टोमोग्राफी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(8 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|Imaging by sections or sectioning using a penetrative wave}}
{{Short description|Imaging by sections or sectioning using a penetrative wave}}
[[File:TomographyPrinciple Illustration.png|200px|thumb|चित्र 1: टोमोग्राफी का मूल सिद्धांत: सुपरपोजिशन फ्री टोमोग्राफिक क्रॉस सेक्शन एस<sub>1</sub> और एस<sub>2</sub> (टोमोग्राफिक नहीं) अनुमानित छवि पी की तुलना में]]
[[File:TomographyPrinciple Illustration.png|200px|thumb|चित्र 1: टोमोग्राफी का मूल सिद्धांत: अधिरोपण फ्री टोमोग्राफिक क्रॉस सेक्शन S<sub>1</sub> और S<sub>2</sub> (टोमोग्राफिक नहीं) अनुमानित छवि Pकी तुलना में]]
[[File:Sagittal brain MRI.jpg|thumbnail|चुंबकीय अनुनाद इमेजिंग द्वारा सिर का [[मंझला विमान|मंझला समतल]] सैजिटल प्लेन टोमोग्राफी।]]टोमोग्राफी सेक्शन या सेक्शनिंग द्वारा [[इमेजिंग]] है जो किसी भी प्रकार की मर्मज्ञ तरंग का उपयोग करता है। विधि का उपयोग [[ रेडियोलोजी ]], [[पुरातत्त्व]], जीव [[विज्ञान]], [[वायुमंडलीय विज्ञान]], [[भूभौतिकी]], समुद्र विज्ञान, [[प्लाज्मा भौतिकी]], सामग्री विज्ञान, [[खगोल भौतिकी]], क्वांटम सूचना और विज्ञान के अन्य क्षेत्रों में किया जाता है। टोमोग्राफी शब्द प्राचीन ग्रीक τόμος ''टोमोस'', स्लाइस, सेक्शन और γράφω ''ग्राफो'' से लिया गया है, लिखने के लिए या, इस संदर्भ में भी, वर्णन करने के लिए। टोमोग्राफी में प्रयुक्त एक उपकरण को टोमोग्राफ कहा जाता है, जबकि निर्मित छवि एक टॉमोग्राम है।
[[File:Sagittal brain MRI.jpg|thumbnail|चुंबकीय अनुनाद इमेजिंग द्वारा सिर का [[मंझला विमान|मेडियन समतल]] सैजिटल टोमोग्राफी।]]'''टोमोग्राफी''' सेक्शन या सेक्शनिंग द्वारा [[इमेजिंग]] है जो किसी भी प्रकार की मर्मज्ञ तरंग का उपयोग करता है। विधि का उपयोग [[ रेडियोलोजी |रेडियोलोजी]], [[पुरातत्त्व]], जीव [[विज्ञान]], [[वायुमंडलीय विज्ञान]], [[भूभौतिकी]], समुद्र विज्ञान, [[प्लाज्मा भौतिकी]], सामग्री विज्ञान, [[खगोल भौतिकी]], क्वांटम सूचना और विज्ञान के अन्य क्षेत्रों में किया जाता है। टोमोग्राफी शब्द प्राचीन ग्रीक ''टोमोस'', स्लाइस, सेक्शन और ''ग्राफो'' से लिया गया है, टोमोग्राफी में प्रयुक्त उपकरण को टोमोग्राफ कहा जाता है, जबकि निर्मित छवि टॉमोग्राम है।


कई स्तिथियों में, इन छवियों का उत्पादन गणितीय प्रक्रिया [[टोमोग्राफिक पुनर्निर्माण]] पर आधारित होता है, जैसे कि [[सीटी स्कैन]]| कई भिन्न-भिन्न पुनर्निर्माण एल्गोरिदम उपस्थित हैं। अधिकांश एल्गोरिदम दो श्रेणियों में से एक में आते हैं: [[फ़िल्टर्ड बैक प्रोजेक्शन]] (FBP) और पुनरावृत्त पुनर्निर्माण (IR)ये प्रक्रियाएँ अचूक परिणाम देती हैं: [[लहर]] सटीकता और आवश्यक संगणना समय के मध्य एक समझौते का प्रतिनिधित्व करती हैं। एफबीपी कम कम्प्यूटेशनल संसाधनों की मांग करता है, जबकि आईआर सामान्यतः उच्च कंप्यूटिंग लागत पर कम कलाकृतियों (पुनर्निर्माण में त्रुटियां) का उत्पादन करता है।<ref>{{cite book |last=Herman |first=Gabor T. |title=Fundamentals of Computerized Tomography: Image Reconstruction from Projections |date=2009 |publisher=Springer |location=Dordrecht |isbn=978-1-84628-723-7 |edition=2nd}}</ref>
कई स्तिथियों में, इन छवियों का उत्पादन गणितीय प्रक्रिया [[टोमोग्राफिक पुनर्निर्माण]] पर आधारित होता है, जैसे कि [[सीटी स्कैन|एक्स-रे]] कंप्यूटेड टोमोग्राफी तकनीकी रूप से कई प्रोजेक्शनल रेडियोग्राफ़ से निर्मित होती है। कई भिन्न-भिन्न पुनर्निर्माण एल्गोरिदम उपस्थित हैं। अधिकांश एल्गोरिदम दो श्रेणियों में से आते हैं: [[फ़िल्टर्ड बैक प्रोजेक्शन|फ़िल्टर्ड बैक]] प्रक्षेपण (FBP) और पुनरावृत्त पुनर्निर्माण (IR) है। ये प्रक्रियाएँ अचूक परिणाम देती हैं: वे [[लहर|त्रुटिहीन]] और आवश्यक संगणना समय के मध्य निराकरण का प्रतिनिधित्व करती हैं। एफबीपी कम कम्प्यूटेशनल संसाधनों की आवश्यकता है, जबकि आईआर सामान्यतः उच्च कंप्यूटिंग व्यय पर कम कलाकृतियों (पुनर्निर्माण में त्रुटियां) का उत्पादन करता है।<ref>{{cite book |last=Herman |first=Gabor T. |title=Fundamentals of Computerized Tomography: Image Reconstruction from Projections |date=2009 |publisher=Springer |location=Dordrecht |isbn=978-1-84628-723-7 |edition=2nd}}</ref>
चूँकि [[एमआरआई]] (चुंबकीय अनुनाद इमेजिंग), [[ऑप्टिकल कोहरेन्स टोमोग्राफी]] और [[अल्ट्रासाउंड]] ट्रांसमिशन विधियां हैं, उन्हें सामान्यतः विभिन्न दिशाओं से डेटा प्राप्त करने के लिए ट्रांसमीटर के आंदोलन की आवश्यकता नहीं होती है। एमआरआई में, स्थानिक रूप से भिन्न चुंबकीय क्षेत्रों को प्रारम्भ करके अनुमानों और उच्च स्थानिक हार्मोनिक्स दोनों का नमूना लिया जाता है; एक छवि उत्पन्न करने के लिए किसी हिलने वाले हिस्से की आवश्यकता नहीं होती है। दूसरी ओर, चूंकि अल्ट्रासाउंड और ऑप्टिकल सुसंगतता टोमोग्राफी समय-समय पर उड़ान का उपयोग प्राप्त सिग्नल को स्थानिक रूप से एन्कोड करने के लिए करती है, यह कड़ाई से एक टोमोग्राफिक विधि नहीं है और इसके लिए कई छवि अधिग्रहण की आवश्यकता नहीं होती है।
 
चूँकि [[एमआरआई]] (चुंबकीय अनुनाद इमेजिंग), [[ऑप्टिकल कोहरेन्स टोमोग्राफी|ऑप्टिकल सुसंगतता टोमोग्राफी]] और [[अल्ट्रासाउंड]] ट्रांसमिशन विधियां हैं, उन्हें सामान्यतः विभिन्न दिशाओं से डेटा प्राप्त करने के लिए ट्रांसमीटर के अभियान की आवश्यकता नहीं होती है। एमआरआई में, स्थानिक रूप से भिन्न चुंबकीय क्षेत्रों को प्रारम्भ करके अनुमानों और उच्च स्थानिक हार्मोनिक्स दोनों का प्रारूप लिया जाता है; छवि उत्पन्न करने के लिए किसी हिलने वाले भाग की आवश्यकता नहीं होती है। दूसरी ओर, चूंकि अल्ट्रासाउंड और ऑप्टिकल सुसंगतता टोमोग्राफी समय-समय पर उड़ान का उपयोग प्राप्त सिग्नल को स्थानिक रूप से एन्कोड करने के लिए करती है, यह जटिलता से टोमोग्राफिक विधि नहीं है और इसके लिए कई छवि अधिग्रहण की आवश्यकता नहीं होती है।


== टोमोग्राफी के प्रकार ==
== टोमोग्राफी के प्रकार ==
Line 16: Line 17:
  | [[Aerial tomography|एरियल टोमोग्राफी]]
  | [[Aerial tomography|एरियल टोमोग्राफी]]
  | [[Electromagnetic radiation|विद्युत चुम्बकीय विकिरण]]
  | [[Electromagnetic radiation|विद्युत चुम्बकीय विकिरण]]
  | पर
  | एटी
  | 2020
  | 2020
|-
|-
  | ऐरे टोमोग्राफी<ref>{{cite journal |last1=Micheva |first1=Kristina D. |last2=Smith |first2=Stephen J |title=Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits |journal=Neuron |date=July 2007 |volume=55 |issue=1 |pages=25–36 |doi=10.1016/j.neuron.2007.06.014|pmid=17610815 |pmc=2080672 }}</ref>
  | ऐरे टोमोग्राफी<ref>{{cite journal |last1=Micheva |first1=Kristina D. |last2=Smith |first2=Stephen J |title=Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits |journal=Neuron |date=July 2007 |volume=55 |issue=1 |pages=25–36 |doi=10.1016/j.neuron.2007.06.014|pmid=17610815 |pmc=2080672 }}</ref>
  | [[Correlative light-electron microscopy|सहसंबंधी प्रकाश और इलेक्ट्रॉन माइक्रोस्कोपी]]
  | [[Correlative light-electron microscopy|सहसंबंधी प्रकाश और इलेक्ट्रॉन माइक्रोस्कोपी]]
  | पर
  | एटी
  | 2007
  | 2007
|-
|-
  | [[Atom_probe#Atom_Probe_Tomography_(APT)|परमाणु जांच टोमोग्राफी]]
  | [[Atom_probe#Atom_Probe_Tomography_(APT)|परमाणु परीक्षण टोमोग्राफी]]
  | [[Atom probe|परमाणु जांच]]
  | [[Atom probe|परमाणु जांच]]
  | अपार्ट
  | एपीटी
  |
  |
|-
|-
Line 41: Line 42:
  |  संनाभि माइक्रोस्कोपी ([[Laser scanning confocal microscopy|लेजर स्कैनिंग कन्फोकल माइक्रोस्कोपी]])
  |  संनाभि माइक्रोस्कोपी ([[Laser scanning confocal microscopy|लेजर स्कैनिंग कन्फोकल माइक्रोस्कोपी]])
  | [[Laser scanning confocal microscopy|लेजर स्कैनिंग कन्फोकल माइक्रोस्कोपी]]
  | [[Laser scanning confocal microscopy|लेजर स्कैनिंग कन्फोकल माइक्रोस्कोपी]]
  | एल एस सी एम
  | एलएससीएम
  |
  |
|-
|-
Line 49: Line 50:
  |
  |
|-
|-
  | [[Electrical capacitance tomography|विद्युत समाई टोमोग्राफी]]
  | [[Electrical capacitance tomography|विद्युत धारिता टोमोग्राफी]]
  | [[Electrical capacitance|विद्युत समाई]]
  | [[Electrical capacitance|विद्युत समाई]]
  | ईसीटी
  | ईसीटी
  | 1988<ref>{{Cite journal |first1=S M |last1=Huang |first2=A |last2=Plaskowski |first3=C G |last3=Xie  |first4=M S |last4=Beck |title=Capacitance-based tomographic flow imaging system |journal=Electronics Letters |volume=24 |issue=7 |date=1988 |pages=418–19 |doi=10.1049/el:19880283 |bibcode=1988ElL....24..418H |language=en}}</ref>
  | 1988<ref>{{Cite journal |first1=S M |last1=Huang |first2=A |last2=Plaskowski |first3=C G |last3=Xie  |first4=M S |last4=Beck |title=Capacitance-based tomographic flow imaging system |journal=Electronics Letters |volume=24 |issue=7 |date=1988 |pages=418–19 |doi=10.1049/el:19880283 |bibcode=1988ElL....24..418H |language=en}}</ref>
|-
|-
|[[Electrical capacitance volume tomography|विद्युत समाई मात्रा टोमोग्राफी]]
|[[Electrical capacitance volume tomography|विद्युत धारिता मात्रा टोमोग्राफी]]
|[[Electrical capacitance|विद्युत समाई]]
|[[Electrical capacitance|विद्युत समाई]]
|ईसीवीटी
|ईसीवीटी
Line 72: Line 73:
  | [[Electron tomography|इलेक्ट्रॉन टोमोग्राफी]]
  | [[Electron tomography|इलेक्ट्रॉन टोमोग्राफी]]
  | [[Transmission electron microscopy|ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोपी]]
  | [[Transmission electron microscopy|ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोपी]]
  | एट
  | ईटी
  |1968<ref>{{Cite journal|last1=Crowther|first1=R. A.|last2=DeRosier|first2=D. J.|last3=Klug|first3=A.|last4=S|first4=F. R.|date=1970-06-23|title=The reconstruction of a three-dimensional structure from projections and its application to electron microscopy|journal=Proc. R. Soc. Lond. A|language=en|volume=317|issue=1530|pages=319–340|doi=10.1098/rspa.1970.0119|issn=0080-4630|bibcode=1970RSPSA.317..319C|s2cid=122980366}}</ref><ref>{{Cite book|title=Electron tomography: methods for three-dimensional visualization of structures in the cell|url=https://archive.org/details/electrontomograp00fran_082|url-access=limited|date=2006|publisher=Springer|isbn=9780387690087| edition=2nd|location=New York|pages=[https://archive.org/details/electrontomograp00fran_082/page/n14 3]|oclc=262685610}}</ref>
  |1968<ref>{{Cite journal|last1=Crowther|first1=R. A.|last2=DeRosier|first2=D. J.|last3=Klug|first3=A.|last4=S|first4=F. R.|date=1970-06-23|title=The reconstruction of a three-dimensional structure from projections and its application to electron microscopy|journal=Proc. R. Soc. Lond. A|language=en|volume=317|issue=1530|pages=319–340|doi=10.1098/rspa.1970.0119|issn=0080-4630|bibcode=1970RSPSA.317..319C|s2cid=122980366}}</ref><ref>{{Cite book|title=Electron tomography: methods for three-dimensional visualization of structures in the cell|url=https://archive.org/details/electrontomograp00fran_082|url-access=limited|date=2006|publisher=Springer|isbn=9780387690087| edition=2nd|location=New York|pages=[https://archive.org/details/electrontomograp00fran_082/page/n14 3]|oclc=262685610}}</ref>
|-
|-
Line 96: Line 97:
  | [[Hydraulic tomography|हाइड्रोलिक टोमोग्राफी]]
  | [[Hydraulic tomography|हाइड्रोलिक टोमोग्राफी]]
  | [[fluid flow|द्रव प्रवाह]]
  | [[fluid flow|द्रव प्रवाह]]
  | हिंदुस्तान टाइम्स
  |एचटी
  | 2000
  | 2000
|-
|-
Line 106: Line 107:
| [[Laser Ablation Tomography|लेजर पृथक्करण टोमोग्राफी]]
| [[Laser Ablation Tomography|लेजर पृथक्करण टोमोग्राफी]]
  | [[Laser ablation|लेजर पृथक]] & [[Fluorescence microscopy|फ्लोरोसेंट माइक्रोस्कोपी]]
  | [[Laser ablation|लेजर पृथक]] & [[Fluorescence microscopy|फ्लोरोसेंट माइक्रोस्कोपी]]
  | अक्षां
  | एलएटी
  | 2013
  | 2013
|-
|-
Line 156: Line 157:
  | [[Optical coherence tomography|ऑप्टिकल कोहरेन्स टोमोग्राफी]]
  | [[Optical coherence tomography|ऑप्टिकल कोहरेन्स टोमोग्राफी]]
  | [[Interferometry|इंटरफेरोमेट्री]]
  | [[Interferometry|इंटरफेरोमेट्री]]
  | अक्टूबर
  | ओसीटी
  |
  |
|-
|-
Line 164: Line 165:
  |
  |
|-
|-
  | [[Optical projection tomography|ऑप्टिकल प्रोजेक्शन टोमोग्राफी]]
  | [[Optical projection tomography|ऑप्टिकल प्रक्षेपण टोमोग्राफी]]
  | [[Optical microscope|ऑप्टिकल माइक्रोस्कोप]]
  | [[Optical microscope|ऑप्टिकल माइक्रोस्कोप]]
  | चुनना
  | ओपीटी
  |
  |
|-
|-
  | [[Photoacoustic imaging in biomedicine|बायोमेडिसिन में फोटोकॉस्टिक इमेजिंग]]
  | [[Photoacoustic imaging in biomedicine|बायोमेडिसिन में फोटोकॉस्टिक इमेजिंग]]
  | [[Photoacoustic spectroscopy|फोटो ध्वनिक स्पेक्ट्रोस्कोपी]]
  | [[Photoacoustic spectroscopy|फोटो ध्वनिक स्पेक्ट्रोस्कोपी]]
  | थपथपाना
  | पीएटी
  |
  |
|-
|-
  | [[Photoemission Orbital Tomography|फोटोमिशन ऑर्बिटल टोमोग्राफी]]
  | [[Photoemission Orbital Tomography|फोटोमिशन ऑर्बिटल टोमोग्राफी]]
  | [[Angle-resolved photoemission spectroscopy|कोण-समाधान फोटो उत्सर्जन स्पेक्ट्रोस्कोपी]]
  | [[Angle-resolved photoemission spectroscopy|कोण-समाधान फोटो उत्सर्जन स्पेक्ट्रोस्कोपी]]
  | POT
  | पीओटी
  | 2009<ref>{{cite journal |last1=Puschnig |first1=P. |last2=Berkebile |first2=S. |last3=Fleming |first3=A. J. |last4=Koller |first4=G. |last5=Emtsev |first5=K. |last6=Seyller |first6=T. |last7=Riley |first7=J. D. |last8=Ambrosch-Draxl |first8=C. |last9=Netzer |first9=F. P. |last10=Ramsey |first10=M. G. |title=Reconstruction of Molecular Orbital Densities from Photoemission Data |journal=Science |date=30 October 2009 |volume=326 |issue=5953 |pages=702–706 |doi=10.1126/science.1176105|pmid=19745118 |bibcode=2009Sci...326..702P |s2cid=5476218 }}</ref>
  | 2009<ref>{{cite journal |last1=Puschnig |first1=P. |last2=Berkebile |first2=S. |last3=Fleming |first3=A. J. |last4=Koller |first4=G. |last5=Emtsev |first5=K. |last6=Seyller |first6=T. |last7=Riley |first7=J. D. |last8=Ambrosch-Draxl |first8=C. |last9=Netzer |first9=F. P. |last10=Ramsey |first10=M. G. |title=Reconstruction of Molecular Orbital Densities from Photoemission Data |journal=Science |date=30 October 2009 |volume=326 |issue=5953 |pages=702–706 |doi=10.1126/science.1176105|pmid=19745118 |bibcode=2009Sci...326..702P |s2cid=5476218 }}</ref>
|-
|-
  | [[Positron emission tomography|पोजीट्रान एमिशन टोमोग्राफी]]
  | [[Positron emission tomography|पोजीट्रान एमिशन टोमोग्राफी]]
  | [[Positron emission|पॉज़िट्रॉन उत्सर्जन]]
  | [[Positron emission|पॉज़िट्रॉन उत्सर्जन]]
  | PET
  | पीईटी
  |
  |
|-
|-
  | [[Positron emission tomography - computed tomography|पॉज़िट्रॉन एमिशन टोमोग्राफी - कंप्यूटेड टोमोग्राफी]]
  | [[Positron emission tomography - computed tomography|पॉज़िट्रॉन एमिशन टोमोग्राफी - कंप्यूटेड टोमोग्राफी]]
  | [[Positron emission|पॉज़िट्रॉन उत्सर्जन]] & [[X-ray|एक्स-रे]]
  | [[Positron emission|पॉज़िट्रॉन उत्सर्जन]] & [[X-ray|एक्स-रे]]
  | PET-CT
  | पीईटी-सीटी
  |
  |
|-
|-
  | [[Quantum tomography|क्वांटम टोमोग्राफी]]
  | [[Quantum tomography|क्वांटम टोमोग्राफी]]
  | [[Quantum state|क्वांटम अवस्था]]
  | [[Quantum state|क्वांटम अवस्था]]
  | QST
  | क्यूएसटी
  |
  |
|-
|-
  | [[Single-photon emission computed tomography|सिंगल-फोटॉन एमिशन कंप्यूटेड टोमोग्राफी]]
  | [[Single-photon emission computed tomography|सिंगल-फोटॉन एमिशन कंप्यूटेड टोमोग्राफी]]
  | [[Gamma ray|गामा किरण]]
  | [[Gamma ray|गामा किरण]]
  | SPECT
  | एसपीईसीटी
  |
  |
|-
|-
Line 206: Line 207:
  | [[Terahertz tomography|टेराहर्ट्ज़ टोमोग्राफी]]
  | [[Terahertz tomography|टेराहर्ट्ज़ टोमोग्राफी]]
  | [[Terahertz radiation|टेराहर्ट्ज़ विकिरण]]
  | [[Terahertz radiation|टेराहर्ट्ज़ विकिरण]]
  | THz-CT
  | टीHz-सीटी
  |
  |
|-
|-
  | [[Thermoacoustic imaging|थर्मोकॉस्टिक इमेजिंग]]
  | [[Thermoacoustic imaging|थर्मोकॉस्टिक इमेजिंग]]
  | [[Photoacoustic spectroscopy|फोटो ध्वनिक स्पेक्ट्रोस्कोपी]]
  | [[Photoacoustic spectroscopy|फोटो ध्वनिक स्पेक्ट्रोस्कोपी]]
  | TAT
  | टीएटी
  |
  |
|-
|-
  | [[Ultrasound-modulated optical tomography|अल्ट्रासाउंड-संग्राहक ऑप्टिकल टोमोग्राफी]]
  | [[Ultrasound-modulated optical tomography|अल्ट्रासाउंड-संग्राहक ऑप्टिकल टोमोग्राफी]]
  | [[Ultrasound|अल्ट्रासाउंड]]
  | [[Ultrasound|अल्ट्रासाउंड]]
  | UOT
  | यूओटी
  |
  |
|-
|-
  | [[Ultrasound computer tomography|अल्ट्रासाउंड कंप्यूटर टोमोग्राफी]]
  | [[Ultrasound computer tomography|अल्ट्रासाउंड कंप्यूटर टोमोग्राफी]]
  | [[Ultrasound|अल्ट्रासाउंड]]
  | [[Ultrasound|अल्ट्रासाउंड]]
  | USCT
  | यूएससीटी
  |
  |
|-
|-
Line 231: Line 232:
  | [[CT scan|एक्स-रे कंप्यूटेड टोमोग्राफी]]
  | [[CT scan|एक्स-रे कंप्यूटेड टोमोग्राफी]]
  | [[X-ray|एक्स-रे]]
  | [[X-ray|एक्स-रे]]
  | CT, CATScan
  | सीटी, कैटस्कैन
  | 1971
  | 1971
|-
|-
  | [[X-ray microtomography|एक्स-रे माइक्रोटोमोग्राफी]]
  | [[X-ray microtomography|एक्स-रे माइक्रोटोमोग्राफी]]
  | [[X-ray|एक्स-रे]]
  | [[X-ray|एक्स-रे]]
  | microCT
  | माइक्रोसीटी
  |  
  |  
|-
|-
Line 244: Line 245:
  |
  |
|}
|}
कुछ हालिया प्रगति एक साथ एकीकृत भौतिक घटनाओं का उपयोग करने पर निर्भर करती है, उदा। [[ परिकलित टोमोग्राफी ]] और [[एंजियोग्राफी]] दोनों के लिए एक्स-रे, संयुक्त कंप्यूटेड टोमोग्राफी / एमआरआई और संयुक्त कंप्यूटेड टोमोग्राफी / [[पोजीट्रान एमिशन टोमोग्राफी]]
कुछ उपस्थित प्रगति एक साथ एकीकृत भौतिक घटनाओं का उपयोग करने पर निर्भर करती है, उदा: [[ परिकलित टोमोग्राफी |परिकलित टोमोग्राफी]] और [[एंजियोग्राफी]] दोनों के लिए एक्स-रे, संयुक्त कंप्यूटेड टोमोग्राफी / एमआरआई और संयुक्त कंप्यूटेड टोमोग्राफी / [[पोजीट्रान एमिशन टोमोग्राफी]] आदि।


दूसरी ओर [[असतत टोमोग्राफी]] और [[ज्यामितीय टोमोग्राफी]] अनुसंधान क्षेत्र हैं{{citation needed|date=January 2013}} जो असतत (जैसे क्रिस्टल) या सजातीय वस्तुओं के पुनर्निर्माण से संबंधित है। वे पुनर्निर्माण के तरीकों से संबंधित हैं, और इस प्रकार वे ऊपर सूचीबद्ध किसी विशेष (प्रायोगिक) टोमोग्राफी विधियों तक सीमित नहीं हैं।
दूसरी ओर [[असतत टोमोग्राफी]] और [[ज्यामितीय टोमोग्राफी]] अनुसंधान क्षेत्र हैं{{citation needed|date=January 2013}} जो असतत (जैसे क्रिस्टल) या सजातीय वस्तुओं के पुनर्निर्माण से संबंधित है। वे पुनर्निर्माण के विधि से संबंधित हैं, और इस प्रकार वे ऊपर सूचीबद्ध किसी विशेष (प्रायोगिक) टोमोग्राफी विधियों तक सीमित नहीं हैं।


=== सिंक्रोट्रॉन एक्स-रे टोमोग्राफिक माइक्रोस्कोपी ===
=== सिंक्रोट्रॉन एक्स-रे टोमोग्राफिक माइक्रोस्कोपी ===
सिंक्रोट्रॉन एक्स-रे टोमोग्राफिक माइक्रोस्कोपी (सीटी स्कैन) नामक एक नई तकनीक जीवाश्मों की विस्तृत त्रि-आयामी स्कैनिंग की अनुमति देती है।<ref>{{cite journal |last1=Donoghue |first1=PC |last2=Bengtson |first2=S |last3=Dong |first3=XP |last4=Gostling |first4=NJ |last5=Huldtgren |first5=T |last6=Cunningham |first6=JA |last7=Yin |first7=C |last8=Yue |first8=Z |last9=Peng |first9=F |last10=Stampanoni |first10=M |title=जीवाश्म भ्रूण के सिंक्रोट्रॉन एक्स-रे टोमोग्राफिक माइक्रोस्कोपी।|journal=Nature |date=10 August 2006 |volume=442 |issue=7103 |pages=680–3 |doi=10.1038/nature04890 |pmid=16900198|bibcode = 2006Natur.442..680D | s2cid=4411929}}</ref><ref>{{Cite book|chapter-url=https://www.degruyter.com/document/doi/10.1515/9783110589771-004|doi=10.1515/9783110589771-004|chapter=Contributors to Volume 21|title=धातु, सूक्ष्म जीव और खनिज - जीवन का जैव-भूरासायनिक पक्ष|year=2021|pages=xix-xxii|publisher=De Gruyter|isbn=9783110588903|s2cid=243434346}}</ref>
सिंक्रोट्रॉन एक्स-रे टोमोग्राफिक माइक्रोस्कोपी (सीटी स्कैन) नामक नई तकनीक जीवाश्मों की विस्तृत त्रि-आयामी स्कैनिंग की अनुमति देती है।<ref>{{cite journal |last1=Donoghue |first1=PC |last2=Bengtson |first2=S |last3=Dong |first3=XP |last4=Gostling |first4=NJ |last5=Huldtgren |first5=T |last6=Cunningham |first6=JA |last7=Yin |first7=C |last8=Yue |first8=Z |last9=Peng |first9=F |last10=Stampanoni |first10=M |title=जीवाश्म भ्रूण के सिंक्रोट्रॉन एक्स-रे टोमोग्राफिक माइक्रोस्कोपी।|journal=Nature |date=10 August 2006 |volume=442 |issue=7103 |pages=680–3 |doi=10.1038/nature04890 |pmid=16900198|bibcode = 2006Natur.442..680D | s2cid=4411929}}</ref><ref>{{Cite book|chapter-url=https://www.degruyter.com/document/doi/10.1515/9783110589771-004|doi=10.1515/9783110589771-004|chapter=Contributors to Volume 21|title=धातु, सूक्ष्म जीव और खनिज - जीवन का जैव-भूरासायनिक पक्ष|year=2021|pages=xix-xxii|publisher=De Gruyter|isbn=9783110588903|s2cid=243434346}}</ref>
डिटेक्टर प्रौद्योगिकी, डेटा भंडारण और प्रसंस्करण के जबरदस्त सुधार के साथ मिलकर तीसरी पीढ़ी के [[सिंक्रोट्रॉन प्रकाश स्रोत]] का निर्माण
 
1990 के दशक से क्षमताओं ने विभिन्न अनुप्रयोगों की एक विस्तृत श्रृंखला के साथ सामग्री अनुसंधान में उच्च अंत सिंक्रोट्रॉन टोमोग्राफी को बढ़ावा दिया है, उदा।
1990 दशक के पश्चात से डिटेक्टर प्रौद्योगिकी, डेटा भंडारण और प्रसंस्करण के बलपूर्वक सुधार के साथ संयुक्त तीसरी पीढ़ी के सिंक्रोट्रॉन स्रोतों के निर्माण ने विभिन्न अनुप्रयोगों की विस्तृत श्रृंखला के साथ सामग्री अनुसंधान में उच्च अंत [[सिंक्रोट्रॉन प्रकाश स्रोत|सिंक्रोट्रॉन]] टोमोग्राफी को बढ़ावा दिया है, उदा: प्रारूप में भिन्न-भिन्न अवशोषित चरणों, माइक्रोप्रोसिटीज, दरारें, अवक्षेप या अनाज का दृश्य और मात्रात्मक विश्लेषण आदि। सिंक्रोट्रॉन विकिरण उच्च निर्वात में मुक्त कणों को गति देकर बनाया जाता है। इलेक्ट्रोडायनामिक्स के नियमों के अनुसार यह त्वरण विद्युत चुम्बकीय विकिरण (जैक्सन, 1975) के उत्सर्जन की ओर जाता है। रैखिक कण त्वरण एक संभावना है, किन्तु अधिक उच्च विद्युत क्षेत्रों के अतिरिक्त निरंतर विकिरण के [[सिंक्रोट्रॉन प्रकाश स्रोत|स्रोत]] को प्राप्त करने के लिए आवेशित कणों को एक बंद प्रक्षेपवक्र पर रखने के लिए अधिक व्यावहारिक आवश्यकता होगी। चुंबकीय क्षेत्र का उपयोग कणों को वांछित कक्षा में धकेलने और उन्हें एक सीधी रेखा में उड़ने से रोकने के लिए किया जाता है। दिशा परिवर्तन से जुड़ा रेडियल त्वरण तब विकिरण उत्पन्न करता है।<ref>Banhart, John, ed. Advanced Tomographic Methods in Materials Research and Engineering. Monographs on the Physics and Chemistry of Materials. Oxford ; New York: Oxford University Press, 2008.</ref>
एक नमूने में भिन्न-भिन्न अवशोषित चरणों, माइक्रोप्रोसिटीज, दरारें, अवक्षेप या अनाज का दृश्य और मात्रात्मक विश्लेषण।
 
सिंक्रोट्रॉन विकिरण उच्च निर्वात में मुक्त कणों को गति देकर बनाया जाता है। इलेक्ट्रोडायनामिक्स के नियमों के अनुसार यह त्वरण विद्युत चुम्बकीय विकिरण (जैक्सन, 1975) के उत्सर्जन की ओर जाता है। रैखिक कण त्वरण एक संभावना है, किन्तु अधिक उच्च विद्युत क्षेत्रों के अतिरिक्त किसी को आवेशित कणों को एक पर रखने के लिए अधिक व्यावहारिक आवश्यकता होगी
निरंतर विकिरण का स्रोत प्राप्त करने के लिए संवृत प्रक्षेपवक्र। चुंबकीय क्षेत्र का उपयोग कणों को वांछित कक्षा में धकेलने और उन्हें एक सीधी रेखा में उड़ने से रोकने के लिए किया जाता है। दिशा परिवर्तन से जुड़ा रेडियल त्वरण तब विकिरण उत्पन्न करता है।<ref>Banhart, John, ed. Advanced Tomographic Methods in Materials Research and Engineering. Monographs on the Physics and Chemistry of Materials. Oxford ; New York: Oxford University Press, 2008.</ref>




== वॉल्यूम रेंडरिंग ==
== आयतन रेंडरिंग ==
{{Main|वॉल्यूम रेंडरिंग}}
{{Main|वॉल्यूम रेंडरिंग}}
[[File:Image of 3D volumetric QCT scan.jpg|thumb|3डी मॉडल बनाने के लिए मल्टीपल एक्स-रे सीटी स्कैन ([[ मात्रात्मक गणना टोमोग्राफी ]] के साथ)।]]वॉल्यूम रेंडरिंग तकनीकों का एक सेट है जिसका उपयोग 3डी डिस्क्रीटली [[ नमूनाकरण (सिग्नल प्रोसेसिंग) ]] [[डेटा सेट]] के 2डी प्रोजेक्शन को प्रदर्शित करने के लिए किया जाता है, सामान्यतः एक 3डी [[ अदिश क्षेत्र ]]। एक विशिष्ट 3डी डेटा सेट 2डी स्लाइस छवियों का एक समूह है, उदाहरण के लिए, एक [[गणना अक्षीय टोमोग्राफी]], चुंबकीय अनुनाद इमेजिंग, या [[माइक्रोटोमोग्राफी]] [[छवि स्कैनर]] द्वारा। ये सामान्यतः एक नियमित पैटर्न में प्राप्त होते हैं (उदाहरण के लिए, प्रत्येक मिलीमीटर का एक टुकड़ा) और सामान्यतःएक नियमित पैटर्न में छवि [[पिक्सेल]] की एक नियमित संख्या होती है।
[[File:Image of 3D volumetric QCT scan.jpg|thumb|3डी मॉडल बनाने के लिए मल्टीपल एक्स-रे सीटी स्कैन ([[ मात्रात्मक गणना टोमोग्राफी ]]के साथ)।]]मात्रा प्रतिपादन तकनीकों का सेट है जिसका उपयोग 3डी विखंडित रूप से [[ नमूनाकरण (सिग्नल प्रोसेसिंग) |सैंपल (सिग्नल प्रोसेसिंग)]] किए गए [[डेटा सेट]] के 2डी प्रक्षेपण को प्रदर्शित करने के लिए किया जाता है, सामान्यतः 3डी [[ अदिश क्षेत्र |अदिश क्षेत्र]] विशिष्ट 3डी डेटा सेट 2डी स्लाइस छवियों का समूह है, उदाहरण के लिए, [[गणना अक्षीय टोमोग्राफी]], चुंबकीय अनुनाद इमेजिंग, या [[माइक्रोटोमोग्राफी]] [[छवि स्कैनर]] द्वारा ये सामान्यतः नियमित पैटर्न में प्राप्त होते हैं (उदाहरण के लिए, प्रत्येक मिलीमीटर का टुकड़ा) और सामान्यतः नियमित पैटर्न में छवि [[पिक्सेल]] की नियमित संख्या होती है।
यह एक नियमित वॉल्यूमेट्रिक ग्रिड का एक उदाहरण है, जिसमें प्रत्येक वॉल्यूम तत्व, या [[ वॉक्सेल ]] को एक मान द्वारा दर्शाया गया है जो वोक्सेल निकट के तत्काल क्षेत्र का नमूनाकरण करके प्राप्त किया जाता है।
यह नियमित वॉल्यूमेट्रिक ग्रिड का उदाहरण है, जिसमें प्रत्येक आयतन तत्व, या [[ वॉक्सेल | वॉक्सेल]] को मान द्वारा दर्शाया गया है जो वोक्सेल निकट के तत्काल क्षेत्र का प्रारूप प्राप्त किया जाता है।


3डी डेटा सेट के 2डी प्रोजेक्शन को प्रस्तुत करने के लिए, सबसे पहले वॉल्यूम के सापेक्ष अंतरिक्ष में एक [[वर्चुअल कैमरा]] को परिभाषित करने की आवश्यकता होती है। साथ ही, प्रत्येक स्वर की अपारदर्शिता (प्रकाशिकी) और रंग को परिभाषित करने की आवश्यकता है।
3डी डेटा सेट के 2डी प्रक्षेपण को प्रस्तुत करने के लिए, सबसे पहले आयतन के सापेक्ष अंतरिक्ष में [[वर्चुअल कैमरा]] को परिभाषित करने की आवश्यकता होती है। साथ ही, प्रत्येक स्वर की अपारदर्शिता (प्रकाशिकी) और रंग को परिभाषित करने की आवश्यकता है। यह सामान्यतः [[आरजीबीए कलर स्पेस]] (लाल, हरे, नीले, अल्फा के लिए) [[स्थानांतरण प्रकार्य]] का उपयोग करके परिभाषित किया जाता है जो प्रत्येक संभव स्वर मान के लिए आरजीबीए मान को परिभाषित करता है।
यह सामान्यतः [[आरजीबीए कलर स्पेस]] (लाल, हरे, नीले, अल्फा के लिए) [[स्थानांतरण प्रकार्य]] का उपयोग करके परिभाषित किया जाता है जो हर संभव स्वर मूल्य के लिए आरजीबीए मान को परिभाषित करता है।


उदाहरण के लिए, वॉल्यूम से आइसोसर्फफेस (समान मूल्यों की सतह) निकालने और उन्हें [[बहुभुज जाल]] के रूप में प्रस्तुत करने या वॉल्यूम को डेटा के ब्लॉक के रूप में सीधे प्रस्तुत करके एक वॉल्यूम देखा जा सकता है। [[मार्चिंग क्यूब्स]] एल्गोरिथम वॉल्यूम डेटा से [[isosurface|इसोसुरफके]] निकालने के लिए एक सामान्य तकनीक है। डायरेक्ट वॉल्यूम रेंडरिंग एक कम्प्यूटेशनल रूप से गहन कार्य है जिसे कई तरीकों से किया जा सकता है।
उदाहरण के लिए, आयतन से सम-सतहों (समान मूल्यों की सतह) को निकालने और उन्हें [[बहुभुज जाल]] के रूप में प्रस्तुत करने या आयतन को डेटा के ब्लॉक के रूप में सीधे प्रस्तुत करके आयतन देखा जा सकता है। [[मार्चिंग क्यूब्स]] एल्गोरिथम आयतन डेटा से [[isosurface|आइसोसर्फेस]] निकालने के लिए सामान्य तकनीक है। प्रत्यक्ष मात्रा प्रतिपादन कम्प्यूटेशनल रूप से गहन कार्य है जिसे कई विधियों से किया जा सकता है।


== इतिहास ==
== इतिहास ==
[[फोकल प्लेन टोमोग्राफी]] को 1930 के दशक में रेडियोलॉजिस्ट [[अलेक्जेंडर वैलेबोना]] द्वारा विकसित किया गया था, और [[ प्रक्षेपण रेडियोग्राफी ]] में संरचनाओं के सुपरइम्पोजिशन की समस्या को कम करने में उपयोगी सिद्ध करना  हुआ।
[[फोकल प्लेन टोमोग्राफी]] को 1930 के दशक में रेडियोलॉजिस्ट [[अलेक्जेंडर वैलेबोना|एलेसेंड्रो वैलेबोना]] द्वारा विकसित किया गया था, और [[ प्रक्षेपण रेडियोग्राफी |प्रक्षेपण रेडियोग्राफी]] में संरचनाओं के अधिरोपण की समस्या को कम करने में उपयोगी सिद्ध हुआ।


मेडिकल जर्नल चेस्ट (जर्नल) में 1953 के एक लेख में, [[फोर्ट विलियम सेनेटोरियम]] के बी. पोलाक ने टोमोग्राफी के लिए एक और शब्द, प्लानोग्राफी के उपयोग का वर्णन किया।<ref>{{cite journal
मेडिकल जर्नल चेस्ट (जर्नल) में 1953 के लेख में, [[फोर्ट विलियम सेनेटोरियम]] के बी. पोलाक ने टोमोग्राफी के लिए एक और शब्द, प्लानोग्राफी के उपयोग का वर्णन किया।<ref>{{cite journal
  |title      = Experiences with Planography
  |title      = Experiences with Planography
  |first      = B.
  |first      = B.
Line 288: Line 286:
  |access-date = July 10, 2011
  |access-date = July 10, 2011
}}</ref>
}}</ref>
1970 के दशक के अंत में मुख्य रूप से गणना किए गए टोमोग्राफी द्वारा बड़े पैमाने पर प्रतिस्थापित किए जाने तक फोकल प्लेन टोमोग्राफी टोमोग्राफी का पारंपरिक रूप बना रहा।<ref>{{cite book|last=Littleton|first=J.T.|title=रेडियोलॉजिकल साइंसेज का इतिहास|publisher=[[American Roentgen Ray Society]]|chapter-url=http://www.arrs.org/publications/HRS/diagnosis/RCI_D_c15.pdf|access-date=29 November 2014|chapter=Conventional Tomography}}</ref> फोकल प्लेन टोमोग्राफी इस तथ्य का उपयोग करती है कि फोकल प्लेन तेज दिखाई देता है, जबकि अन्य प्लेन में संरचनाएं धुंधली दिखाई देती हैं। एक्सपोजर के समय एक्स-रे स्रोत और फिल्म को विपरीत दिशाओं में ले जाकर, और आंदोलन की दिशा और सीमा को संशोधित करके, ऑपरेटर विभिन्न फोकल समतलों का चयन कर सकते हैं जिनमें रुचि की संरचनाएं होती हैं।
 
फ़ोकल प्लेन टोमोग्राफी का पारंपरिक रूप बना रहा, जब तक कि 1970 दशक के अंत में मुख्य रूप से गणना किए गए टोमोग्राफी द्वारा प्रतिस्थापित नहीं किया गया।<ref>{{cite book|last=Littleton|first=J.T.|title=रेडियोलॉजिकल साइंसेज का इतिहास|publisher=[[American Roentgen Ray Society]]|chapter-url=http://www.arrs.org/publications/HRS/diagnosis/RCI_D_c15.pdf|access-date=29 November 2014|chapter=Conventional Tomography}}</ref> फोकल प्लेन टोमोग्राफी इस तथ्य का उपयोग करती है कि फोकल प्लेन तीव्र दिखाई देता है, जबकि अन्य प्लेन में संरचनाएं अस्पष्ट दिखाई देती हैं। एक्सपोजर के समय एक्स-रे स्रोत और फिल्म को विपरीत दिशाओं में ले जाकर, आंदोलन की दिशा और सीमा को संशोधित करके, ऑपरेटर विभिन्न फोकल समतलों का चयन कर सकते हैं जिनमें रुचि की संरचनाएं होती हैं।


== यह भी देखें ==
== यह भी देखें ==
* [[रासायनिक इमेजिंग]]
* रासायनिक इमेजिंग
* [[3 डी पुनर्निर्माण]]
* 3 डी पुनर्निर्माण
* असतत टोमोग्राफी
* असतत टोमोग्राफी
* ज्यामितीय टोमोग्राफी
* ज्यामितीय टोमोग्राफी
* [[भूभौतिकीय इमेजिंग]]
* [[भूभौतिकीय इमेजिंग]]
* [[औद्योगिक सीटी स्कैनिंग]]
* औद्योगिक सीटी स्कैनिंग
* [[जोहान रैडॉन]]
* जोहान रैडॉन
* [[मेडिकल इमेजिंग]]
* मेडिकल इमेजिंग
* एमआरआई # एमआरआई के प्रति सीटी
* एमआरआई के प्रति सीटी
* [[नेटवर्क टोमोग्राफी]]
* नेटवर्क टोमोग्राफी
* [[पहेलियाँ खेलना]], टोमोग्राफी के असतत मॉडल पर आधारित एक प्रकार की पहेली
* नॉनोग्राम, टोमोग्राफी के असतत मॉडल पर आधारित एक प्रकार की पहेली
* रेडॉन रूपांतरण
* रेडॉन रूपांतरण
* टोमोग्राफिक पुनर्निर्माण
* टोमोग्राफिक पुनर्निर्माण
* [[मल्टीस्केल टोमोग्राफी]]
* मल्टीस्केल टोमोग्राफी
* [[स्वर]]
*


==संदर्भ==
==संदर्भ==
Line 315: Line 314:
* [http://www.bronnikov-algorithms.com/downloads/Andrei.Bronnikov_Image_reconstruction.pdf Image reconstruction algorithms for microtomography]
* [http://www.bronnikov-algorithms.com/downloads/Andrei.Bronnikov_Image_reconstruction.pdf Image reconstruction algorithms for microtomography]


{{Medical imaging}}
[[Category:All articles with unsourced statements]]
 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
<!--Categories-->[[Category: टोमोग्राफी| टोमोग्राफी]] [[Category: मेडिकल इमेजिंग]]  
[[Category:Articles with unsourced statements from January 2013]]
 
[[Category:CS1 English-language sources (en)]]
 
[[Category:Collapse templates]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 11/06/2023]]
[[Category:Created On 11/06/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:टोमोग्राफी| टोमोग्राफी]]
[[Category:मेडिकल इमेजिंग]]

Latest revision as of 13:06, 1 September 2023

चित्र 1: टोमोग्राफी का मूल सिद्धांत: अधिरोपण फ्री टोमोग्राफिक क्रॉस सेक्शन S1 और S2 (टोमोग्राफिक नहीं) अनुमानित छवि Pकी तुलना में
चुंबकीय अनुनाद इमेजिंग द्वारा सिर का मेडियन समतल सैजिटल टोमोग्राफी।

टोमोग्राफी सेक्शन या सेक्शनिंग द्वारा इमेजिंग है जो किसी भी प्रकार की मर्मज्ञ तरंग का उपयोग करता है। विधि का उपयोग रेडियोलोजी, पुरातत्त्व, जीव विज्ञान, वायुमंडलीय विज्ञान, भूभौतिकी, समुद्र विज्ञान, प्लाज्मा भौतिकी, सामग्री विज्ञान, खगोल भौतिकी, क्वांटम सूचना और विज्ञान के अन्य क्षेत्रों में किया जाता है। टोमोग्राफी शब्द प्राचीन ग्रीक टोमोस, स्लाइस, सेक्शन और ग्राफो से लिया गया है, टोमोग्राफी में प्रयुक्त उपकरण को टोमोग्राफ कहा जाता है, जबकि निर्मित छवि टॉमोग्राम है।

कई स्तिथियों में, इन छवियों का उत्पादन गणितीय प्रक्रिया टोमोग्राफिक पुनर्निर्माण पर आधारित होता है, जैसे कि एक्स-रे कंप्यूटेड टोमोग्राफी तकनीकी रूप से कई प्रोजेक्शनल रेडियोग्राफ़ से निर्मित होती है। कई भिन्न-भिन्न पुनर्निर्माण एल्गोरिदम उपस्थित हैं। अधिकांश एल्गोरिदम दो श्रेणियों में से आते हैं: फ़िल्टर्ड बैक प्रक्षेपण (FBP) और पुनरावृत्त पुनर्निर्माण (IR) है। ये प्रक्रियाएँ अचूक परिणाम देती हैं: वे त्रुटिहीन और आवश्यक संगणना समय के मध्य निराकरण का प्रतिनिधित्व करती हैं। एफबीपी कम कम्प्यूटेशनल संसाधनों की आवश्यकता है, जबकि आईआर सामान्यतः उच्च कंप्यूटिंग व्यय पर कम कलाकृतियों (पुनर्निर्माण में त्रुटियां) का उत्पादन करता है।[1]

चूँकि एमआरआई (चुंबकीय अनुनाद इमेजिंग), ऑप्टिकल सुसंगतता टोमोग्राफी और अल्ट्रासाउंड ट्रांसमिशन विधियां हैं, उन्हें सामान्यतः विभिन्न दिशाओं से डेटा प्राप्त करने के लिए ट्रांसमीटर के अभियान की आवश्यकता नहीं होती है। एमआरआई में, स्थानिक रूप से भिन्न चुंबकीय क्षेत्रों को प्रारम्भ करके अनुमानों और उच्च स्थानिक हार्मोनिक्स दोनों का प्रारूप लिया जाता है; छवि उत्पन्न करने के लिए किसी हिलने वाले भाग की आवश्यकता नहीं होती है। दूसरी ओर, चूंकि अल्ट्रासाउंड और ऑप्टिकल सुसंगतता टोमोग्राफी समय-समय पर उड़ान का उपयोग प्राप्त सिग्नल को स्थानिक रूप से एन्कोड करने के लिए करती है, यह जटिलता से टोमोग्राफिक विधि नहीं है और इसके लिए कई छवि अधिग्रहण की आवश्यकता नहीं होती है।

टोमोग्राफी के प्रकार

नाम डेटा का स्रोत संक्षेपाक्षर परिचय का वर्ष
एरियल टोमोग्राफी विद्युत चुम्बकीय विकिरण एटी 2020
ऐरे टोमोग्राफी[2] सहसंबंधी प्रकाश और इलेक्ट्रॉन माइक्रोस्कोपी एटी 2007
परमाणु परीक्षण टोमोग्राफी परमाणु जांच एपीटी
कंप्यूटेड टोमोग्राफी इमेजिंग स्पेक्ट्रोमीटर[3] दर्शनीय प्रकाश वर्णक्रमीय इमेजिंग सीटीआईएस 2001
रासायनिक संदीप्ति की संगणित टोमोग्राफी[4][5] चेमिलुमिनेसेन्स आग की लपटों सीटीसी 2009
संनाभि माइक्रोस्कोपी (लेजर स्कैनिंग कन्फोकल माइक्रोस्कोपी) लेजर स्कैनिंग कन्फोकल माइक्रोस्कोपी एलएससीएम
क्रायोजेनिक इलेक्ट्रॉन टोमोग्राफी क्रायोजेनिक ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोपी क्रायोएट
विद्युत धारिता टोमोग्राफी विद्युत समाई ईसीटी 1988[6]
विद्युत धारिता मात्रा टोमोग्राफी विद्युत समाई ईसीवीटी
विद्युत प्रतिरोधकता टोमोग्राफी विद्युत प्रतिरोधकता ईआरटी
विद्युत प्रतिबाधा टोमोग्राफी विद्युत प्रतिबाधा ईआईटी 1984
इलेक्ट्रॉन टोमोग्राफी ट्रांसमिशन इलेक्ट्रॉन माइक्रोस्कोपी ईटी 1968[7][8]
फोकल प्लेन टोमोग्राफी एक्स-रे 1930s
फंक्शनल मैग्नेटिक रेजोनेंस इमेजिंग चुंबकीय अनुनाद एफएमआरआई 1992
गामा-रे उत्सर्जन टोमोग्राफी ("टोमोग्राफिक गामा स्कैनिंग") गामा किरण टीजीएस या ईसीटी
गामा-रे ट्रांसमिशन टोमोग्राफी गामा किरण टीसीटी
हाइड्रोलिक टोमोग्राफी द्रव प्रवाह एचटी 2000
इन्फ्रारेड माइक्रोटोमोग्राफिक इमेजिंग[9] मिड-इन्फ्रारेड 2013
लेजर पृथक्करण टोमोग्राफी लेजर पृथक & फ्लोरोसेंट माइक्रोस्कोपी एलएटी 2013
चुंबकीय प्रेरण टोमोग्राफी चुंबकीय प्रेरण एमआईटी
चुंबकीय कण इमेजिंग सुपरपरा चुंबकत्व एमपीआई 2005
चुम्बकीय अनुनाद इमेजिंग या नाभिकीय चुबकीय अनुनाद टोमोग्राफी परमाणु चुंबकीय क्षण एमआरआई या एमआरटी
बहु-स्रोत टोमोग्राफी[10][11] एक्स-रे
मुऑन टोमोग्राफी मुऑन
माइक्रोवेव टोमोग्राफी[12] माइक्रोवेव
न्यूट्रॉन टोमोग्राफी न्यूट्रॉन
न्यूट्रॉन-उत्तेजित उत्सर्जन कंप्यूटेड टोमोग्राफी
महासागर ध्वनिक टोमोग्राफी सोनार ओएटी
ऑप्टिकल कोहरेन्स टोमोग्राफी इंटरफेरोमेट्री ओसीटी
ऑप्टिकल प्रसार टोमोग्राफी प्रकाश का अवशोषण ओडीटी
ऑप्टिकल प्रक्षेपण टोमोग्राफी ऑप्टिकल माइक्रोस्कोप ओपीटी
बायोमेडिसिन में फोटोकॉस्टिक इमेजिंग फोटो ध्वनिक स्पेक्ट्रोस्कोपी पीएटी
फोटोमिशन ऑर्बिटल टोमोग्राफी कोण-समाधान फोटो उत्सर्जन स्पेक्ट्रोस्कोपी पीओटी 2009[13]
पोजीट्रान एमिशन टोमोग्राफी पॉज़िट्रॉन उत्सर्जन पीईटी
पॉज़िट्रॉन एमिशन टोमोग्राफी - कंप्यूटेड टोमोग्राफी पॉज़िट्रॉन उत्सर्जन & एक्स-रे पीईटी-सीटी
क्वांटम टोमोग्राफी क्वांटम अवस्था क्यूएसटी
सिंगल-फोटॉन एमिशन कंप्यूटेड टोमोग्राफी गामा किरण एसपीईसीटी
भूकंपीय टोमोग्राफी भूकंपीय तरंगे
टेराहर्ट्ज़ टोमोग्राफी टेराहर्ट्ज़ विकिरण टीHz-सीटी
थर्मोकॉस्टिक इमेजिंग फोटो ध्वनिक स्पेक्ट्रोस्कोपी टीएटी
अल्ट्रासाउंड-संग्राहक ऑप्टिकल टोमोग्राफी अल्ट्रासाउंड यूओटी
अल्ट्रासाउंड कंप्यूटर टोमोग्राफी अल्ट्रासाउंड यूएससीटी
अल्ट्रासाउंड ट्रांसमिशन टोमोग्राफी अल्ट्रासाउंड
एक्स-रे कंप्यूटेड टोमोग्राफी एक्स-रे सीटी, कैटस्कैन 1971
एक्स-रे माइक्रोटोमोग्राफी एक्स-रे माइक्रोसीटी
ज़िमन-डॉपलर इमेजिंग ज़िमन प्रभाव

कुछ उपस्थित प्रगति एक साथ एकीकृत भौतिक घटनाओं का उपयोग करने पर निर्भर करती है, उदा: परिकलित टोमोग्राफी और एंजियोग्राफी दोनों के लिए एक्स-रे, संयुक्त कंप्यूटेड टोमोग्राफी / एमआरआई और संयुक्त कंप्यूटेड टोमोग्राफी / पोजीट्रान एमिशन टोमोग्राफी आदि।

दूसरी ओर असतत टोमोग्राफी और ज्यामितीय टोमोग्राफी अनुसंधान क्षेत्र हैं[citation needed] जो असतत (जैसे क्रिस्टल) या सजातीय वस्तुओं के पुनर्निर्माण से संबंधित है। वे पुनर्निर्माण के विधि से संबंधित हैं, और इस प्रकार वे ऊपर सूचीबद्ध किसी विशेष (प्रायोगिक) टोमोग्राफी विधियों तक सीमित नहीं हैं।

सिंक्रोट्रॉन एक्स-रे टोमोग्राफिक माइक्रोस्कोपी

सिंक्रोट्रॉन एक्स-रे टोमोग्राफिक माइक्रोस्कोपी (सीटी स्कैन) नामक नई तकनीक जीवाश्मों की विस्तृत त्रि-आयामी स्कैनिंग की अनुमति देती है।[14][15]

1990 दशक के पश्चात से डिटेक्टर प्रौद्योगिकी, डेटा भंडारण और प्रसंस्करण के बलपूर्वक सुधार के साथ संयुक्त तीसरी पीढ़ी के सिंक्रोट्रॉन स्रोतों के निर्माण ने विभिन्न अनुप्रयोगों की विस्तृत श्रृंखला के साथ सामग्री अनुसंधान में उच्च अंत सिंक्रोट्रॉन टोमोग्राफी को बढ़ावा दिया है, उदा: प्रारूप में भिन्न-भिन्न अवशोषित चरणों, माइक्रोप्रोसिटीज, दरारें, अवक्षेप या अनाज का दृश्य और मात्रात्मक विश्लेषण आदि। सिंक्रोट्रॉन विकिरण उच्च निर्वात में मुक्त कणों को गति देकर बनाया जाता है। इलेक्ट्रोडायनामिक्स के नियमों के अनुसार यह त्वरण विद्युत चुम्बकीय विकिरण (जैक्सन, 1975) के उत्सर्जन की ओर जाता है। रैखिक कण त्वरण एक संभावना है, किन्तु अधिक उच्च विद्युत क्षेत्रों के अतिरिक्त निरंतर विकिरण के स्रोत को प्राप्त करने के लिए आवेशित कणों को एक बंद प्रक्षेपवक्र पर रखने के लिए अधिक व्यावहारिक आवश्यकता होगी। चुंबकीय क्षेत्र का उपयोग कणों को वांछित कक्षा में धकेलने और उन्हें एक सीधी रेखा में उड़ने से रोकने के लिए किया जाता है। दिशा परिवर्तन से जुड़ा रेडियल त्वरण तब विकिरण उत्पन्न करता है।[16]


आयतन रेंडरिंग

3डी मॉडल बनाने के लिए मल्टीपल एक्स-रे सीटी स्कैन (मात्रात्मक गणना टोमोग्राफी के साथ)।

मात्रा प्रतिपादन तकनीकों का सेट है जिसका उपयोग 3डी विखंडित रूप से सैंपल (सिग्नल प्रोसेसिंग) किए गए डेटा सेट के 2डी प्रक्षेपण को प्रदर्शित करने के लिए किया जाता है, सामान्यतः 3डी अदिश क्षेत्र विशिष्ट 3डी डेटा सेट 2डी स्लाइस छवियों का समूह है, उदाहरण के लिए, गणना अक्षीय टोमोग्राफी, चुंबकीय अनुनाद इमेजिंग, या माइक्रोटोमोग्राफी छवि स्कैनर द्वारा ये सामान्यतः नियमित पैटर्न में प्राप्त होते हैं (उदाहरण के लिए, प्रत्येक मिलीमीटर का टुकड़ा) और सामान्यतः नियमित पैटर्न में छवि पिक्सेल की नियमित संख्या होती है।

यह नियमित वॉल्यूमेट्रिक ग्रिड का उदाहरण है, जिसमें प्रत्येक आयतन तत्व, या वॉक्सेल को मान द्वारा दर्शाया गया है जो वोक्सेल निकट के तत्काल क्षेत्र का प्रारूप प्राप्त किया जाता है।

3डी डेटा सेट के 2डी प्रक्षेपण को प्रस्तुत करने के लिए, सबसे पहले आयतन के सापेक्ष अंतरिक्ष में वर्चुअल कैमरा को परिभाषित करने की आवश्यकता होती है। साथ ही, प्रत्येक स्वर की अपारदर्शिता (प्रकाशिकी) और रंग को परिभाषित करने की आवश्यकता है। यह सामान्यतः आरजीबीए कलर स्पेस (लाल, हरे, नीले, अल्फा के लिए) स्थानांतरण प्रकार्य का उपयोग करके परिभाषित किया जाता है जो प्रत्येक संभव स्वर मान के लिए आरजीबीए मान को परिभाषित करता है।

उदाहरण के लिए, आयतन से सम-सतहों (समान मूल्यों की सतह) को निकालने और उन्हें बहुभुज जाल के रूप में प्रस्तुत करने या आयतन को डेटा के ब्लॉक के रूप में सीधे प्रस्तुत करके आयतन देखा जा सकता है। मार्चिंग क्यूब्स एल्गोरिथम आयतन डेटा से आइसोसर्फेस निकालने के लिए सामान्य तकनीक है। प्रत्यक्ष मात्रा प्रतिपादन कम्प्यूटेशनल रूप से गहन कार्य है जिसे कई विधियों से किया जा सकता है।

इतिहास

फोकल प्लेन टोमोग्राफी को 1930 के दशक में रेडियोलॉजिस्ट एलेसेंड्रो वैलेबोना द्वारा विकसित किया गया था, और प्रक्षेपण रेडियोग्राफी में संरचनाओं के अधिरोपण की समस्या को कम करने में उपयोगी सिद्ध हुआ।

मेडिकल जर्नल चेस्ट (जर्नल) में 1953 के लेख में, फोर्ट विलियम सेनेटोरियम के बी. पोलाक ने टोमोग्राफी के लिए एक और शब्द, प्लानोग्राफी के उपयोग का वर्णन किया।[17]

फ़ोकल प्लेन टोमोग्राफी का पारंपरिक रूप बना रहा, जब तक कि 1970 दशक के अंत में मुख्य रूप से गणना किए गए टोमोग्राफी द्वारा प्रतिस्थापित नहीं किया गया।[18] फोकल प्लेन टोमोग्राफी इस तथ्य का उपयोग करती है कि फोकल प्लेन तीव्र दिखाई देता है, जबकि अन्य प्लेन में संरचनाएं अस्पष्ट दिखाई देती हैं। एक्सपोजर के समय एक्स-रे स्रोत और फिल्म को विपरीत दिशाओं में ले जाकर, आंदोलन की दिशा और सीमा को संशोधित करके, ऑपरेटर विभिन्न फोकल समतलों का चयन कर सकते हैं जिनमें रुचि की संरचनाएं होती हैं।

यह भी देखें

  • रासायनिक इमेजिंग
  • 3 डी पुनर्निर्माण
  • असतत टोमोग्राफी
  • ज्यामितीय टोमोग्राफी
  • भूभौतिकीय इमेजिंग
  • औद्योगिक सीटी स्कैनिंग
  • जोहान रैडॉन
  • मेडिकल इमेजिंग
  • एमआरआई के प्रति सीटी
  • नेटवर्क टोमोग्राफी
  • नॉनोग्राम, टोमोग्राफी के असतत मॉडल पर आधारित एक प्रकार की पहेली
  • रेडॉन रूपांतरण
  • टोमोग्राफिक पुनर्निर्माण
  • मल्टीस्केल टोमोग्राफी

संदर्भ

  1. Herman, Gabor T. (2009). Fundamentals of Computerized Tomography: Image Reconstruction from Projections (2nd ed.). Dordrecht: Springer. ISBN 978-1-84628-723-7.
  2. Micheva, Kristina D.; Smith, Stephen J (July 2007). "Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits". Neuron. 55 (1): 25–36. doi:10.1016/j.neuron.2007.06.014. PMC 2080672. PMID 17610815.
  3. Ford, Bridget K.; Volin, Curtis E.; Murphy, Sean M.; Lynch, Ronald M.; Descour, Michael R. (February 2001). "Computed Tomography-Based Spectral Imaging For Fluorescence Microscopy". Biophysical Journal. 80 (2): 986–993. Bibcode:2001BpJ....80..986F. doi:10.1016/S0006-3495(01)76077-8. PMC 1301296. PMID 11159465.
  4. Floyd, J.; Geipel, P.; Kempf, A.M. (February 2011). "Computed Tomography of Chemiluminescence (CTC): Instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame". Combustion and Flame. 158 (2): 376–391. doi:10.1016/j.combustflame.2010.09.006.
  5. Mohri, K; Görs, S; Schöler, J; Rittler, A; Dreier, T; Schulz, C; Kempf, A (10 September 2017). "Instantaneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence". Applied Optics. 56 (26): 7385–7395. Bibcode:2017ApOpt..56.7385M. doi:10.1364/AO.56.007385. PMID 29048060.
  6. Huang, S M; Plaskowski, A; Xie, C G; Beck, M S (1988). "Capacitance-based tomographic flow imaging system". Electronics Letters (in English). 24 (7): 418–19. Bibcode:1988ElL....24..418H. doi:10.1049/el:19880283.
  7. Crowther, R. A.; DeRosier, D. J.; Klug, A.; S, F. R. (1970-06-23). "The reconstruction of a three-dimensional structure from projections and its application to electron microscopy". Proc. R. Soc. Lond. A (in English). 317 (1530): 319–340. Bibcode:1970RSPSA.317..319C. doi:10.1098/rspa.1970.0119. ISSN 0080-4630. S2CID 122980366.
  8. Electron tomography: methods for three-dimensional visualization of structures in the cell (2nd ed.). New York: Springer. 2006. pp. 3. ISBN 9780387690087. OCLC 262685610.
  9. Martin, Michael C; Dabat-Blondeau, Charlotte; Unger, Miriam; Sedlmair, Julia; Parkinson, Dilworth Y; Bechtel, Hans A; Illman, Barbara; Castro, Jonathan M; Keiluweit, Marco; Buschke, David; Ogle, Brenda; Nasse, Michael J; Hirschmugl, Carol J (September 2013). "3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography". Nature Methods. 10 (9): 861–864. doi:10.1038/nmeth.2596. PMID 23913258. S2CID 9900276.
  10. Cramer, A., Hecla, J., Wu, D. et al. Stationary Computed Tomography for Space and other Resource-constrained Environments. Sci Rep 8, 14195 (2018). [1]
  11. V. B. Neculaes, P. M. Edic, M. Frontera, A. Caiafa, G. Wang and B. De Man, "Multisource X-Ray and CT: Lessons Learned and Future Outlook," in IEEE Access, vol. 2, pp. 1568-1585, 2014, doi: 10.1109/ACCESS.2014.2363949.[2]
  12. Ahadi, Mojtaba; Isa, Maryam; Saripan, M. Iqbal; Hasan, W. Z. W. (December 2015). "Three dimensions localization of tumors in confocal microwave imaging for breast cancer detection" (PDF). Microwave and Optical Technology Letters. 57 (12): 2917–2929. doi:10.1002/mop.29470. S2CID 122576324.
  13. Puschnig, P.; Berkebile, S.; Fleming, A. J.; Koller, G.; Emtsev, K.; Seyller, T.; Riley, J. D.; Ambrosch-Draxl, C.; Netzer, F. P.; Ramsey, M. G. (30 October 2009). "Reconstruction of Molecular Orbital Densities from Photoemission Data". Science. 326 (5953): 702–706. Bibcode:2009Sci...326..702P. doi:10.1126/science.1176105. PMID 19745118. S2CID 5476218.
  14. Donoghue, PC; Bengtson, S; Dong, XP; Gostling, NJ; Huldtgren, T; Cunningham, JA; Yin, C; Yue, Z; Peng, F; Stampanoni, M (10 August 2006). "जीवाश्म भ्रूण के सिंक्रोट्रॉन एक्स-रे टोमोग्राफिक माइक्रोस्कोपी।". Nature. 442 (7103): 680–3. Bibcode:2006Natur.442..680D. doi:10.1038/nature04890. PMID 16900198. S2CID 4411929.
  15. "Contributors to Volume 21". धातु, सूक्ष्म जीव और खनिज - जीवन का जैव-भूरासायनिक पक्ष. De Gruyter. 2021. pp. xix–xxii. doi:10.1515/9783110589771-004. ISBN 9783110588903. S2CID 243434346.
  16. Banhart, John, ed. Advanced Tomographic Methods in Materials Research and Engineering. Monographs on the Physics and Chemistry of Materials. Oxford ; New York: Oxford University Press, 2008.
  17. Pollak, B. (December 1953). "Experiences with Planography". Chest. 24 (6): 663–669. doi:10.1378/chest.24.6.663. ISSN 0012-3692. PMID 13107564. Archived from the original on 2013-04-14. Retrieved July 10, 2011.
  18. Littleton, J.T. "Conventional Tomography" (PDF). रेडियोलॉजिकल साइंसेज का इतिहास. American Roentgen Ray Society. Retrieved 29 November 2014.


बाहरी संबंध