परिबद्ध समुच्चय (बाउंडेड सेट): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Collection of mathematical objects of finite size}}
{{Short description|Collection of mathematical objects of finite size}}
[[Image:Bounded unbounded.svg|right|thumb|एक कलाकार की बंधे हुए समुच्चय (ऊपर) और असीमित समुच्चय (नीचे) की छाप। नीचे का समुच्चय सदैव दाईं ओर जारी रहता है।]][[गणितीय विश्लेषण]] और गणित के संबंधित क्षेत्रों में, [[सेट (गणित)|समुच्चय (गणित)]] को '''''परिबद्ध''''' कहा जाता है यदि यह निश्चित अर्थ में, परिमित [[माप (गणित)]] का है। इसके विपरीत, जो समुच्चय परिबद्ध नहीं है उसे ''अनबाउंड'' कहा जाता है। संबंधित मीट्रिक (गणित) के बिना सामान्य टोपोलॉजिकल स्पेस में परिबद्ध शब्द का कोई कारण नहीं है।
[[Image:Bounded unbounded.svg|right|thumb|एक कलाकार की बंधे हुए समुच्चय (ऊपर) और असीमित समुच्चय (नीचे) की छाप। नीचे का समुच्चय सदैव दाईं ओर जारी रहता है।]][[गणितीय विश्लेषण]] और गणित के संबंधित क्षेत्रों में, [[सेट (गणित)|समुच्चय (गणित)]] को '''''परिबद्ध''''' कहा जाता है यदि यह निश्चित अर्थ में, परिमित [[माप (गणित)]] का है। इसके विपरीत, जो समुच्चय परिबद्ध नहीं है उसे ''अनबाउंड'' कहा जाता है। संबंधित मीट्रिक (गणित) के बिना सामान्य टोपोलॉजिकल समष्‍टि में परिबद्ध शब्द का कोई कारण नहीं है।


''[[सीमा (टोपोलॉजी)]]'' विशिष्ट अवधारणा है: उदाहरण के लिए, पृथक्करण में वृत्त सीमाहीन घिरा हुआ समुच्चय है, जबकि [[आधा विमान|आधा स्पेस]] असीमित है फिर भी सीमा है।
''[[सीमा (टोपोलॉजी)]]'' विशिष्ट अवधारणा है: उदाहरण के लिए, पृथक्करण में वृत्त सीमाहीन घिरा हुआ समुच्चय है, जबकि आधा समष्‍टि असीमित है फिर भी सीमा है।


एक परिबद्ध समुच्चय आवश्यक रूप से बंद समुच्चय नहीं है और इसके विपरीत भी है। उदाहरण के लिए, 2-आयामी वास्तविक स्पेस R का उपसमुच्चय ''S''<sup>2</sup> दो परवलयिक वक्रों द्वारा बाधित x<sup>2</sup>+1 और x<sup>2</sup> - कार्टेशियन समन्वय प्रणाली में परिभाषित 1 वक्रों द्वारा बंद है किन्तु परिबद्ध नहीं है (इसलिए असंबद्ध)।
एक परिबद्ध समुच्चय आवश्यक रूप से सवृत समुच्चय नहीं है और इसके विपरीत भी है। उदाहरण के लिए, 2-आयामी वास्तविक समष्‍टि R का उपसमुच्चय ''S''<sup>2</sup> दो परवलयिक वक्रों द्वारा बाधित x<sup>2</sup>+1 और x<sup>2</sup> - कार्टेशियन समन्वय प्रणाली में परिभाषित 1 वक्रों द्वारा सवृत है किन्तु परिबद्ध नहीं है (इसलिए असंबद्ध)।


== वास्तविक संख्याओं में परिभाषा ==
== वास्तविक संख्याओं में परिभाषा ==
Line 11: Line 11:
एक समुच्चय S 'परिबद्ध' है यदि इसकी ऊपरी और निचली दोनों सीमाएँ हैं। इसलिए, वास्तविक संख्याओं का समुच्चय परिबद्ध होता है यदि वह [[अंतराल (गणित)]] में समाहित हो जाती है।
एक समुच्चय S 'परिबद्ध' है यदि इसकी ऊपरी और निचली दोनों सीमाएँ हैं। इसलिए, वास्तविक संख्याओं का समुच्चय परिबद्ध होता है यदि वह [[अंतराल (गणित)]] में समाहित हो जाती है।


== मीट्रिक स्पेस में परिभाषा ==
== मीट्रिक समष्‍टि में परिभाषा ==


मीट्रिक स्पेस (m, d) का उपसमुच्चय s 'परिबद्ध' है यदि वहां R > 0 उपस्थित है जैसे कि s में सभी s और t के लिए, हमारे पास d (s, t) < R है। मीट्रिक स्पेस (m, d) घिरा हुआ मीट्रिक स्पेस है (या d घिरा हुआ मीट्रिक है) यदि m स्वयं के [[सबसेट|सबसमुच्चय]] के रूप में घिरा हुआ है।
मीट्रिक समष्‍टि (m, d) का उपसमुच्चय s 'परिबद्ध' है यदि वहां R > 0 उपस्थित है जैसे कि s में सभी s और t के लिए, हमारे पास d (s, t) < R है। मीट्रिक समष्‍टि (m, d) घिरा हुआ मीट्रिक समष्‍टि है (या d घिरा हुआ मीट्रिक है) यदि m स्वयं के [[सबसेट|सबसमुच्चय]] के रूप में घिरा हुआ है।


*[[पूर्ण सीमाबद्धता]] का तात्पर्य सीमाबद्धता से है। 'R<sup>n</sup>' के उपसमुच्चय के लिए दोनों समतुल्य हैं।
*[[पूर्ण सीमाबद्धता]] का तात्पर्य सीमाबद्धता से है। 'R<sup>n</sup>' के उपसमुच्चय के लिए दोनों समतुल्य हैं।
*[[पूर्ण मीट्रिक स्थान|पूर्ण मीट्रिक स्पेस]] [[ सघन स्थान | सघन स्पेस]] है यदि और केवल तभी जब यह पूर्ण मीट्रिक स्पेस हो और पूरी तरह से घिरा हुआ होता है।
*[[पूर्ण मीट्रिक स्थान|पूर्ण मीट्रिक समष्‍टि]] [[ सघन स्थान |सघन समष्‍टि]] है यदि और केवल तभी जब यह पूर्ण मीट्रिक समष्‍टि हो और पूरी तरह से घिरा हुआ होता है।
*[[ यूक्लिडियन स्थान | यूक्लिडियन स्पेस]] 'R<sup>n</sup>' का उपसमुच्चय सघन है यदि और केवल यदि यह बंद समुच्चय और परिबद्ध है। इसे [[हेन-बोरेल प्रमेय]] भी कहा जाता है।
*[[ यूक्लिडियन स्थान | यूक्लिडियन समष्‍टि]] 'R<sup>n</sup>' का उपसमुच्चय सघन है यदि और केवल यदि यह सवृत समुच्चय और परिबद्ध है। इसे [[हेन-बोरेल प्रमेय]] भी कहा जाता है।


== टोपोलॉजिकल वेक्टर रिक्त स्पेस में सीमाबद्धता ==
== टोपोलॉजिकल सदिश रिक्त समष्‍टि में सीमाबद्धता ==
{{main|परिबद्ध समुच्चय (टोपोलॉजिकल वेक्टर स्पेस)}}
{{main|परिबद्ध समुच्चय (टोपोलॉजिकल वेक्टर स्पेस)}}
[[टोपोलॉजिकल वेक्टर स्पेस]] में, परिबद्ध समुच्चयों के लिए अलग परिभाषा उपस्थित होती है जिसे कभी-कभी [[वॉन न्यूमैन बाउंडेड|वॉन न्यूमैन परिबद्ध]] कहा जाता है। यदि टोपोलॉजिकल वेक्टर स्पेस की टोपोलॉजी [[मीट्रिक (गणित)]] से प्रेरित होती है जो [[सजातीय मीट्रिक]] है, जैसा कि [[मानक वेक्टर रिक्त स्थान|मानक वेक्टर रिक्त स्पेस]] के [[मानक (गणित)]] से प्रेरित मीट्रिक के स्थिति में होता है, जिससे दोनों परिभाषाएँ मेल खाती हैं।
[[टोपोलॉजिकल वेक्टर स्पेस|टोपोलॉजिकल सदिश समष्‍टि]] में, परिबद्ध समुच्चयों के लिए अलग परिभाषा उपस्थित होती है जिसे कभी-कभी [[वॉन न्यूमैन बाउंडेड|वॉन न्यूमैन परिबद्ध]] कहा जाता है। यदि टोपोलॉजिकल सदिश समष्‍टि की टोपोलॉजी [[मीट्रिक (गणित)]] से प्रेरित होती है जो [[सजातीय मीट्रिक]] है, जैसा कि मानक सदिश रिक्त समष्‍टि के [[मानक (गणित)]] से प्रेरित मीट्रिक के स्थिति में होता है, जिससे दोनों परिभाषाएँ मेल खाती हैं।


==क्रम सिद्धांत में सीमाबद्धता                                                                                                                                        ==
==क्रम सिद्धांत में सीमाबद्धता                                                                                                                                        ==
Line 37: Line 37:
[[क्रमसूचक संख्या]]ओं के वर्ग को अनबाउंड या कोफ़ाइनल (गणित) कहा जाता है, जब कोई क्रमसूचक संख्या दी जाती है, जिससे सदैव वर्ग का कोई न कोई तत्व उससे बड़ा होता है। इस प्रकार इस स्थिति में अनबाउंड का कारण अपने आप में अनबाउंड नहीं है, किन्तु सभी क्रमिक संख्याओं के वर्ग के उपवर्ग के रूप में अनबाउंड है।
[[क्रमसूचक संख्या]]ओं के वर्ग को अनबाउंड या कोफ़ाइनल (गणित) कहा जाता है, जब कोई क्रमसूचक संख्या दी जाती है, जिससे सदैव वर्ग का कोई न कोई तत्व उससे बड़ा होता है। इस प्रकार इस स्थिति में अनबाउंड का कारण अपने आप में अनबाउंड नहीं है, किन्तु सभी क्रमिक संख्याओं के वर्ग के उपवर्ग के रूप में अनबाउंड है।


== यह भी देखें                                                                                                                                                                         ==
== यह भी देखें                                                                         ==
*[[परिबद्ध डोमेन]]
*[[परिबद्ध डोमेन]]
*[[बंधा हुआ कार्य|परिबद्ध कार्य]]
*[[बंधा हुआ कार्य|परिबद्ध कार्य]]
*[[स्थानीय सीमा|स्पेसीय सीमा]]
*[[स्थानीय सीमा|समष्‍टिीय सीमा]]
*[[आदेश सिद्धांत]]
*[[आदेश सिद्धांत]]
*पूरी तरह से घिरा हुआ
*पूरी तरह से घिरा हुआ
Line 47: Line 47:
*{{cite book |first=Robert G. |last=Bartle |author-link=Robert G. Bartle |first2=Donald R. |last2=Sherbert |title=Introduction to Real Analysis |location=New York |publisher=John Wiley & Sons |year=1982 |isbn=0-471-05944-7 }}
*{{cite book |first=Robert G. |last=Bartle |author-link=Robert G. Bartle |first2=Donald R. |last2=Sherbert |title=Introduction to Real Analysis |location=New York |publisher=John Wiley & Sons |year=1982 |isbn=0-471-05944-7 }}
*{{cite book |first=Robert D. |last=Richtmyer |author-link=Robert D. Richtmyer |title=Principles of Advanced Mathematical Physics |publisher=Springer |location=New York |year=1978 |isbn=0-387-08873-3 }}
*{{cite book |first=Robert D. |last=Richtmyer |author-link=Robert D. Richtmyer |title=Principles of Advanced Mathematical Physics |publisher=Springer |location=New York |year=1978 |isbn=0-387-08873-3 }}
[[Category: गणितीय विश्लेषण]] [[Category: कार्यात्मक विश्लेषण]] [[Category: आदेश सिद्धांत]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 01/07/2023]]
[[Category:Created On 01/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:आदेश सिद्धांत]]
[[Category:कार्यात्मक विश्लेषण]]
[[Category:गणितीय विश्लेषण]]

Latest revision as of 09:28, 1 September 2023

एक कलाकार की बंधे हुए समुच्चय (ऊपर) और असीमित समुच्चय (नीचे) की छाप। नीचे का समुच्चय सदैव दाईं ओर जारी रहता है।

गणितीय विश्लेषण और गणित के संबंधित क्षेत्रों में, समुच्चय (गणित) को परिबद्ध कहा जाता है यदि यह निश्चित अर्थ में, परिमित माप (गणित) का है। इसके विपरीत, जो समुच्चय परिबद्ध नहीं है उसे अनबाउंड कहा जाता है। संबंधित मीट्रिक (गणित) के बिना सामान्य टोपोलॉजिकल समष्‍टि में परिबद्ध शब्द का कोई कारण नहीं है।

सीमा (टोपोलॉजी) विशिष्ट अवधारणा है: उदाहरण के लिए, पृथक्करण में वृत्त सीमाहीन घिरा हुआ समुच्चय है, जबकि आधा समष्‍टि असीमित है फिर भी सीमा है।

एक परिबद्ध समुच्चय आवश्यक रूप से सवृत समुच्चय नहीं है और इसके विपरीत भी है। उदाहरण के लिए, 2-आयामी वास्तविक समष्‍टि R का उपसमुच्चय S2 दो परवलयिक वक्रों द्वारा बाधित x2+1 और x2 - कार्टेशियन समन्वय प्रणाली में परिभाषित 1 वक्रों द्वारा सवृत है किन्तु परिबद्ध नहीं है (इसलिए असंबद्ध)।

वास्तविक संख्याओं में परिभाषा

ऊपरी सीमा और उसके सर्वोच्च के साथ वास्तविक समुच्चय।

वास्तविक संख्याओं के समुच्चय S को ऊपर से परिबद्ध कहा जाता है यदि कुछ वास्तविक संख्या k उपस्थित हो (आवश्यक नहीं कि S में हो) जैसे कि S में सभी s के लिए k ≥ s होt है। संख्या k को S की 'ऊपरी सीमा' कहा जाता है। नियम नीचे से परिबद्ध और 'निचली सीमा' को समान रूप से परिभाषित किया गया है।

एक समुच्चय S 'परिबद्ध' है यदि इसकी ऊपरी और निचली दोनों सीमाएँ हैं। इसलिए, वास्तविक संख्याओं का समुच्चय परिबद्ध होता है यदि वह अंतराल (गणित) में समाहित हो जाती है।

मीट्रिक समष्‍टि में परिभाषा

मीट्रिक समष्‍टि (m, d) का उपसमुच्चय s 'परिबद्ध' है यदि वहां R > 0 उपस्थित है जैसे कि s में सभी s और t के लिए, हमारे पास d (s, t) < R है। मीट्रिक समष्‍टि (m, d) घिरा हुआ मीट्रिक समष्‍टि है (या d घिरा हुआ मीट्रिक है) यदि m स्वयं के सबसमुच्चय के रूप में घिरा हुआ है।

टोपोलॉजिकल सदिश रिक्त समष्‍टि में सीमाबद्धता

टोपोलॉजिकल सदिश समष्‍टि में, परिबद्ध समुच्चयों के लिए अलग परिभाषा उपस्थित होती है जिसे कभी-कभी वॉन न्यूमैन परिबद्ध कहा जाता है। यदि टोपोलॉजिकल सदिश समष्‍टि की टोपोलॉजी मीट्रिक (गणित) से प्रेरित होती है जो सजातीय मीट्रिक है, जैसा कि मानक सदिश रिक्त समष्‍टि के मानक (गणित) से प्रेरित मीट्रिक के स्थिति में होता है, जिससे दोनों परिभाषाएँ मेल खाती हैं।

क्रम सिद्धांत में सीमाबद्धता

वास्तविक संख्याओं का समुच्चय परिबद्ध होता है यदि और केवल तभी जब इसमें ऊपरी और निचली सीमा होटी है। यह परिभाषा किसी भी आंशिक रूप से ऑर्डर किए गए समुच्चय के सबसमुच्चय तक विस्तार योग्य है। ध्यान दें कि सीमाबद्धता की यह अधिक सामान्य अवधारणा आकार की धारणा के अनुरूप नहीं है।

आंशिक रूप से क्रमबद्ध समुच्चय P के उपसमुच्चय S को 'ऊपर से घिरा हुआ' कहा जाता है यदि P में कोई तत्व k है जैसे कि S में सभी s के लिए k ≥ s है। तत्व k को S की 'ऊपरी सीमा' कहा जाता है। की अवधारणाएँ 'नीचे परिबद्ध' और 'निचली सीमा' को समान रूप से परिभाषित किया गया है। (ऊपरी और निचली सीमाएं भी देखें।)

आंशिक रूप से ऑर्डर किए गए समुच्चय P के उपसमुच्चय S को 'परिबद्ध' कहा जाता है यदि इसमें ऊपरी और निचली दोनों बाउंड हैं, या समकक्ष, यदि यह क्रम सिद्धांत में अंतराल (गणित) अंतराल में समाहित है। ध्यान दें कि यह केवल समुच्चय S का गुण नहीं है, किन्तु P के उपसमुच्चय के रूप में समुच्चय S में से गुण भी है।

एक 'परिबद्ध पोसमुच्चय' p (अर्थात्, अपने आप में, उपसमुच्चय के रूप में नहीं) वह है जिसमें कम से कम तत्व और सबसे बड़ा तत्व होता है। ध्यान दें कि सीमाबद्धता की इस अवधारणा का परिमित आकार से कोई लेना-देना नहीं है, और बाइनरी रिलेशन p पर आदेश के प्रतिबंध के साथ परिबद्ध स्थिति p का उपसमुच्चय आवश्यक रूप से परिबद्ध स्थिति नहीं है।

'R' का उपसमुच्चय Sn यूक्लिडियन दूरी के संबंध में परिबद्ध है यदि और केवल यदि यह 'Rn' के उपसमुच्चय के रूप में परिबद्ध है उत्पाद ऑर्डर के साथ चूँकि, S को 'Rn' के उपसमुच्चय के रूप में परिबद्ध किया जा सकता है इस प्रकार शब्दावली क्रम के साथ, किन्तु यूक्लिडियन दूरी के संबंध में नहीं होती है।

क्रमसूचक संख्याओं के वर्ग को अनबाउंड या कोफ़ाइनल (गणित) कहा जाता है, जब कोई क्रमसूचक संख्या दी जाती है, जिससे सदैव वर्ग का कोई न कोई तत्व उससे बड़ा होता है। इस प्रकार इस स्थिति में अनबाउंड का कारण अपने आप में अनबाउंड नहीं है, किन्तु सभी क्रमिक संख्याओं के वर्ग के उपवर्ग के रूप में अनबाउंड है।

यह भी देखें

संदर्भ

  • Bartle, Robert G.; Sherbert, Donald R. (1982). Introduction to Real Analysis. New York: John Wiley & Sons. ISBN 0-471-05944-7.
  • Richtmyer, Robert D. (1978). Principles of Advanced Mathematical Physics. New York: Springer. ISBN 0-387-08873-3.