइव-डायमेंशनल लॉरेंज मॉडल में नॉनलाइनियर फीडबैक|url=https://journals.ametsoc.org/view/journals/atsc/71/5/jas-d-13-0223.1.xml |journal=Journal of the Atmospheric Sciences |language=EN |volume=71 |issue=5 |pages=1701–1723 |doi=10.1175/JAS-D-13-0223.1 |bibcode=2014JAtS...71.1701S |s2cid=123683839 |issn=0022-4928}}</ref> दो प्रकार के "बटरफ्लाई इफेक्ट" की तुलना<ref name=":1"/><ref name=":0"/>और तीसरे प्रकार का "बटरफ्लाई इफेक्ट"<ref name=":2"/><ref name=":3"/><ref name=":4"/>प्रलेखित किया गया है।<ref>{{cite journal |last1=Shen |first1=Bo-Wen |last2=Pielke |first2=Roger A. |last3=Zeng |first3=Xubin |last4=Cui |first4=Jialin |last5=Faghih-Naini |first5=Sara |last6=Paxson |first6=Wei |last7=Atlas |first7=Robert |date=2022-07-04 |title=लॉरेंज मॉडल के भीतर तीन प्रकार के तितली प्रभाव|journal=[[Encyclopedia (journal)|Encyclopedia]] |language=en |volume=2 |issue=3 |pages=1250–1259 |doi=10.3390/encyclopedia2030084 |issn=2673-8392|doi-access=free }}</ref>
लोरेन्ज़ मॉडल के भीतर सह-अस्तित्व वाले अराजक और गैर-अराजक आकर्षणों को प्रकट करके, शेन और उनके सहयोगियों ने "मौसम अराजक है" के पारंपरिक दृष्टिकोण के विपरीत "मौसम में अराजकता और व्यवस्था है" का एक संशोधित दृष्टिकोण प्रस्तावित किया।<ref>{{Cite journal |last1=Shen |first1=Bo-Wen |last2=Pielke |first2=Roger A. |last3=Zeng |first3=Xubin |last4=Baik |first4=Jong-Jin |last5=Faghih-Naini |first5=Sara |last6=Cui |first6=Jialin |last7=Atlas |first7=Robert |date=2021-01-01 |title=क्या मौसम अराजक है?: सामान्यीकृत लॉरेंज मॉडल के भीतर अराजकता और व्यवस्था का सह-अस्तित्व|url=https://journals.ametsoc.org/view/journals/bams/102/1/BAMS-D-19-0165.1.xml |journal=Bulletin of the American Meteorological Society |language=EN |volume=102 |issue=1 |pages=E148–E158 |doi=10.1175/BAMS-D-19-0165.1 |bibcode=2021BAMS..102E.148S |s2cid=208369617 |issn=0003-0007}}</ref><ref>{{Cite journal |last1=Shen |first1=Bo-Wen |last2=Pielke |first2=R. A. Sr. |last3=Zeng |first3=X. |last4=Baik |first4=J.-J. |last5=Faghih-Naini |first5=S. |last6=Cui |first6=J. |last7=Atlas |first7=R. |last8=Reyes |first8=T. A. L. |date=2021 |editor-last=Skiadas |editor-first=Christos H. |editor2-last=Dimotikalis |editor2-first=Yiannis |title=क्या मौसम अराजक है? लोरेन्ज़ मॉडल के भीतर अराजक और गैर-अराजक आकर्षक सह-अस्तित्व|url=https://link.springer.com/chapter/10.1007/978-3-030-70795-8_57 |journal=13th Chaotic Modeling and Simulation International Conference |series=Springer Proceedings in Complexity |language=en |location=Cham |publisher=Springer International Publishing |pages=805–825 |doi=10.1007/978-3-030-70795-8_57 |isbn=978-3-030-70795-8|s2cid=245197840 }}</ref><ref>{{Cite journal |last=Anthes |first=Richard A. |date=2022-08-14 |title=भविष्यवाणी और भविष्यवाणियां|journal=Atmosphere |language=en |volume=13 |issue=8 |pages=1292 |doi=10.3390/atmos13081292 |bibcode=2022Atmos..13.1292A |issn=2073-4433|doi-access=free }}</ref> नतीजतन, प्रारंभिक स्थितियों (एसडीआईसी) पर संवेदनशील निर्भरता हमेशा प्रकट नहीं होती है। अर्थात्, SDIC तब प्रकट होता है जब दो कक्षाएँ (अर्थात, समाधान) अराजक आकर्षणकर्ता बन जाती हैं; यह तब प्रकट नहीं होता है जब दो कक्षाएँ एक ही बिंदु आकर्षणक की ओर बढ़ती हैं। डबल पेंडुलम गति के लिए उपरोक्त एनीमेशन एक सादृश्य प्रदान करता है। स्विंग के बड़े कोणों के लिए पेंडुलम की गति अक्सर अव्यवस्थित होती है।<ref>{{Citation |last1=Richter |first1=P. H. |title=Chaos in Classical Mechanics: The Double Pendulum |date=1984 |url=http://dx.doi.org/10.1007/978-3-642-69591-9_9 |work=Stochastic Phenomena and Chaotic Behaviour in Complex Systems |pages=86–97 |place=Berlin, Heidelberg |publisher=Springer Berlin Heidelberg |isbn=978-3-642-69593-3 |access-date=2022-07-11 |last2=Scholz |first2=H.-J.|doi=10.1007/978-3-642-69591-9_9 }}</ref><ref>{{Cite journal |last=Shinbrot |first=Troy, Celso A Grebogi, Jack Wisdom, James A Yorke |date=1992 |title=एक डबल पेंडुलम में अराजकता|url=https://doi.org/10.1119/1.16860 |journal=American Journal of Physics |volume=60 |issue=6 |pages=491–499|doi=10.1119/1.16860 |bibcode=1992AmJPh..60..491S }}</ref> तुलनात्मक रूप से, झूले के छोटे कोणों के लिए, गति अराजक होती है।
 
[[File:An Analogy for Monostability and Multistability Using Skiing and Kayaking.png|thumb|स्कीइंग का उपयोग मेटास्टेबिलिटी (बाएं और मध्य) प्रकट करने के लिए किया जाता है<ref name=":5" /> और कयाकिंग जैसा कि बहुस्थिरता को दर्शाने के लिए किया जाता है (दाएं<ref name=":6" />). एक स्थिर क्षेत्र को एक सफेद बॉक्स के साथ रेखांकित किया गया है।]]मल्टीस्टेबिलिटी को तब परिभाषित किया जाता है जब एक सिस्टम (जैसे, डबल पेंडुलम सिस्टम) में एक से अधिक बाउंडेड अट्रैक्टर होते हैं जो केवल प्रारंभिक स्थितियों पर निर्भर करते हैं। दाईं ओर चित्र में कयाकिंग का उपयोग करके बहु-स्थिरता को चित्रित किया गया था (अर्थात, चित्र 1 का <ref name=":6">{{Cite journal |last1=Shen |first1=Bo-Wen |last2=Pielke Sr. |first2=Roger Pielke |last3=Zeng |first3=Xubin |last4=Cui |first4=Jialin |last5=Faghih-Naini |first5=Sara |last6=Paxson |first6=Wei |last7=Kesarkar |first7=Amit |last8=Zeng |first8=Xiping |last9=Atlas |first9=Robert |date=2022-11-12 |title=वातावरण में अराजकता और व्यवस्था की दोहरी प्रकृति|journal=Atmosphere |language=en |volume=13 |issue=11 |pages=1892 |doi=10.3390/atmos13111892 |bibcode=2022Atmos..13.1892S |issn=2073-4433|doi-access=free }}  [[File:CC-BY icon.svg|50px]]  Text was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref> ) जहां मजबूत धाराओं और एक स्थिर क्षेत्र की उपस्थिति क्रमशः अस्थिरता और स्थानीय स्थिरता का सुझाव देती है। नतीजतन, जब दो कश्ती मजबूत धाराओं के साथ चलती हैं, तो उनके रास्ते एसडीआईसी प्रदर्शित करते हैं। दूसरी ओर, जब दो कश्ती एक स्थिर क्षेत्र में चलती हैं, तो वे फंस जाती हैं, कोई विशिष्ट एसडीआईसी नहीं दिखाती (हालांकि एक अराजक क्षणिक हो सकता है)। एसडीआईसी या नो एसडीआईसी की ऐसी विशेषताएं दो प्रकार के समाधान सुझाती हैं और बहु-स्थिरता की प्रकृति को दर्शाती हैं।
लोरेन्ज़ मॉडल के भीतर सह-अस्तित्व वाले अराजक और गैर-अराजक आकर्षणों को प्रकट करके, शेन और उनके सहयोगियों ने "मौसम अराजक है" के पारंपरिक दृष्टिकोण के विपरीत "मौसम में अराजकता और व्यवस्था है" का एक संशोधित दृष्टिकोण प्रस्तावित किया।<ref>{{Cite journal |last1=Shen |first1=Bo-Wen |last2=Pielke |first2=Roger A. |last3=Zeng |first3=Xubin |last4=Baik |first4=Jong-Jin |last5=Faghih-Naini |first5=Sara |last6=Cui |first6=Jialin |last7=Atlas |first7=Robert |date=2021-01-01 |title=क्या मौसम अराजक है?: सामान्यीकृत लॉरेंज मॉडल के भीतर अराजकता और व्यवस्था का सह-अस्तित्व|url=https://journals.ametsoc.org/view/journals/bams/102/1/BAMS-D-19-0165.1.xml |journal=Bulletin of the American Meteorological Society |language=EN |volume=102 |issue=1 |pages=E148–E158 |doi=10.1175/BAMS-D-19-0165.1 |bibcode=2021BAMS..102E.148S |s2cid=208369617 |issn=0003-0007}}</ref><ref>{{Cite journal |last1=Shen |first1=Bo-Wen |last2=Pielke |first2=R. A. Sr. |last3=Zeng |first3=X. |last4=Baik |first4=J.-J. |last5=Faghih-Naini |first5=S. |last6=Cui |first6=J. |last7=Atlas |first7=R. |last8=Reyes |first8=T. A. L. |date=2021 |editor-last=Skiadas |editor-first=Christos H. |editor2-last=Dimotikalis |editor2-first=Yiannis |title=क्या मौसम अराजक है? लोरेन्ज़ मॉडल के भीतर अराजक और गैर-अराजक आकर्षक सह-अस्तित्व|url=https://link.springer.com/chapter/10.1007/978-3-030-70795-8_57 |journal=13th Chaotic Modeling and Simulation International Conference |series=Springer Proceedings in Complexity |language=en |location=Cham |publisher=Springer International Publishing |pages=805–825 |doi=10.1007/978-3-030-70795-8_57 |isbn=978-3-030-70795-8|s2cid=245197840 }}</ref><ref>{{Cite journal |last=Anthes |first=Richard A. |date=2022-08-14 |title=भविष्यवाणी और भविष्यवाणियां|journal=Atmosphere |language=en |volume=13 |issue=8 |pages=1292 |doi=10.3390/atmos13081292 |bibcode=2022Atmos..13.1292A |issn=2073-4433|doi-access=free }}</ref> नतीजतन, प्रारंभिक स्थितियों (एसडीआईसी) पर संवेदनशील निर्भरता हमेशा प्रकट नहीं होती है। अर्थात्, SDIC(एस डी आई सी) तब प्रकट होता है जब दो कक्षाएँ (अर्थात, समाधान) अराजक आकर्षणकर्ता बन जाती हैं; यह तब प्रकट नहीं होता है जब दो कक्षाएँ एक ही बिंदु आकर्षणक की ओर बढ़ती हैं। डबल पेंडुलम गति के लिए उपरोक्त एनीमेशन एक सादृश्य प्रदान करता है। स्विंग के बड़े कोणों के लिए पेंडुलम की गति अक्सर अव्यवस्थित होती है।<ref>{{Citation |last1=Richter |first1=P. H. |title=Chaos in Classical Mechanics: The Double Pendulum |date=1984 |url=http://dx.doi.org/10.1007/978-3-642-69591-9_9 |work=Stochastic Phenomena and Chaotic Behaviour in Complex Systems |pages=86–97 |place=Berlin, Heidelberg |publisher=Springer Berlin Heidelberg |isbn=978-3-642-69593-3 |access-date=2022-07-11 |last2=Scholz |first2=H.-J.|doi=10.1007/978-3-642-69591-9_9 }}</ref><ref>{{Cite journal |last=Shinbrot |first=Troy, Celso A Grebogi, Jack Wisdom, James A Yorke |date=1992 |title=एक डबल पेंडुलम में अराजकता|url=https://doi.org/10.1119/1.16860 |journal=American Journal of Physics |volume=60 |issue=6 |pages=491–499|doi=10.1119/1.16860 |bibcode=1992AmJPh..60..491S }}</ref> तुलनात्मक रूप से, झूले के छोटे कोणों के लिए, गति अराजक होती है।
[[File:An Analogy for Monostability and Multistability Using Skiing and Kayaking.png|thumb|स्कीइंग का उपयोग मेटास्टेबिलिटी (बाएं और मध्य) प्रकट करने के लिए किया जाता है<ref name=":5" /> और कयाकिंग जैसा कि बहुस्थिरता को दर्शाने के लिए किया जाता है (दाएं<ref name=":6" />). एक स्थिर क्षेत्र को एक सफेद बॉक्स के साथ रेखांकित किया गया है।]]मल्टीस्टेबिलिटी को तब परिभाषित किया जाता है जब एक सिस्टम (जैसे, डबल पेंडुलम सिस्टम) में एक से अधिक बाउंडेड अट्रैक्टर होते हैं जो केवल प्रारंभिक स्थितियों पर निर्भर करते हैं। दाईं ओर चित्र में कयाकिंग का उपयोग करके बहु-स्थिरता को चित्रित किया गया था (अर्थात, चित्र 1 का <ref name=":6">{{Cite journal |last1=Shen |first1=Bo-Wen |last2=Pielke Sr. |first2=Roger Pielke |last3=Zeng |first3=Xubin |last4=Cui |first4=Jialin |last5=Faghih-Naini |first5=Sara |last6=Paxson |first6=Wei |last7=Kesarkar |first7=Amit |last8=Zeng |first8=Xiping |last9=Atlas |first9=Robert |date=2022-11-12 |title=वातावरण में अराजकता और व्यवस्था की दोहरी प्रकृति|journal=Atmosphere |language=en |volume=13 |issue=11 |pages=1892 |doi=10.3390/atmos13111892 |bibcode=2022Atmos..13.1892S |issn=2073-4433|doi-access=free }}  [[File:CC-BY icon.svg|50px]]  Text was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref> ) जहां मजबूत धाराओं और एक स्थिर क्षेत्र की उपस्थिति क्रमशः अस्थिरता और स्थानीय स्थिरता का सुझाव देती है। नतीजतन, जब दो कश्ती मजबूत धाराओं के साथ चलती हैं, तो उनके रास्ते एसडीआईसी प्रदर्शित करते हैं। दूसरी ओर, जब दो कश्ती एक स्थिर क्षेत्र में चलती हैं, तो वे फंस जाती हैं, कोई विशिष्ट एसडीआईसी(SDIC) नहीं दिखाती (हालांकि एक अराजक क्षणिक हो सकता है)। एसडीआईसी(SDIC) या नो एसडीआईसी(SDIC) की ऐसी विशेषताएं दो प्रकार के समाधान सुझाती हैं और बहु-स्थिरता की प्रकृति को दर्शाती हैं।


बड़े पैमाने की प्रक्रियाओं (जैसे, मौसमी बल) और छोटे पैमाने की प्रक्रियाओं (जैसे, संवहन) की समग्र प्रतिक्रिया के साथ जुड़े समय-भिन्न बहु-स्थिरता को ध्यान में रखते हुए, उपरोक्त संशोधित दृश्य निम्नानुसार परिष्कृत किया गया है:
बड़े पैमाने की प्रक्रियाओं (जैसे, मौसमी बल) और छोटे पैमाने की प्रक्रियाओं (जैसे, संवहन) की समग्र प्रतिक्रिया के साथ जुड़े समय-भिन्न बहु-स्थिरता को ध्यान में रखते हुए, उपरोक्त संशोधित दृश्य निम्नानुसार परिष्कृत किया गया है:


  वातावरण में अराजकता और व्यवस्था है; इसमें, उदाहरण के तौर पर, उभरती हुई संगठित प्रणालियाँ (जैसे बवंडर) और बार-बार होने वाले मौसमों से अलग-अलग समय शामिल हैं।<ref name=":6" />
  वातावरण में अराजकता और व्यवस्था है; इसमें,उदाहरण के तौर पर,उभरती हुई संगठित प्रणालियाँ (जैसे बवंडर)और बार-बार होने वाले मौसमों से अलग-अलग समय सम्मिलित हैं।<ref name=":6" />
 
 
=== [[क्वांटम यांत्रिकी]] में ===
=== [[क्वांटम यांत्रिकी]] में ===


प्रारंभिक स्थितियों (बटरफ्लाई इफेक्ट) पर संवेदनशील निर्भरता की क्षमता का अध्ययन कई मामलों में [[अर्धशास्त्रीय भौतिकी]] और क्वांटम यांत्रिकी में मजबूत क्षेत्रों में परमाणुओं और अनिसोट्रोपिक केपलर समस्या सहित किया गया है।<ref>{{cite journal |title=उत्तर आधुनिक क्वांटम यांत्रिकी|first1=E. J. |last1=Heller |first2=S. |last2=Tomsovic |journal=[[Physics Today]] |date=July 1993 |doi=10.1063/1.881358 |volume=46 |issue=7 |pages=38–46 |bibcode=1993PhT....46g..38H}}</ref><ref>{{cite book |last=Gutzwiller |first=Martin C. |title=शास्त्रीय और क्वांटम यांत्रिकी में अराजकता|year=1990 |publisher=Springer-Verlag |location=New York |isbn=0-387-97173-4}}</ref> कुछ लेखकों ने तर्क दिया है कि प्रारंभिक स्थितियों पर अत्यधिक (घातीय) निर्भरता शुद्ध क्वांटम उपचारों में अपेक्षित नहीं है;<ref name="What is... Quantum Chaos">{{cite web |url=https://www.ams.org/notices/200801/tx080100032p.pdf |title=क्या है ... क्वांटम कैओस?|last=Rudnick |first=Ze'ev |date=January 2008 |work=Notices of the American Mathematical Society |url-status=live |archive-url=https://web.archive.org/web/20091002000354/http://www.ams.org/notices/200801/tx080100032p.pdf |archive-date=2009-10-02}}</ref><ref>{{cite journal |last1=Berry |first1=Michael |title=क्वांटम अराजकता, क्वांटम अराजकता नहीं|journal=Physica Scripta |volume=40 |pages=335–336 |year=1989 |doi=10.1088/0031-8949/40/3/013 |bibcode=1989PhyS...40..335B |issue=3|s2cid=250776260 }}</ref> हालांकि, शास्त्रीय गति में प्रदर्शित प्रारंभिक स्थितियों पर संवेदनशील निर्भरता [[मार्टिन गुत्ज़विलर]] द्वारा विकसित अर्धशास्त्रीय उपचारों में शामिल है<ref>{{cite journal |last=Gutzwiller |first=Martin C. |title=आवधिक कक्षाएँ और शास्त्रीय परिमाणीकरण की स्थिति|journal=[[Journal of Mathematical Physics]] |year=1971 |volume=12 |issue=3 |page=343 |doi=10.1063/1.1665596 |bibcode=1971JMP....12..343G}}</ref> और जॉन बी डेलोस और सहकर्मी।<ref>{{cite journal |title=एक मजबूत विद्युत क्षेत्र में परमाणु फोटोअवशोषण क्रॉस सेक्शन में दोलनों का बंद-कक्षा सिद्धांत। द्वितीय। सूत्रों की व्युत्पत्ति|last1=Gao |first1=J. |first2=J. B. |last2=Delos |name-list-style=amp |journal=[[Physical Review A]] |volume=46 |issue=3 |pages=1455–1467 |year=1992 |doi=10.1103/PhysRevA.46.1455 |pmid=9908268 |bibcode=1992PhRvA..46.1455G |s2cid=7877923 |url=https://scholarworks.wm.edu/cgi/viewcontent.cgi?article=2818&context=aspubs}}</ref> क्वांटम कंप्यूटर के साथ यादृच्छिक मैट्रिक्स सिद्धांत और सिमुलेशन साबित करते हैं कि क्वांटम यांत्रिकी में बटरफ्लाई इफेक्ट के कुछ संस्करण मौजूद नहीं हैं।<ref>{{cite journal |last1=Yan |first1=Bin |last2=Sinitsyn |first2=Nikolai A. |title=क्षतिग्रस्त सूचना की पुनर्प्राप्ति और समय-समय पर आदेशित सहसंबंधी|journal=Physical Review Letters |volume=125 |pages=040605 |year=2020 |issue=4 |doi=10.1103/PhysRevLett.125.040605 |pmid=32794812 |arxiv=2003.07267 |bibcode=2020PhRvL.125d0605Y |s2cid=212725801}}</ref>
प्रारंभिक स्थितियों ( "बटरफ्लाई इफेक्ट") पर संवेदनशील निर्भरता की क्षमता का अध्ययन कई मामलों में [[अर्धशास्त्रीय भौतिकी]] और क्वांटम यांत्रिकी में मजबूत क्षेत्रों में परमाणुओं और अनिसोट्रोपिक केपलर समस्या सहित किया गया है।<ref>{{cite journal |title=उत्तर आधुनिक क्वांटम यांत्रिकी|first1=E. J. |last1=Heller |first2=S. |last2=Tomsovic |journal=[[Physics Today]] |date=July 1993 |doi=10.1063/1.881358 |volume=46 |issue=7 |pages=38–46 |bibcode=1993PhT....46g..38H}}</ref><ref>{{cite book |last=Gutzwiller |first=Martin C. |title=शास्त्रीय और क्वांटम यांत्रिकी में अराजकता|year=1990 |publisher=Springer-Verlag |location=New York |isbn=0-387-97173-4}}</ref> कुछ लेखकों ने तर्क दिया है कि प्रारंभिक स्थितियों पर अत्यधिक (घातीय) निर्भरता शुद्ध क्वांटम उपचारों में अपेक्षित नहीं है;<ref name="What is... Quantum Chaos">{{cite web |url=https://www.ams.org/notices/200801/tx080100032p.pdf |title=क्या है ... क्वांटम कैओस?|last=Rudnick |first=Ze'ev |date=January 2008 |work=Notices of the American Mathematical Society |url-status=live |archive-url=https://web.archive.org/web/20091002000354/http://www.ams.org/notices/200801/tx080100032p.pdf |archive-date=2009-10-02}}</ref><ref>{{cite journal |last1=Berry |first1=Michael |title=क्वांटम अराजकता, क्वांटम अराजकता नहीं|journal=Physica Scripta |volume=40 |pages=335–336 |year=1989 |doi=10.1088/0031-8949/40/3/013 |bibcode=1989PhyS...40..335B |issue=3|s2cid=250776260 }}</ref> हालांकि, शास्त्रीय गति में प्रदर्शित प्रारंभिक स्थितियों पर संवेदनशील निर्भरता [[मार्टिन गुत्ज़विलर]] द्वारा विकसित अर्धशास्त्रीय उपचारों में सम्मिलित है<ref>{{cite journal |last=Gutzwiller |first=Martin C. |title=आवधिक कक्षाएँ और शास्त्रीय परिमाणीकरण की स्थिति|journal=[[Journal of Mathematical Physics]] |year=1971 |volume=12 |issue=3 |page=343 |doi=10.1063/1.1665596 |bibcode=1971JMP....12..343G}}</ref> और जॉन बी डेलोस और सहकर्मी।<ref>{{cite journal |title=एक मजबूत विद्युत क्षेत्र में परमाणु फोटोअवशोषण क्रॉस सेक्शन में दोलनों का बंद-कक्षा सिद्धांत। द्वितीय। सूत्रों की व्युत्पत्ति|last1=Gao |first1=J. |first2=J. B. |last2=Delos |name-list-style=amp |journal=[[Physical Review A]] |volume=46 |issue=3 |pages=1455–1467 |year=1992 |doi=10.1103/PhysRevA.46.1455 |pmid=9908268 |bibcode=1992PhRvA..46.1455G |s2cid=7877923 |url=https://scholarworks.wm.edu/cgi/viewcontent.cgi?article=2818&context=aspubs}}</ref> क्वांटम कंप्यूटर के साथ यादृच्छिक मैट्रिक्स सिद्धांत और सिमुलेशन साबित करते हैं कि क्वांटम यांत्रिकी में "बटरफ्लाई इफेक्ट" के कुछ संस्करण उपस्थित नहीं हैं।<ref>{{cite journal |last1=Yan |first1=Bin |last2=Sinitsyn |first2=Nikolai A. |title=क्षतिग्रस्त सूचना की पुनर्प्राप्ति और समय-समय पर आदेशित सहसंबंधी|journal=Physical Review Letters |volume=125 |pages=040605 |year=2020 |issue=4 |doi=10.1103/PhysRevLett.125.040605 |pmid=32794812 |arxiv=2003.07267 |bibcode=2020PhRvL.125d0605Y |s2cid=212725801}}</ref>
अन्य लेखकों का सुझाव है कि क्वांटम सिस्टम में बटरफ्लाई इफेक्ट देखा जा सकता है। ज़बिसज़ेक पी. कार्कुस्ज़वेस्की एट अल। क्वांटम सिस्टम के समय के विकास पर विचार करें जिसमें थोड़ा अलग [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] है। वे क्वांटम सिस्टम की संवेदनशीलता के स्तर को उनके दिए गए हैमिल्टनियन में छोटे बदलावों की जांच करते हैं।<ref>{{cite journal |title=क्वांटम अराजक वातावरण, तितली प्रभाव और विकृति|last1=Karkuszewski |first1=Zbyszek P. |last2=Jarzynski |first2=Christopher |last3=Zurek |first3=Wojciech H. |journal=[[Physical Review Letters]] |volume=89 |issue=17 |year=2002 |page=170405 |doi=10.1103/PhysRevLett.89.170405 |bibcode=2002PhRvL..89q0405K |arxiv=quant-ph/0111002 |pmid=12398653 |s2cid=33363344}}</ref> डेविड पौलिन एट अल। निष्ठा क्षय को मापने के लिए एक क्वांटम एल्गोरिथ्म प्रस्तुत किया, जो उस दर को मापता है जिस पर समान प्रारंभिक अवस्थाएँ थोड़ी भिन्न गतिकी के अधीन होने पर अलग हो जाती हैं। वे निष्ठा क्षय को (विशुद्ध रूप से शास्त्रीय) बटरफ्लाई इफेक्ट के निकटतम क्वांटम एनालॉग मानते हैं।<ref>{{cite journal |last1=Poulin |first1=David |last2=Blume-Kohout |first2=Robin |last3=Laflamme |first3=Raymond |name-list-style=amp |last4=Ollivier |first4=Harold |year=2004 |title=क्वांटम सूचना के एक बिट के साथ घातीय स्पीडअप: औसत फिडेलिटी क्षय को मापना|journal=Physical Review Letters |volume=92 |issue=17 |page=177906 |doi=10.1103/PhysRevLett.92.177906 |bibcode=2004PhRvL..92q7906P |arxiv=quant-ph/0310038 |pmid=15169196 |s2cid=6218604}}</ref> जबकि शास्त्रीय बटरफ्लाई इफेक्ट किसी दिए गए [[हैमिल्टनियन प्रणाली]] में किसी वस्तु की स्थिति और / या वेग में एक छोटे से परिवर्तन के प्रभाव पर विचार करता है, क्वांटम बटरफ्लाई इफेक्ट हैमिल्टनियन प्रणाली में दी गई प्रारंभिक स्थिति और वेग के साथ एक छोटे से परिवर्तन के प्रभाव पर विचार करता है। .<ref name="iqc.ca">{{cite web |title=क्वांटम कैओस के लिए एक कठिन गाइड|first=David |last=Poulin |url=http://www.iqc.ca/publications/tutorials/chaos.pdf |url-status=dead |archive-url=https://web.archive.org/web/20101104132156/http://www.iqc.ca/publications/tutorials/chaos.pdf |archive-date=2010-11-04}}</ref><ref>{{cite book |last=Peres |first=A. |title=[[क्वांटम थ्योरी: कॉन्सेप्ट्स एंड मेथड्स]]|publisher=Kluwer Academic |location=Dordrecht |year=1995}}</ref> यह क्वांटम बटरफ्लाई इफेक्ट प्रयोगात्मक रूप से प्रदर्शित किया गया है।<ref>{{cite journal |title=क्वांटम प्रवर्धक: उलझे हुए घुमावों के साथ मापन|last1=Lee |first1=Jae-Seung |last2=Khitrin |first2=A. K. |name-list-style=amp |journal=[[Journal of Chemical Physics]] |volume=121 |issue=9 |pages=3949–51 |year=2004 |doi=10.1063/1.1788661 |pmid=15332940 |bibcode=2004JChPh.121.3949L}}</ref> प्रारंभिक स्थितियों के लिए सिस्टम संवेदनशीलता के क्वांटम और अर्धशास्त्रीय उपचारों को [[कितनी अराजकता]] के रूप में जाना जाता है।<ref name="What is... Quantum Chaos"/><ref name="iqc.ca"/>
 


अन्य लेखकों का सुझाव है कि क्वांटम सिस्टम में  "बटरफ्लाई इफेक्ट" देखा जा सकता है। ज़बिसज़ेक पी. कार्कुस्ज़वेस्की एट अल। क्वांटम सिस्टम के समय के विकास पर विचार करें जिसमें थोड़ा अलग [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] है। वे क्वांटम सिस्टम की संवेदनशीलता के स्तर को उनके दिए गए हैमिल्टनियन में छोटे बदलावों की जांच करते हैं।<ref>{{cite journal |title=क्वांटम अराजक वातावरण, तितली प्रभाव और विकृति|last1=Karkuszewski |first1=Zbyszek P. |last2=Jarzynski |first2=Christopher |last3=Zurek |first3=Wojciech H. |journal=[[Physical Review Letters]] |volume=89 |issue=17 |year=2002 |page=170405 |doi=10.1103/PhysRevLett.89.170405 |bibcode=2002PhRvL..89q0405K |arxiv=quant-ph/0111002 |pmid=12398653 |s2cid=33363344}}</ref> डेविड पौलिन एट अल। निष्ठा क्षय को मापने के लिए एक क्वांटम एल्गोरिथ्म प्रस्तुत किया, जो उस दर को मापता है जिस पर समान प्रारंभिक अवस्थाएँ थोड़ी भिन्न गतिकी के अधीन होने पर अलग हो जाती हैं। वे निष्ठा क्षय को (विशुद्ध रूप से शास्त्रीय)  "बटरफ्लाई इफेक्ट" के निकटतम क्वांटम एनालॉग मानते हैं।<ref>{{cite journal |last1=Poulin |first1=David |last2=Blume-Kohout |first2=Robin |last3=Laflamme |first3=Raymond |name-list-style=amp |last4=Ollivier |first4=Harold |year=2004 |title=क्वांटम सूचना के एक बिट के साथ घातीय स्पीडअप: औसत फिडेलिटी क्षय को मापना|journal=Physical Review Letters |volume=92 |issue=17 |page=177906 |doi=10.1103/PhysRevLett.92.177906 |bibcode=2004PhRvL..92q7906P |arxiv=quant-ph/0310038 |pmid=15169196 |s2cid=6218604}}</ref> जबकि शास्त्रीय  "बटरफ्लाई इफेक्ट" किसी दिए गए [[हैमिल्टनियन प्रणाली]] में किसी वस्तु की स्थिति और / या वेग में एक छोटे से परिवर्तन के प्रभाव पर विचार करता है, क्वांटम  "बटरफ्लाई इफेक्ट" हैमिल्टनियन प्रणाली में दी गई प्रारंभिक स्थिति और वेग के साथ एक छोटे से परिवर्तन के प्रभाव पर विचार करता है। .<ref name="iqc.ca">{{cite web |title=क्वांटम कैओस के लिए एक कठिन गाइड|first=David |last=Poulin |url=http://www.iqc.ca/publications/tutorials/chaos.pdf |url-status=dead |archive-url=https://web.archive.org/web/20101104132156/http://www.iqc.ca/publications/tutorials/chaos.pdf |archive-date=2010-11-04}}</ref><ref>{{cite book |last=Peres |first=A. |title=[[क्वांटम थ्योरी: कॉन्सेप्ट्स एंड मेथड्स]]|publisher=Kluwer Academic |location=Dordrecht |year=1995}}</ref> यह क्वांटम  "बटरफ्लाई इफेक्ट" प्रयोगात्मक रूप से प्रदर्शित किया गया है।<ref>{{cite journal |title=क्वांटम प्रवर्धक: उलझे हुए घुमावों के साथ मापन|last1=Lee |first1=Jae-Seung |last2=Khitrin |first2=A. K. |name-list-style=amp |journal=[[Journal of Chemical Physics]] |volume=121 |issue=9 |pages=3949–51 |year=2004 |doi=10.1063/1.1788661 |pmid=15332940 |bibcode=2004JChPh.121.3949L}}</ref> प्रारंभिक स्थितियों के लिए सिस्टम संवेदनशीलता के क्वांटम और अर्धशास्त्रीय उपचारों को [[कितनी अराजकता]] के रूप में जाना जाता है।<ref name="What is... Quantum Chaos" /><ref name="iqc.ca" />
== लोकप्रिय संस्कृति में ==
== लोकप्रिय संस्कृति में ==
{{main|Butterfly effect in popular culture}}
{{main|Butterfly effect in popular culture}}
== यह भी देखें ==


== यह भी देखें ==
<!-- please keep entries in alphabetical order -->
<!-- Please keep entries in alphabetical order & add a short description [[WP:SEEALSO]] -->
{{Div col|colwidth=20em|small=yes}}
{{Div col|colwidth=20em|small=yes}}
* [[हिमस्खलन प्रभाव]]
* [[हिमस्खलन प्रभाव]]
Line 127: Line 137:
* [[अनायास नतीजे]]
* [[अनायास नतीजे]]
{{div col end}}
{{div col end}}
<!-- please keep entries in alphabetical order -->
<!-- Please don't add the movie DASAVATHARAM here. There is a discussion on the talk page of the Chaos theory article this movie... if this movie should be mentioned or not in the realm of chaos theory. The current opinion is, that this movie should not (yet) be added to this list. Please add your opinion add the talk page. This is the way Wikipedia works, Thank you. -->


==संदर्भ==
==संदर्भ==
{{Reflist|30em}}
{{Reflist|30em}}
 
==अग्रिम पठन==
 
==आगे की पढाई==
* [[James Gleick]], ''[[Chaos: Making a New Science]]'', New York: Viking, 1987. 368 pp.
* [[James Gleick]], ''[[Chaos: Making a New Science]]'', New York: Viking, 1987. 368 pp.
* {{cite book |last=Devaney |first=Robert L. |author-link=Robert L. Devaney |title=Introduction to Chaotic Dynamical Systems |publisher=Westview Press |year=2003 |isbn=0670811785}}
* {{cite book |last=Devaney |first=Robert L. |author-link=Robert L. Devaney |title=Introduction to Chaotic Dynamical Systems |publisher=Westview Press |year=2003 |isbn=0670811785}}
Line 141: Line 146:
* Bradbury, Ray. "A Sound of Thunder." Collier's. 28 June 1952
* Bradbury, Ray. "A Sound of Thunder." Collier's. 28 June 1952


==इस पेज में लापता आंतरिक लिंक की सूची==
*आरंभिक दशा
*गैर रेखीय प्रणाली
*संख्यात्मक मौसम भविष्यवाणी
*अरेखीय गतिकी
*तरंग प्रभाव
*पृथ्वी का वातावरण
*पहनावा पूर्वानुमान
*दूरगामी प्रभाव
*जटिल सिस्टम
*राज्य अंतरिक्ष (गतिशील प्रणाली)
*लायपुनोव प्रदर्शक
*बंद रूप समाधान
*केप्लर समस्या
*करणीय संबंध
*यह सिद्धांत कि मनुष्य के कार्य स्वतंत्र नहीं होते
*विचलन का बिंदु
==बाहरी कड़ियाँ==
==बाहरी कड़ियाँ==
{{wiktionary|butterfly effect}}
{{wiktionary|butterfly effect}}
Line 172: Line 157:
{{Chaos theory}}
{{Chaos theory}}
{{Time travel}}
{{Time travel}}
{{Unintended consequences}}
[[श्रेणी: करणीय]]
[[श्रेणी: अराजकता सिद्धांत]]
[[श्रेणी: नियतत्ववाद]]
[[श्रेणी: कीड़ों से संबंधित रूपक]]
[[श्रेणी:भौतिक घटनाएं]]
[[श्रेणी:स्थिरता सिद्धांत]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:CS1 English-language sources (en)]]
[[Category:Collapse templates]]
[[Category:Created On 26/12/2022]]
[[Category:Created On 26/12/2022]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Multi-column templates]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with broken file links]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Webarchive template wayback links]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:Wikipedia metatemplates]]

Latest revision as of 09:17, 1 September 2023

ρ=28, σ = 10, β = 8/3 मानों के लिए लॉरेंज के अजीब आकर्षण का एक प्लॉट। प्रारंभिक स्थितियों पर "बटरफ्लाई इफेक्ट" या संवेदनशील निर्भरता एक गतिशील प्रणाली की संपत्ति है, जो आकर्षित करने वाले पर विभिन्न मनमाने ढंग से बंद वैकल्पिक प्रारंभिक स्थितियों में से किसी से शुरू होकर पुनरावृत्ति #गणित एक दूसरे से मनमाने ढंग से फैल जाएगी।
एक ही डबल पेंडुलम की विभिन्न रिकॉर्डिंग के साथ "बटरफ्लाई इफेक्ट" का प्रायोगिक प्रदर्शन। प्रत्येक रिकॉर्डिंग में, पेंडुलम लगभग उसी प्रारंभिक स्थिति से शुरू होता है। समय के साथ गतिकी में अंतर लगभग ध्यान देने योग्य से बढ़कर कठोर हो जाता है।

अक्रम सिद्धान्त में, "बटरफ्लाई इफेक्ट" प्रारंभिक स्थितियों पर संवेदनशील निर्भरता है जिसमें नियतात्मक प्रणाली के एक राज्य में एक छोटे से बदलाव के बाद के राज्य में बड़े अंतर हो सकते हैं।

यह शब्द गणितज्ञ और मौसम वैज्ञानिक एडवर्ड नॉर्टन लॉरेंस के काम से निकटता से जुड़ा हुआ है। उन्होंने कहा कि "बटरफ्लाई इफेक्ट" एक बवंडर के विवरण (गठन का सही समय, लिया गया सही रास्ता) के रूपक उदाहरण से लिया गया है, जो मामूली गड़बड़ी से प्रभावित होता है जैसे कि दूर की तितली कई हफ्ते पहले अपने पंख फड़फड़ाती है। लॉरेंज ने मूल रूप से तूफान पैदा करने वाली सीगल का इस्तेमाल किया था, लेकिन 1972 तक तितली और बवंडर के उपयोग के साथ इसे और अधिक काव्यात्मक बनाने के लिए राजी कर लिया गया।[1][2] उन्होंने प्रभाव की खोज की जब उन्होंने प्रारंभिक स्थिति डेटा के साथ अपने संख्यात्मक मौसम पूर्वानुमान के रनों का अवलोकन किया, जो एक प्रतीत होता है कि अप्रासंगिक तरीके से गोल किया गया था। उन्होंने ध्यान दिया कि मौसम मॉडल असंबद्ध प्रारंभिक स्थिति डेटा के साथ चलते हुए  परिणामों को पुन: उत्पन्न करने में विफल रहता है। प्रारंभिक स्थितियों में बहुत छोटे से बदलाव ने काफी अलग परिणाम उत्पन्न दिए थे।[3]

यह विचार कि छोटे कारणों का मौसम में बड़ा प्रभाव हो सकता है, पहले फ्रांसीसी गणितज्ञ और इंजीनियर हेनरी पॉइनकेयर द्वारा पहचाना गया था। अमेरिकी गणितज्ञ और दार्शनिक नॉर्बर्ट वीनर ने भी इस सिद्धांत में योगदान दिया। लॉरेंज के काम ने पृथ्वी के वातावरण की अस्थिरता की अवधारणा को रखा। पृथ्वी के वायुमंडल को एक मात्रात्मक आधार पर रखा और अस्थिरता की अवधारणा को गतिशील प्रणालियों के बड़े वर्गों के गुणों से जोड़ा जो गैर-रैखिक गतिशीलता और अराजकता सिद्धांत से गुजर रहे हैं।[4]

तब से "बटरफ्लाई इफेक्ट" अवधारणा का उपयोग मौसम विज्ञान के संदर्भ में किसी भी स्थिति के लिए एक व्यापक शब्द के रूप में किया जाता है जहां एक छोटा परिवर्तन बड़े परिणामों का कारण माना जाता है।

इतिहास

द वोकेशन ऑफ मैन (1800) में, जोहान गोटलिब फिच्टे कहते हैं कि आप इसके स्थान से रेत का एक भी दाना नहीं हटा सकते, इसके बिना ... अथाह पूरे के सभी हिस्सों में कुछ बदल सकते हैं।

अराजकता सिद्धांत और प्रारंभिक स्थितियों पर संवेदनशील निर्भरता को साहित्य के कई रूपों में वर्णित किया गया है। इसका प्रमाण 1890 में पोंकारे द्वारा तीन-शरीर की समस्या के मामले से मिलता है।[5] उन्होंने बाद में प्रस्तावित किया कि ऐसी घटनाएँ सामान्य हो सकती हैं, उदाहरण के लिए, मौसम विज्ञान में।[6]

1898 में, जैक्स हैडमार्ड ने नकारात्मक वक्रता वाले स्थानों में प्रक्षेपवक्रों के सामान्य विचलन का उल्लेख किया। पियरे ड्यूहेम ने 1908 में इसके संभावित सामान्य महत्व पर चर्चा की।[5]

1950 में, एलन ट्यूरिंग ने कहा: एक पल में एक सेंटीमीटर के एक अरबवें हिस्से द्वारा एक इलेक्ट्रॉन का विस्थापन एक साल बाद एक हिमस्खलन से मारे गए या बच निकलने वाले व्यक्ति के बीच का अंतर बना सकता है।[7]

यह विचार कि एक तितली की मृत्यु का अंततः बाद की ऐतिहासिक घटनाओं पर दूरगामी प्रभाव पड़ सकता है, रे ब्रैडबरी की 1952 की लघु कहानी थंडर की एक आवाज में इसका सबसे पहला ज्ञात रूप सामने आया। "ए साउंड ऑफ थंडर" में समय यात्रा की सुविधा है।[8]

अधिक सटीक, हालांकि, लगभग सटीक विचार और सटीक वाक्यांश - पूरे वातावरण की हवाओं को प्रभावित करने वाले एक छोटे कीट के पंख का - एक बच्चों की किताब में प्रकाशित किया गया था जो 1962 में लॉरेंज के प्रकाशित होने से एक साल पहले बेहद सफल और विश्व स्तर पर प्रसिद्ध हो गया था:

"...हम जो कुछ भी करते हैं वह सब कुछ और हर किसी को प्रभावित करता है, भले ही वह सबसे छोटे तरीके से ही क्यों न हो। क्यों, जब एक घरेलू मक्खी अपने पंख फड़फड़ाती है, तो एक हवा दुनिया भर में चक्कर लगाती है।"

"...whatever we do affects everything and everyone else, if even in the tiniest way. Why, when a housefly flaps his wings, a breeze goes round the world."

-- The Princess of Pure Reason

— नॉर्टन जस्टर, द फैंटम टोलबूथ

1961 में, लॉरेंज शॉर्टकट के रूप में पिछले रन के मध्य से मौसम की भविष्यवाणी को फिर से करने के लिए एक संख्यात्मक कंप्यूटर मॉडल चला रहा था। उन्होंने पूर्ण परिशुद्धता 0.506127 मान दर्ज करने के बजाय प्रिंटआउट से प्रारंभिक स्थिति 0.506 दर्ज की। परिणाम पूरी तरह से अलग मौसम परिदृश्य था।[9]

लॉरेंज ने लिखा:

एक बिंदु पर मैंने कुछ संगणनाओं को दोहराने का फैसला किया ताकि यह जांचा जा सके कि क्या हो रहा था और अधिक विस्तार से। मैंने कंप्यूटर को बंद कर दिया, संख्याओं की एक पंक्ति में टाइप किया जिसे उसने थोड़ी देर पहले प्रिंट किया था, और उसे फिर से चालू कर दिया। मैं एक कप कॉफी के लिए हॉल में गया और लगभग एक घंटे के बाद लौटा, इस दौरान कंप्यूटर ने लगभग दो महीने के मौसम का अनुकरण किया था। छपे जा रहे नंबर पुराने जैसे नहीं थे। मुझे तुरंत एक कमजोर निर्वात नली या कुछ अन्य कंप्यूटर समस्या का संदेह हुआ, जो असामान्य नहीं था, लेकिन सेवा के लिए कॉल करने से पहले मैंने यह जानने का फैसला किया कि गलती कहाँ हुई थी, यह जानते हुए कि यह सर्विसिंग प्रक्रिया को गति दे सकता है। अचानक विराम के बजाय, मैंने पाया कि नए मूल्यों ने पहले पुराने को दोहराया, लेकिन जल्द ही एक और फिर अंतिम [दशमलव] स्थान में कई इकाइयों से भिन्न हो गए, और फिर अंतिम स्थान के बगल में भिन्न होने लगे और फिर उससे पहले की जगह में। वास्तव में, अंतर कमोबेश लगातार हर चार दिनों में आकार में दोगुना हो जाता है, जब तक कि मूल आउटपुट के साथ सभी समानताएं दूसरे महीने में कहीं गायब नहीं हो जातीं। यह मुझे यह बताने के लिए पर्याप्त था कि क्या हुआ था: जो संख्याएँ मैंने टाइप की थीं, वे सटीक मूल संख्याएँ नहीं थीं, बल्कि मूल प्रिंटआउट में दिखाई देने वाले राउंड-ऑफ मान थे। शुरुआती राउंड-ऑफ त्रुटियां अपराधी थीं; जब तक वे समाधान पर हावी नहीं हो जाते, तब तक वे लगातार बढ़ रहे थे।

_E. N. Lorenz, The Essence of Chaos'', U. Washington Press, Seattle (1993), page 134

At one point I decided to repeat some of the computations in order to examine what was happening in greater detail. I stopped the computer, typed in a line of numbers that it had printed out a while earlier, and set it running again. I went down the hall for a cup of coffee and returned after about an hour, during which time the computer had simulated about two months of weather. The numbers being printed were nothing like the old ones. I immediately suspected a weak vacuum tube or some other computer trouble, which was not uncommon, but before calling for service I decided to see just where the mistake had occurred, knowing that this could speed up the servicing process. Instead of a sudden break, I found that the new values at first repeated the old ones, but soon afterward differed by one and then several units in the last [decimal] place, and then began to differ in the next to the last place and then in the place before that. In fact, the differences more or less steadily doubled in size every four days or so, until all resemblance with the original output disappeared somewhere in the second month. This was enough to tell me what had happened: the numbers that I had typed in were not the exact original numbers, but were the rounded-off values that had appeared in the original printout. The initial round-off errors were the culprits; they were steadily amplifying until they dominated the solution.

— E. N. Lorenz, The Essence of Chaos, U. Washington Press, Seattle (1993), page 134[10]

1963 में, लॉरेंज ने इस आशय का एक सैद्धांतिक अध्ययन प्रकाशित किया, जिसे एक अत्यधिक उद्धृत, सेमिनल पेपर कहा जाता है, जिसे नियतात्मक गैर-आवधिक प्रवाह कहा जाता है।[3][11] (गणना एक Royal McBee LGP-30 कंप्यूटर पर की गई थी)।[12][13]अन्यत्र उन्होंने कहा:

एक मौसम वैज्ञानिक ने टिप्पणी की कि यदि सिद्धांत सही थे, तो एक सीगल के पंखों का एक फड़फड़ाना हमेशा के लिए मौसम के पाठ्यक्रम को बदलने के लिए पर्याप्त होगा। विवाद अभी तक सुलझा नहीं है, लेकिन सबसे हालिया सबूत सीगल के पक्ष में प्रतीत होते हैं।

One meteorologist remarked that if the theory were correct, one flap of a sea gull's wings would be enough to alter the course of the weather forever. The controversy has not yet been settled, but the most recent evidence seems to favor the sea gulls.[13]

सहकर्मियों के सुझावों के बाद, बाद के भाषणों और पत्रों में, लॉरेंज ने अधिक काव्यात्मक तितली का इस्तेमाल किया। लॉरेंज के अनुसार, जब वह 1972 में विज्ञान की प्रगति के लिए अमेरिकन एसोसिएशन की 139वीं बैठक में उपस्थित होने वाले एक भाषण के लिए एक शीर्षक प्रदान करने में विफल रहे, तो फिलिप मेरिलेस ने मनगढ़ंत कहानी बनाई क्या ब्राजील में एक तितली के पंखों के फड़फड़ाने से एक बवंडर खड़ा हो गया टेक्सास में? एक शीर्षक के रूप में।[1]हालांकि इस अवधारणा की अभिव्यक्ति में एक तितली अपने पंखों को फड़फड़ाती रही है, लेकिन तितली का स्थान, परिणाम और परिणामों का स्थान व्यापक रूप से भिन्न है।[14]

वाक्यांश इस विचार को संदर्भित करता है कि एक तितली के पंख पृथ्वी के वातावरण में छोटे परिवर्तन कर सकते हैं जो अंततः बवंडर के मार्ग को बदल सकते हैं या देरी कर सकते हैं,या तेज कर सकते हैं, या किसी अन्य स्थान पर बवंडर की घटना को रोक सकते हैं। तितली बिजली नहीं देती है या सीधे बवंडर नहीं बनाती है, लेकिन इस शब्द का अर्थ यह है कि तितली के पंखों का फड़कना बवंडर का कारण बन सकता है: इस अर्थ में कि पंखों का फड़कना एक परस्पर जटिलता की प्रारंभिक स्थितियों का एक हिस्सा है वेब; स्थितियों का एक समूह बवंडर की ओर ले जाता है, जबकि अन्य स्थितियों का समूह नहीं होता है। फ़्लैपिंग विंग सिस्टम की प्रारंभिक स्थिति में एक छोटे से बदलाव का प्रतिनिधित्व करता है, जो बड़े पैमाने पर घटनाओं के परिवर्तन (तुलना करें: डोमिनोज़ प्रभाव) का कारण बनता है। अगर तितली ने अपने पंख नहीं फड़फड़ाए होते, तो सिस्टम का प्रक्षेपवक्र बहुत अलग हो सकता था - लेकिन यह भी समान रूप से संभव है कि तितली के पंख फड़फड़ाए बिना परिस्थितियों का समूह वह समूह है जो बवंडर की ओर ले जाता है।

"बटरफ्लाई इफेक्ट" भविष्यवाणी के लिए एक स्पष्ट चुनौती प्रस्तुत करता है, क्योंकि मौसम जैसी प्रणाली के लिए प्रारंभिक स्थितियों को पूर्ण सटीकता के लिए कभी नहीं जाना जा सकता है। इस समस्या ने समेकन पूर्वानुमान के विकास को प्रेरित किया, जिसमें परेशान प्रारंभिक स्थितियों से कई पूर्वानुमान किए जाते हैं।[15]

कुछ वैज्ञानिकों ने तब से तर्क दिया है कि मौसम प्रणाली प्रारंभिक स्थितियों के प्रति उतनी संवेदनशील नहीं है जितनी पहले मानी जाती थी।[16] डेविड ऑरेल का तर्क है कि मौसम पूर्वानुमान त्रुटि में प्रमुख योगदानकर्ता मॉडल त्रुटि है, जिसमें प्रारंभिक स्थितियों की संवेदनशीलता अपेक्षाकृत छोटी भूमिका निभाती है।[17][18] स्टीफन वोल्फ्राम यह भी नोट करते हैं कि लॉरेंज समीकरण अत्यधिक सरलीकृत हैं और इसमें चिपचिपा प्रभाव का प्रतिनिधित्व करने वाले शब्द सम्मिलित नहीं हैं; उनका मानना ​​​​है कि ये शर्तें छोटी-छोटी गड़बड़ियों को कम कर देंगी।[19] सामान्यीकृत लॉरेंज मॉडल का उपयोग करते हुए हाल के अध्ययनों में अतिरिक्त विघटनकारी शब्द और गैर-रैखिकता सम्मिलित हैं, ने सुझाव दिया कि अराजकता की शुरुआत के लिए एक बड़ा हीटिंग पैरामीटर आवश्यक है।[20]

जबकि "बटरफ्लाई इफेक्ट" को अक्सर लोरेंज द्वारा अपने 1963 के पेपर (और पहले पॉइंकेयर द्वारा देखे गए) में वर्णित प्रकार की प्रारंभिक स्थितियों पर संवेदनशील निर्भरता के पर्याय के रूप में समझाया जाता है, तितली रूपक मूल रूप से लागू किया गया था[1]काम करने के लिए उन्होंने 1969 में प्रकाशित किया[21] जिसने इस विचार को एक कदम आगे बढ़ाया। लॉरेंज ने एक गणितीय मॉडल प्रस्तावित किया कि कैसे वायुमंडल में छोटी-छोटी गतियां बड़ी प्रणालियों को प्रभावित करती हैं। उन्होंने पाया कि उस मॉडल में सिस्टम को केवल भविष्य में एक विशिष्ट बिंदु तक ही भविष्यवाणी की जा सकती है, और इससे परे, प्रारंभिक स्थितियों में त्रुटि को कम करने से भविष्यवाणी में वृद्धि नहीं होगी (जब तक कि त्रुटि शून्य न हो)। इसने प्रदर्शित किया कि पूर्वानुमेयता के संदर्भ में एक नियतात्मक प्रणाली एक गैर-नियतात्मक प्रणाली से अवलोकनीय रूप से अप्रभेद्य हो सकती है। इस पत्र की हाल की पुन: जांच से पता चलता है कि इसने इस विचार को एक महत्वपूर्ण चुनौती दी है कि हमारा ब्रह्मांड नियतात्मक है, क्वांटम भौतिकी द्वारा दी गई चुनौतियों के बराबर है।[22][23]

1993 में प्रकाशित "द एसेंस ऑफ कैओस" नामक पुस्तक में,[24]लॉरेंज ने "बटरफ्लाई इफेक्ट" को इस प्रकार परिभाषित किया: "यह घटना कि एक गतिशील प्रणाली की स्थिति में एक छोटा परिवर्तन बाद के राज्यों को उन राज्यों से बहुत अलग कर देगा जो परिवर्तन के बिना पालन करेंगे।" यह सुविधा प्रारंभिक स्थितियों (एसडीआईसी) पर समाधानों की संवेदनशील निर्भरता के समान है।[3]उसी पुस्तक में, लॉरेंज ने स्कीइंग की गतिविधि को लागू किया और शुरुआती स्थितियों के लिए समय-भिन्न रास्तों की संवेदनशीलता को प्रकट करने के लिए एक आदर्श स्कीइंग मॉडल विकसित किया। एसडीआईसी की शुरुआत से पहले एक पूर्वानुमानित क्षितिज निर्धारित किया जाता है।[25]

चित्रण

The butterfly effect in the Lorenz attractor
time 0 ≤ t ≤ 30 (larger) z coordinate (larger)
TwoLorenzOrbits.jpg LorenzCoordinatesSmall.jpg
ये आंकड़े लोरेंज अट्रैक्टर में समान अवधि के लिए दो प्रक्षेपवक्र (एक नीले रंग में और दूसरा पीले रंग में) के त्रि-आयामी विकास के दो खंडों को दिखाते हैं जो दो प्रारंभिक बिंदुओं से शुरू होते हैं जो x में केवल 10−5 से भिन्न होते हैं। -समन्वय। प्रारंभ में, दो प्रक्षेपवक्र संयोग प्रतीत होते हैं, जैसा कि नीले और पीले प्रक्षेपवक्र के z निर्देशांक के बीच छोटे अंतर से संकेत मिलता है, लेकिन t > 23 के लिए अंतर प्रक्षेपवक्र के मान जितना बड़ा है। शंकु की अंतिम स्थिति इंगित करती है कि दो प्रक्षेपवक्र अब संपाती नहीं हैं


These figures show two segments of the three-dimensional evolution of two trajectories (one in blue, and the other in yellow) for the same period of time in the Lorenz attractor starting at two initial points that differ by only 10−5 in the x-coordinate. Initially, the two trajectories seem coincident, as indicated by the small difference between the z coordinate of the blue and yellow trajectories, but for t > 23 the difference is as large as the value of the trajectory. The final position of the cones indicates that the two trajectories are no longer coincident at t = 30.

लोरेंज अट्रैक्टर निरंतर विकास का एक एनीमेशन दिखाता है।

An animation of the Lorenz attractor shows the continuous evolution.

सिद्धांत और गणितीय परिभाषा

आवर्तन, प्रारंभिक स्थितियों पर संवेदनशील निर्भरता के साथ-साथ प्रारंभिक स्थितियों की ओर एक प्रणाली की अनुमानित वापसी,अराजक गति के लिए दो मुख्य तत्व हैं। उनके पास जटिल प्रणाली बनाने का व्यावहारिक परिणाम है, जैसे मौसम, एक निश्चित समय सीमा (मौसम के मामले में लगभग एक सप्ताह) की भविष्यवाणी करना मुश्किल है क्योंकि शुरुआती वायुमंडलीय स्थितियों को पूरी तरह सटीक रूप से मापना असंभव है।

एक गतिशील प्रणाली प्रारंभिक स्थितियों पर संवेदनशील निर्भरता प्रदर्शित करती है यदि अंक मनमाने ढंग से एक साथ एक घातीय दर पर समय के साथ अलग हो जाते हैं। परिभाषा सामयिक नहीं है, लेकिन अनिवार्य रूप से मापीय है। लोरेन्ज[24] परिभाषित संवेदनशील निर्भरता इस प्रकार है:

एक कक्षा की विशेषता बताने वाला गुण(अर्थात, ..समाधान) यदि अधिकांश अन्य कक्षाएँ जो किसी बिंदु पर इसके करीब से गुजरती हैं, समय बढ़ने के बाद इसके पास नहीं रहती हैं।

यदि एम मानचित्र के लिए राज्य स्थान (गतिशील प्रणाली) है , तब प्रारंभिक स्थितियों के प्रति संवेदनशील निर्भरता प्रदर्शित करता है यदि M में कोई x और कोई δ > 0, M में दूरी के साथ y हैं d(. , .) ऐसा है कि और ऐसा है

कुछ सकारात्मक पैरामीटर ए के लिए। परिभाषा की आवश्यकता नहीं है कि पड़ोस के सभी बिंदु आधार बिंदु x से अलग हों, लेकिन इसके लिए एक सकारात्मक Lyapunov प्रतिपादक की आवश्यकता होती है। एक सकारात्मक Lyapunov प्रतिपादक के अलावा, अराजक प्रणालियों के भीतर परिबद्धता एक और प्रमुख विशेषता है।[26]

प्रारंभिक स्थितियों पर संवेदनशील निर्भरता प्रदर्शित करने वाला सबसे सरल गणितीय ढांचा रसद मानचित्र के एक विशेष पैरामीट्रिजेशन द्वारा प्रदान किया गया है:

जो, अधिकांश अराजक नक्शों के विपरीत, एक बंद-रूप समाधान है:

जहां प्रारंभिक स्थिति पैरामीटर द्वारा दिया गया है . तर्कसंगत के लिए पुनरावृत्त समारोह की एक सीमित संख्या के बाद एक आवधिक बिंदु में मानचित्र। लेकिन लगभग सभी बेतुका हैं, और, बेतुके के लिए , कभी भी स्वयं को दोहराता नहीं है - यह गैर-आवधिक है। यह समाधान समीकरण अराजकता की दो प्रमुख विशेषताओं को स्पष्ट रूप से प्रदर्शित करता है - खिंचाव और तह: कारक 2n खिंचाव की घातीय वृद्धि को दर्शाता है, जिसके परिणामस्वरूप प्रारंभिक स्थितियों ( "बटरफ्लाई इफेक्ट") पर संवेदनशील निर्भरता होती है, जबकि चुकता साइन फ़ंक्शन रहता है सीमा [0, 1] के भीतर मुड़ा हुआ।

भौतिक प्रणालियों में

मौसम में

मौसम के संदर्भ में तितली का प्रभाव सबसे अधिक परिचित है; उदाहरण के लिए, इसे मानक मौसम पूर्वानुमान मॉडल में आसानी से प्रदर्शित किया जा सकता है। जलवायु वैज्ञानिक जेम्स अन्नान और विलियम कॉनॉली बताते हैं कि मौसम की भविष्यवाणी के तरीकों के विकास में अराजकता महत्वपूर्ण है; मॉडल प्रारंभिक स्थितियों के प्रति संवेदनशील होते हैं। वे चेतावनी जोड़ते हैं: बेशक एक अज्ञात तितली के पंख फड़फड़ाने का मौसम के पूर्वानुमान पर कोई सीधा असर नहीं पड़ता है, क्योंकि इस तरह की एक छोटी सी गड़बड़ी को एक महत्वपूर्ण आकार तक बढ़ने में बहुत लंबा समय लगेगा, और हमारे पास कई और तत्काल अनिश्चितताएं हैं जिनके बारे में चिंता करनी है । इसलिए मौसम की भविष्यवाणी पर इस घटना का सीधा प्रभाव अक्सर कुछ हद तक गलत होता है।[27] प्रारंभिक स्थितियों पर संवेदनशील निर्भरता सहित दो प्रकार के "बटरफ्लाई इफेक्ट",[3]और बड़ी दूरी पर एक संगठित संचलन बनाने के लिए एक छोटे से गड़बड़ी की क्षमता,[1]बिल्कुल एक जैसे नहीं हैं।[28] दो प्रकार के "बटरफ्लाई इफेक्ट" की तुलना[1][3]और तीसरे प्रकार का "बटरफ्लाई इफेक्ट"[21][22][23]प्रलेखित किया गया है।[29]

लोरेन्ज़ मॉडल के भीतर सह-अस्तित्व वाले अराजक और गैर-अराजक आकर्षणों को प्रकट करके, शेन और उनके सहयोगियों ने "मौसम अराजक है" के पारंपरिक दृष्टिकोण के विपरीत "मौसम में अराजकता और व्यवस्था है" का एक संशोधित दृष्टिकोण प्रस्तावित किया।[30][31][32] नतीजतन, प्रारंभिक स्थितियों (एसडीआईसी) पर संवेदनशील निर्भरता हमेशा प्रकट नहीं होती है। अर्थात्, SDIC(एस डी आई सी) तब प्रकट होता है जब दो कक्षाएँ (अर्थात, समाधान) अराजक आकर्षणकर्ता बन जाती हैं; यह तब प्रकट नहीं होता है जब दो कक्षाएँ एक ही बिंदु आकर्षणक की ओर बढ़ती हैं। डबल पेंडुलम गति के लिए उपरोक्त एनीमेशन एक सादृश्य प्रदान करता है। स्विंग के बड़े कोणों के लिए पेंडुलम की गति अक्सर अव्यवस्थित होती है।[33][34] तुलनात्मक रूप से, झूले के छोटे कोणों के लिए, गति अराजक होती है।

File:An Analogy for Monostability and Multistability Using Skiing and Kayaking.png
स्कीइंग का उपयोग मेटास्टेबिलिटी (बाएं और मध्य) प्रकट करने के लिए किया जाता है[24] और कयाकिंग जैसा कि बहुस्थिरता को दर्शाने के लिए किया जाता है (दाएं[35]). एक स्थिर क्षेत्र को एक सफेद बॉक्स के साथ रेखांकित किया गया है।

मल्टीस्टेबिलिटी को तब परिभाषित किया जाता है जब एक सिस्टम (जैसे, डबल पेंडुलम सिस्टम) में एक से अधिक बाउंडेड अट्रैक्टर होते हैं जो केवल प्रारंभिक स्थितियों पर निर्भर करते हैं। दाईं ओर चित्र में कयाकिंग का उपयोग करके बहु-स्थिरता को चित्रित किया गया था (अर्थात, चित्र 1 का [35] ) जहां मजबूत धाराओं और एक स्थिर क्षेत्र की उपस्थिति क्रमशः अस्थिरता और स्थानीय स्थिरता का सुझाव देती है। नतीजतन, जब दो कश्ती मजबूत धाराओं के साथ चलती हैं, तो उनके रास्ते एसडीआईसी प्रदर्शित करते हैं। दूसरी ओर, जब दो कश्ती एक स्थिर क्षेत्र में चलती हैं, तो वे फंस जाती हैं, कोई विशिष्ट एसडीआईसी(SDIC) नहीं दिखाती (हालांकि एक अराजक क्षणिक हो सकता है)। एसडीआईसी(SDIC) या नो एसडीआईसी(SDIC) की ऐसी विशेषताएं दो प्रकार के समाधान सुझाती हैं और बहु-स्थिरता की प्रकृति को दर्शाती हैं।

बड़े पैमाने की प्रक्रियाओं (जैसे, मौसमी बल) और छोटे पैमाने की प्रक्रियाओं (जैसे, संवहन) की समग्र प्रतिक्रिया के साथ जुड़े समय-भिन्न बहु-स्थिरता को ध्यान में रखते हुए, उपरोक्त संशोधित दृश्य निम्नानुसार परिष्कृत किया गया है:

वातावरण में अराजकता और व्यवस्था है; इसमें,उदाहरण के तौर पर,उभरती हुई संगठित प्रणालियाँ (जैसे बवंडर)और बार-बार होने वाले मौसमों से अलग-अलग समय सम्मिलित हैं।[35]

क्वांटम यांत्रिकी में

प्रारंभिक स्थितियों ( "बटरफ्लाई इफेक्ट") पर संवेदनशील निर्भरता की क्षमता का अध्ययन कई मामलों में अर्धशास्त्रीय भौतिकी और क्वांटम यांत्रिकी में मजबूत क्षेत्रों में परमाणुओं और अनिसोट्रोपिक केपलर समस्या सहित किया गया है।[36][37] कुछ लेखकों ने तर्क दिया है कि प्रारंभिक स्थितियों पर अत्यधिक (घातीय) निर्भरता शुद्ध क्वांटम उपचारों में अपेक्षित नहीं है;[38][39] हालांकि, शास्त्रीय गति में प्रदर्शित प्रारंभिक स्थितियों पर संवेदनशील निर्भरता मार्टिन गुत्ज़विलर द्वारा विकसित अर्धशास्त्रीय उपचारों में सम्मिलित है[40] और जॉन बी डेलोस और सहकर्मी।[41] क्वांटम कंप्यूटर के साथ यादृच्छिक मैट्रिक्स सिद्धांत और सिमुलेशन साबित करते हैं कि क्वांटम यांत्रिकी में "बटरफ्लाई इफेक्ट" के कुछ संस्करण उपस्थित नहीं हैं।[42]

अन्य लेखकों का सुझाव है कि क्वांटम सिस्टम में "बटरफ्लाई इफेक्ट" देखा जा सकता है। ज़बिसज़ेक पी. कार्कुस्ज़वेस्की एट अल। क्वांटम सिस्टम के समय के विकास पर विचार करें जिसमें थोड़ा अलग हैमिल्टनियन (क्वांटम यांत्रिकी) है। वे क्वांटम सिस्टम की संवेदनशीलता के स्तर को उनके दिए गए हैमिल्टनियन में छोटे बदलावों की जांच करते हैं।[43] डेविड पौलिन एट अल। निष्ठा क्षय को मापने के लिए एक क्वांटम एल्गोरिथ्म प्रस्तुत किया, जो उस दर को मापता है जिस पर समान प्रारंभिक अवस्थाएँ थोड़ी भिन्न गतिकी के अधीन होने पर अलग हो जाती हैं। वे निष्ठा क्षय को (विशुद्ध रूप से शास्त्रीय) "बटरफ्लाई इफेक्ट" के निकटतम क्वांटम एनालॉग मानते हैं।[44] जबकि शास्त्रीय "बटरफ्लाई इफेक्ट" किसी दिए गए हैमिल्टनियन प्रणाली में किसी वस्तु की स्थिति और / या वेग में एक छोटे से परिवर्तन के प्रभाव पर विचार करता है, क्वांटम "बटरफ्लाई इफेक्ट" हैमिल्टनियन प्रणाली में दी गई प्रारंभिक स्थिति और वेग के साथ एक छोटे से परिवर्तन के प्रभाव पर विचार करता है। .[45][46] यह क्वांटम "बटरफ्लाई इफेक्ट" प्रयोगात्मक रूप से प्रदर्शित किया गया है।[47] प्रारंभिक स्थितियों के लिए सिस्टम संवेदनशीलता के क्वांटम और अर्धशास्त्रीय उपचारों को कितनी अराजकता के रूप में जाना जाता है।[38][45]

लोकप्रिय संस्कृति में

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 "भविष्यवाणी: क्या ब्राजील में एक तितली के पंखों का फड़फड़ाहट टेक्सास में एक बवंडर का कारण बनता है?" (PDF). Archived (PDF) from the original on 2022-10-09. Retrieved 23 December 2021.
  2. "जब लॉरेंज ने तितली प्रभाव की खोज की". 22 May 2015. Retrieved 23 December 2021.
  3. 3.0 3.1 3.2 3.3 3.4 Lorenz, Edward N. (March 1963). "नियतात्मक गैर-आवधिक प्रवाह". Journal of the Atmospheric Sciences. 20 (2): 130–141. Bibcode:1963JAtS...20..130L. doi:10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2.
  4. Rouvas-Nicolis, Catherine; Nicolis, Gregoire (4 May 2009). "तितली प्रभाव". Scholarpedia. Vol. 4. p. 1720. Bibcode:2009SchpJ...4.1720R. doi:10.4249/scholarpedia.1720. Archived from the original on 2016-01-02. Retrieved 2016-01-02.
  5. 5.0 5.1 Some Historical Notes: History of Chaos Theory Archived 2006-07-19 at the Wayback Machine
  6. Steves, Bonnie; Maciejewski, AJ (September 2001). द रेस्टलेस यूनिवर्स एप्लिकेशन ऑफ़ ग्रेविटेशनल एन-बॉडी डायनेमिक्स टू प्लैनेटरी स्टेलर एंड गैलेक्टिक सिस्टम्स. USA: CRC Press. ISBN 0750308222. Retrieved January 6, 2014.
  7. Computing Machinery and Intelligence
  8. Flam, Faye (2012-06-15). "रे ब्रैडबरी की "ए साउंड ऑफ़ थंडर" की भौतिकी". The Philadelphia Inquirer. Archived from the original on 2015-09-24. Retrieved 2015-09-02.
  9. Gleick, James (1987). अराजकता: एक नया विज्ञान बनाना. Viking. p. 16. ISBN 0-8133-4085-3.
  10. Motter, Adilson E.; Campbell, David K. (2013). "Chaos at fifty". Physics Today. 66 (5): 27–33. arXiv:1306.5777. Bibcode:2013PhT....66e..27M. doi:10.1063/PT.3.1977. S2CID 54005470.
  11. Google Scholar citation record
  12. "भाग 19". Cs.ualberta.ca. 1960-11-22. Archived from the original on 2009-07-17. Retrieved 2014-06-08.
  13. 13.0 13.1 Lorenz, Edward N. (1963). "The Predictability of Hydrodynamic Flow" (PDF). Transactions of the New York Academy of Sciences. 25 (4): 409–432. doi:10.1111/j.2164-0947.1963.tb01464.x. Archived (PDF) from the original on 10 October 2014. Retrieved 1 September 2014.
  14. "द बटरफ्लाई इफेक्ट्स: वैरिएशन ऑन अ मेमे". AP42 ...and everything. Archived from the original on 11 November 2011. Retrieved 3 August 2011.
  15. Woods, Austin (2005). मध्यम अवधि के मौसम की भविष्यवाणी: यूरोपीय दृष्टिकोण; यूरोपियन सेंटर फॉर मीडियम-रेंज वेदर फोरकास्ट की कहानी. New York: Springer. p. 118. ISBN 978-0387269283.
  16. Orrell, David; Smith, Leonard; Barkmeijer, Jan; Palmer, Tim (2001). "मौसम पूर्वानुमान में मॉडल त्रुटि". Nonlinear Processes in Geophysics. 9 (6): 357–371. Bibcode:2001NPGeo...8..357O. doi:10.5194/npg-8-357-2001.
  17. Orrell, David (2002). "पूर्वानुमान त्रुटि वृद्धि में मीट्रिक की भूमिका: मौसम कितना अराजक है?". Tellus. 54A (4): 350–362. Bibcode:2002TellA..54..350O. doi:10.3402/tellusa.v54i4.12159.
  18. Orrell, David (2012). सत्य या सौंदर्य: विज्ञान और आदेश की खोज. New Haven: Yale University Press. p. 208. ISBN 978-0300186611.
  19. Wolfram, Stephen (2002). एक नए तरह का विज्ञान. Wolfram Media. p. 998. ISBN 978-1579550080.
  20. Shen, Bo-Wen (2019). "सामान्यीकृत लॉरेंज मॉडल में एकत्रित नकारात्मक प्रतिक्रिया". International Journal of Bifurcation and Chaos. 29 (3): 1950037–1950091. Bibcode:2019IJBC...2950037S. doi:10.1142/S0218127419500378. S2CID 132494234.
  21. 21.0 21.1 Lorenz, Edward N. (June 1969). "एक प्रवाह की पूर्वानुमेयता जिसमें गति के कई पैमाने होते हैं". Tellus. XXI (3): 289–297. Bibcode:1969Tell...21..289L. doi:10.1111/j.2153-3490.1969.tb00444.x.
  22. 22.0 22.1 Tim, Palmer (19 May 2017). "तितली प्रभाव - यह वास्तव में क्या दर्शाता है?". Oxford U. Dept. of Mathematics Youtube Channel. Archived from the original on 2021-10-31. Retrieved 13 February 2019.
  23. 23.0 23.1 Emanuel, Kerry (26 March 2018). "एडवर्ड एन. लॉरेंज एंड द एंड ऑफ़ द कार्टेशियन यूनिवर्स". MIT Department of Earth, Atmospheric, and Planetary Sciences Youtube channel. Archived from the original on 2021-10-31. Retrieved 13 February 2019.
  24. 24.0 24.1 24.2 Lorenz, Edward N. (1993). अराजकता का सार. London: UCL Press. ISBN 0-203-21458-7. OCLC 56620850.
  25. Shen, Bo-Wen; Pielke, Roger A.; Zeng, Xubin (2022-05-07). "लॉरेंज 1963 और 1969 मॉडल के भीतर एक सैडल प्वाइंट और दो प्रकार की संवेदनशीलता". Atmosphere. 13 (5): 753. Bibcode:2022Atmos..13..753S. doi:10.3390/atmos13050753. ISSN 2073-4433.
  26. W., Jordan, Dominic (2011). अरैखिक साधारण अंतर समीकरण: वैज्ञानिकों और इंजीनियरों के लिए एक परिचय. Oxford Univ. Press. ISBN 978-0-19-920825-8. OCLC 772641393.{{cite book}}: CS1 maint: multiple names: authors list (link)
  27. "अराजकता और जलवायु". RealClimate. 4 November 2005. Archived from the original on 2014-07-02. Retrieved 2014-06-08.
  28. Shen, Bo-Wen (2014-05-01). "फाइव-डायमेंशनल लॉरेंज मॉडल में नॉनलाइनियर फीडबैक". Journal of the Atmospheric Sciences (in English). 71 (5): 1701–1723. Bibcode:2014JAtS...71.1701S. doi:10.1175/JAS-D-13-0223.1. ISSN 0022-4928. S2CID 123683839.
  29. Shen, Bo-Wen; Pielke, Roger A.; Zeng, Xubin; Cui, Jialin; Faghih-Naini, Sara; Paxson, Wei; Atlas, Robert (2022-07-04). "लॉरेंज मॉडल के भीतर तीन प्रकार के तितली प्रभाव". Encyclopedia (in English). 2 (3): 1250–1259. doi:10.3390/encyclopedia2030084. ISSN 2673-8392.
  30. Shen, Bo-Wen; Pielke, Roger A.; Zeng, Xubin; Baik, Jong-Jin; Faghih-Naini, Sara; Cui, Jialin; Atlas, Robert (2021-01-01). "क्या मौसम अराजक है?: सामान्यीकृत लॉरेंज मॉडल के भीतर अराजकता और व्यवस्था का सह-अस्तित्व". Bulletin of the American Meteorological Society (in English). 102 (1): E148–E158. Bibcode:2021BAMS..102E.148S. doi:10.1175/BAMS-D-19-0165.1. ISSN 0003-0007. S2CID 208369617.
  31. Shen, Bo-Wen; Pielke, R. A. Sr.; Zeng, X.; Baik, J.-J.; Faghih-Naini, S.; Cui, J.; Atlas, R.; Reyes, T. A. L. (2021). Skiadas, Christos H.; Dimotikalis, Yiannis (eds.). "क्या मौसम अराजक है? लोरेन्ज़ मॉडल के भीतर अराजक और गैर-अराजक आकर्षक सह-अस्तित्व". 13th Chaotic Modeling and Simulation International Conference. Springer Proceedings in Complexity (in English). Cham: Springer International Publishing: 805–825. doi:10.1007/978-3-030-70795-8_57. ISBN 978-3-030-70795-8. S2CID 245197840.
  32. Anthes, Richard A. (2022-08-14). "भविष्यवाणी और भविष्यवाणियां". Atmosphere (in English). 13 (8): 1292. Bibcode:2022Atmos..13.1292A. doi:10.3390/atmos13081292. ISSN 2073-4433.
  33. Richter, P. H.; Scholz, H.-J. (1984), "Chaos in Classical Mechanics: The Double Pendulum", Stochastic Phenomena and Chaotic Behaviour in Complex Systems, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 86–97, doi:10.1007/978-3-642-69591-9_9, ISBN 978-3-642-69593-3, retrieved 2022-07-11
  34. Shinbrot, Troy, Celso A Grebogi, Jack Wisdom, James A Yorke (1992). "एक डबल पेंडुलम में अराजकता". American Journal of Physics. 60 (6): 491–499. Bibcode:1992AmJPh..60..491S. doi:10.1119/1.16860.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  35. 35.0 35.1 35.2 Shen, Bo-Wen; Pielke Sr., Roger Pielke; Zeng, Xubin; Cui, Jialin; Faghih-Naini, Sara; Paxson, Wei; Kesarkar, Amit; Zeng, Xiping; Atlas, Robert (2022-11-12). "वातावरण में अराजकता और व्यवस्था की दोहरी प्रकृति". Atmosphere (in English). 13 (11): 1892. Bibcode:2022Atmos..13.1892S. doi:10.3390/atmos13111892. ISSN 2073-4433. CC-BY icon.svg Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  36. Heller, E. J.; Tomsovic, S. (July 1993). "उत्तर आधुनिक क्वांटम यांत्रिकी". Physics Today. 46 (7): 38–46. Bibcode:1993PhT....46g..38H. doi:10.1063/1.881358.
  37. Gutzwiller, Martin C. (1990). शास्त्रीय और क्वांटम यांत्रिकी में अराजकता. New York: Springer-Verlag. ISBN 0-387-97173-4.
  38. 38.0 38.1 Rudnick, Ze'ev (January 2008). "क्या है ... क्वांटम कैओस?" (PDF). Notices of the American Mathematical Society. Archived (PDF) from the original on 2009-10-02.
  39. Berry, Michael (1989). "क्वांटम अराजकता, क्वांटम अराजकता नहीं". Physica Scripta. 40 (3): 335–336. Bibcode:1989PhyS...40..335B. doi:10.1088/0031-8949/40/3/013. S2CID 250776260.
  40. Gutzwiller, Martin C. (1971). "आवधिक कक्षाएँ और शास्त्रीय परिमाणीकरण की स्थिति". Journal of Mathematical Physics. 12 (3): 343. Bibcode:1971JMP....12..343G. doi:10.1063/1.1665596.
  41. Gao, J. & Delos, J. B. (1992). "एक मजबूत विद्युत क्षेत्र में परमाणु फोटोअवशोषण क्रॉस सेक्शन में दोलनों का बंद-कक्षा सिद्धांत। द्वितीय। सूत्रों की व्युत्पत्ति". Physical Review A. 46 (3): 1455–1467. Bibcode:1992PhRvA..46.1455G. doi:10.1103/PhysRevA.46.1455. PMID 9908268. S2CID 7877923.
  42. Yan, Bin; Sinitsyn, Nikolai A. (2020). "क्षतिग्रस्त सूचना की पुनर्प्राप्ति और समय-समय पर आदेशित सहसंबंधी". Physical Review Letters. 125 (4): 040605. arXiv:2003.07267. Bibcode:2020PhRvL.125d0605Y. doi:10.1103/PhysRevLett.125.040605. PMID 32794812. S2CID 212725801.
  43. Karkuszewski, Zbyszek P.; Jarzynski, Christopher; Zurek, Wojciech H. (2002). "क्वांटम अराजक वातावरण, तितली प्रभाव और विकृति". Physical Review Letters. 89 (17): 170405. arXiv:quant-ph/0111002. Bibcode:2002PhRvL..89q0405K. doi:10.1103/PhysRevLett.89.170405. PMID 12398653. S2CID 33363344.
  44. Poulin, David; Blume-Kohout, Robin; Laflamme, Raymond & Ollivier, Harold (2004). "क्वांटम सूचना के एक बिट के साथ घातीय स्पीडअप: औसत फिडेलिटी क्षय को मापना". Physical Review Letters. 92 (17): 177906. arXiv:quant-ph/0310038. Bibcode:2004PhRvL..92q7906P. doi:10.1103/PhysRevLett.92.177906. PMID 15169196. S2CID 6218604.
  45. 45.0 45.1 Poulin, David. "क्वांटम कैओस के लिए एक कठिन गाइड" (PDF). Archived from the original (PDF) on 2010-11-04.
  46. Peres, A. (1995). क्वांटम थ्योरी: कॉन्सेप्ट्स एंड मेथड्स. Dordrecht: Kluwer Academic.
  47. Lee, Jae-Seung & Khitrin, A. K. (2004). "क्वांटम प्रवर्धक: उलझे हुए घुमावों के साथ मापन". Journal of Chemical Physics. 121 (9): 3949–51. Bibcode:2004JChPh.121.3949L. doi:10.1063/1.1788661. PMID 15332940.

अग्रिम पठन

बाहरी कड़ियाँ