RS-232: Difference between revisions
No edit summary |
|||
(24 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Standard for serial communication}} | {{Short description|Standard for serial communication}} | ||
{{About| | {{About|RS-232, मानक|सामान्य 9-पिन कनेक्टर सहित RS-232 संस्करण|सीरियल पोर्ट}} | ||
{{Redirect|V.24||V24 ( | {{Redirect|V.24||V24 (बहुविकल्पी)}} | ||
[[File:DB25 Diagram.svg|thumb|RS-232 मानक में वर्णित एक [[ DB-25 ]] कनेक्टर]] | [[File:DB25 Diagram.svg|thumb|RS-232 मानक में वर्णित एक [[ DB-25 ]] कनेक्टर]] | ||
[[File:EIA 232 DTE DCE DCE DTE.png|thumb|upright=1.5| | [[File:EIA 232 DTE DCE DCE DTE.png|thumb|upright=1.5|डेटा सर्किट-टर्मिनेटिंग इक्विपमेंट (डीसीई) और डेटा टर्मिनल इक्विपमेंट (डीटीई) नेटवर्क। टेलीफ़ोननेट्ज़ एक टेलीफोन नेटवर्क को संदर्भित करता है; EIA-232 सीरियल संचार मानक RS-232 का पुराना नाम है।]] | ||
[[ दूरसंचार ]] में, RS-232 या अनुशंसित मानक | [[ दूरसंचार |दूरसंचार]] में, '''RS-232''' या अनुशंसित मानक 232<ref name="Metering_Glossary">] {{webarchive|url=https://web.archive.org/web/20121129015220/http://www.landisgyr.eu/en/pub/services_support/metering_glossary.cfm?eventGlossary=glossary.Search&initial=E |date=2012-11-29 }} Landis + Gyr ट्यूटोरियल (EIA देखें) </ref> मूल रूप से 1960 में डेटा के सीरियल कम्युनिकेशन ट्रांसमिशन के लिए शुरू किया गया एक [[ तकनीकी मानक |मानक]] है।<ref name="CAM_1974"/> यह औपचारिक रूप से एक डीटीई (डेटा टर्मिनल उपकरण) जैसे कि एक कंप्यूटर टर्मिनल और एक डीसीई (डेटा सर्किट-टर्मिनेटिंग उपकरण या डेटा संचार उपकरण), जैसे कि एक [[ मोडम |मॉडेम]] के बीच कनेक्टिंग सिग्नल को परिभाषित करता है। मानक विद्युत विशेषताओं और संकेतों के समय, संकेतों का अर्थ, और भौतिक आकार और कनेक्टर्स के [[ बाहर पिन |पिनआउट]] को परिभाषित करता है। मानक का वर्तमान संस्करण डेटा टर्मिनल उपकरण और डेटा सर्किट-समापन उपकरण के बीच टीआईए-232-एफ इंटरफ़ेस है, जो 1997 में जारी सीरियल बाइनरी डेटा इंटरचेंज को नियोजित करता है। RS-232 मानक आमतौर पर कंप्यूटर सीरियल पोर्ट में उपयोग किया जाता था और है अभी भी व्यापक रूप से उपयोग किया जाता है। औद्योगिक संचार उपकरण में उपयोग किया जाता है। | ||
RS-232 मानक का अनुपालन करने वाला एक सीरियल पोर्ट कभी कई प्रकार के कंप्यूटरों की एक मानक विशेषता थी। पर्सनल कंप्यूटर ने उन्हें न केवल मोडेम, बल्कि [[ प्रिंटर (कम्प्यूटिंग) |प्रिंटर]], कंप्यूटर [[ माउस (कम्प्यूटिंग) |माउस]], डेटा स्टोरेज, अबाधित विद्युत आपूर्ति (UPS) और अन्य परिधीय उपकरणों के कनेक्शन के लिए भी उपयोग किया। | |||
[[ RS-422 |RS-422]], [[ RS-485 |RS-485]] और [[ ईथरनेट |ईथरनेट]] जैसे बाद के इंटरफेस की तुलना में, RS-232 में कम संचरण गति, कम अधिकतम केबल लंबाई, बड़ा वोल्टेज स्विंग, बड़ा मानक कनेक्टर, कोई मल्टीपॉइंट क्षमता और सीमित मल्टीड्रॉप क्षमता नहीं है। आधुनिक व्यक्तिगत कंप्यूटरों में, [[ USB |USB]] ने अपने अधिकांश परिधीय इंटरफ़ेस भूमिकाओं में RS-232 को विस्थापित कर दिया है। उनकी सादगी और अतीत की सर्वव्यापकता के लिए धन्यवाद, हालांकि, RS-232 इंटरफेस अभी भी उपयोग किए जाते हैं - विशेष रूप से औद्योगिक मशीनों, नेटवर्किंग उपकरण और वैज्ञानिक उपकरणों में जहां एक छोटी दूरी, पॉइंट-टू-पॉइंट, कम गति वाले वायर्ड कनेक्शन की आवश्यकता होती है।{{Citation needed|date=April 2022}} | |||
== मानक का दायरा == | == मानक का दायरा == | ||
[[ इलेक्ट्रॉनिक इंडस्ट्रीज एसोसिएशन ]] (ईआईए) मानक | जहां तक 1969 का [[ इलेक्ट्रॉनिक इंडस्ट्रीज एसोसिएशन | इलेक्ट्रॉनिक इंडस्ट्रीज एसोसिएशन]] (ईआईए) मानक RS-232-C<ref name="eia">{{cite book |title=EIA standard RS-232-C: Interface between Data Terminal Equipment and Data Communication Equipment Employing Serial Binary Data Interchange |year=1969 |publisher=[[Electronic Industries Association]], Engineering Department |location=Washington, USA |oclc=38637094}}</ref> परिभाषित करता है: | ||
*इलेक्ट्रिकल सिग्नल विशेषताओं | *इलेक्ट्रिकल सिग्नल (विद्युत संकेत) विशेषताओं में वोल्टेज स्तर, संकेतन दर, संकेतों का समय और स्लीव दर, वोल्टेज झेलने का स्तर, [[ शार्ट सर्किट |शार्ट सर्किट]] व्यवहार और अधिकतम भार क्षमता सम्मिलित हैं। | ||
*इंटरफ़ेस | *इंटरफ़ेस यांत्रिक विशेषताओं, प्लगेबल कनेक्टर और पिन पहचान। | ||
*इंटरफ़ेस कनेक्टर में प्रत्येक सर्किट के कार्य। | *इंटरफ़ेस कनेक्टर में प्रत्येक सर्किट के कार्य। | ||
*चयनित | *चयनित टेलीकॉम अनुप्रयोगों के लिए इंटरफेस सर्किट के सामान्य सबसेट। | ||
मानक ऐसे तत्वों को | मानक ऐसे तत्वों को वर्ण एन्कोडिंग (अर्थात एएससीआईआई ([[ ASCII |ASCII)]], ईबीसीडीआईसी ([[ EBCDIC |EBCDIC]]) या अन्य), वर्णों की फ़्रेमिंग (बिट्स प्रारंभ या बंद करना, आदि), बिट्स के संचरण क्रम, या त्रुटि पहचान प्रोटोकॉल के रूप में परिभाषित नहीं करता है। सीरियल पोर्ट हार्डवेयर कैरेक्टर फॉर्मेट और ट्रांसमिशन [[ बिट दर |बिट रेट]] सेट करता है, आमतौर पर एक यूएआरटी ([[ सार्वभौमिक अतुल्यकालिक रिसीवर-ट्रांसमीटर |सार्वभौमिक अतुल्यकालिक रिसीवर-ट्रांसमीटर]]), जिसमें आंतरिक लॉजिक लेवल को RS-232-संगत सिग्नल लेवल में बदलने के लिए सर्किट भी हो सकते हैं। मानक संचरण के लिए बिट दर को परिभाषित नहीं करता है, सिवाय इसके कि यह कहता है कि यह प्रति सेकंड 20,000 बिट से कम बिट दर के लिए अभिप्रेत है। | ||
=={{anchor|A|B|C|D|E|F}}इतिहास == | =={{anchor|A|B|C|D|E|F}}इतिहास == | ||
RS-232 को पहली बार 1960 | RS-232 को पहली बार 1960<ref name="CAM_1974"/>में इलेक्ट्रॉनिक इंडस्ट्रीज एसोसिएशन (EIA) द्वारा अनुशंसित मानक के रूप में प्रस्तुत किया गया था।<ref>{{cite web |title=RS232 Tutorial on Data Interface and cables |url=http://www.arcelect.com/rs232.htm|publisher=ARC Electronics |access-date=2011-07-28 |year=2010}}</ref><ref name="Metering_Glossary" /> मूल डीटीई इलेक्ट्रोमैकेनिकल टेलेटाइपराइटर थे, और मूल डीसीई (आमतौर पर) मोडेम थे। जब [[ इलेक्ट्रॉनिक टर्मिनल |इलेक्ट्रॉनिक टर्मिनल]] (स्मार्ट और डंब) उपयोग में आए, तो उन्हें अक्सर टेलेटाइपराइटर के साथ विनिमेय होने के लिए डिज़ाइन किया गया था, और इसलिए RS-232 का समर्थन किया। | ||
क्योंकि मानक | क्योंकि मानक कंप्यूटर, प्रिंटर, परीक्षण उपकरण, [[ पॉस टर्मिनल |पीओएस टर्मिनल]] और इसी तरह के उपकरण के लिए आवश्यकताओं को पूरा नहीं करता था, डिजाइनरों ने अक्सर विशेष रूप से अपने उपकरणों पर RS-232 संगत इंटरफ़ेस को लागू करने के लिए मानक की व्याख्या की। परिणामी सामान्य समस्याएं कनेक्टर्स पर सर्किट के गैर-मानक पिन असाइनमेंट, और गलत या अनुपलब्ध नियंत्रण सिग्नल थे। मानकों के अनुपालन की इस कमी ने अलग-अलग उपकरणों के कनेक्शन के लिए [[ ब्रेकआउट बॉक्स |ब्रेकआउट बॉक्स]], पैच बॉक्स, परीक्षण उपकरण, किताबें और अन्य सहायता का एक संपन्न उद्योग बनाया। मानक से एक सामान्य विचलन सिग्नल को कम वोल्टेज पर चला रहा था। इसलिए कुछ निर्माताओं ने ट्रांसमीटर बनाए जो +5 V और -5 V की आपूर्ति करते थे और उन्हें "RS-232 संगत" के रूप में लेबल किया। {{Citation needed|date=April 2011}} | ||
बाद में पर्सनल कंप्यूटर (और अन्य उपकरण) मानक का उपयोग करने लगे ताकि वे मौजूदा उपकरणों से जुड़ सकें। कई वर्षों के लिए, एक RS-232-संगत पोर्ट धारावाहिक संचार के लिए एक मानक सुविधा थी, जैसे कि कई कंप्यूटरों पर मॉडेम कनेक्शन (कंप्यूटर के साथ डीटीई के रूप में कार्य करना)। 1990 के दशक के अंत तक यह व्यापक उपयोग में रहा। व्यक्तिगत कंप्यूटर बाह्य उपकरणों के लिए, इसे काफी हद तक अन्य इंटरफ़ेस मानकों, जैसे कि USB द्वारा प्रतिस्थापित किया गया है। RS-232 का उपयोग अभी भी बाह्य उपकरणों, औद्योगिक उपकरणों (जैसे PLCs), कंसोल पोर्ट्स, और विशेष प्रयोजन के उपकरणों के पुराने डिज़ाइनों को जोड़ने के लिए किया जाता है। | |||
संबंधित | |||
ईआईए -232 के संशोधन डी में, डी-सबमिनेटर कनेक्टर को औपचारिक रूप से मानक के हिस्से के रूप में | इसके इतिहास के दौरान मानक का कई बार नाम बदला गया है क्योंकि प्रायोजक संगठन ने अपना नाम बदल दिया है और इसे ईआईए (EIA) RS-232, ईआईए 232, और हाल ही में टीआईए (TIA) 232 के रूप में जाना जाता है। इलेक्ट्रॉनिक्स उद्योग द्वारा मानक को संशोधित और अद्यतन करना जारी है। एसोसिएशन और 1988 से टेलीकॉम इंडस्ट्री एसोसिएशन (TIA) द्वारा।<ref>{{cite web |title=TIA Facts at a Glance |url=http://www.tiaonline.org/about/ |work=About TIA |publisher=[[Telecommunications Industry Association]] |access-date=2011-07-28}}</ref> संशोधन सी अगस्त 1969 के एक दस्तावेज में जारी किया गया था। संशोधन डी 1986 में जारी किया गया था। 1997. तब से सीसीआईटीटी ([[ CCITT |CCITT)]] मानक आईटीयू-टी/सीसीआईटीटी V.24 ({{ill|ITU-T V.24{{!}}ITU-T/CCITT V.24|de|V.24}}) में समय और विवरण में संशोधन C के साथ परिवर्तन किए गए हैं, जिसका उद्देश्य अनुकूलता में सुधार करना है, लेकिन वर्तमान मानक के लिए निर्मित उपकरण पुराने संस्करणों के साथ इंटरऑपरेट करेगा। {{Citation needed|date=April 2011}} | ||
*ईआईए आरएस -232 (मई 1960) डेटा टर्मिनल उपकरण और डेटा के बीच | संबंधित आईटीयू-टी मानकों में वी.24 (सर्किट आइडेंटिफिकेशन) और आईटीयू-टी/सीसीआईटीटी वी.28 ({{ill|ITU-T V.28{{!}}ITU-T/CCITT V.28|de|V.28}}) (सिग्नल वोल्टेज और टाइमिंग विशेषताएँ) शामिल हैं। {{Citation needed|date=April 2011}} | ||
ईआईए -232 के संशोधन डी में, डी-सबमिनेटर कनेक्टर को औपचारिक रूप से मानक के हिस्से के रूप में सम्मिलित किया गया था (इसे केवल RS-232-C के परिशिष्ट में संदर्भित किया गया था)। वोल्टेज रेंज को ± 25 वोल्ट तक बढ़ाया गया था, और सर्किट कैपेसिटेंस सीमा को स्पष्ट रूप से 2500pF के रूप में बताया गया था। EIA-232 के संशोधन E ने एक नया, छोटा, मानक D-शेल 26-पिन "ऑल्ट ए (Alt A)" कनेक्टर पेश किया, और CCITT मानकों V.24, V.28, और ISO 2110 के साथ संगतता में सुधार के लिए अन्य परिवर्तन किए।<ref>S. Mackay, E. Wright, D. Reynders, J. Park, ''Practical Industrial Data Networks: Design, Installation, and Troubleshooting'', Newnes, 2004 {{ISBN|07506 5807X}}, pages 41-42</ref> | |||
विशिष्टता आलेख पुनरीक्षण इतिहास: | |||
*ईआईए आरएस-232 (मई 1960) "डेटा टर्मिनल उपकरण और डेटा के बीच इंटरफेस" <ref name="CAM_1974" /> | |||
*ईआईए आरएस -232-ए (अक्टूबर 1963)<ref name="CAM_1974" /> | |||
*ईआईए आरएस -232-बी (अक्टूबर 1965)<ref name="CAM_1974" /> | |||
*ईआईए आरएस -232-सी (अगस्त 1969) डेटा टर्मिनल उपकरण और डेटा संचार उपकरणों के बीच इंटरफ़ेस सीरियल बाइनरी डेटा इंटरचेंज को नियोजित करता है<ref name="CAM_1974">{{citation |title=Standards for Computer Aided Manufacturing |author-first1=John M. |author-last1=Evans, Jr. |author-first2=Joseph T. |author-last2=O'Neill |author-first3=John L. |author-last3=Little |author-first4=James S. |author-last4=Albus |author-first5=Anthony J. |author-last5=Barbera |author-first6=Dennis W. |author-last6=Fife |author-first7=Elizabeth N. |author-last7=Fong |author-first8=David E. |author-last8=Gilsinn |author-first9=Frances E. |author-last9=Holberton |author-first10=Brian G. |author-last10=Lucas |author-first11=Gordon E. |author-last11=Lyon |author-first12=Beatrice A. S. |author-last12=Marron |author-first13=Albercht J. |author-last13=Neumann |author-first14=Mabel V. |author-last14=Vickers |author-first15=Justin C. |author-last15=Walker |location=Office of Developmental Automation and Control Technology, Institute for Computer Sciences and Technology, National Bureau of Standards, Washington, DC, USA |edition=Second Interim Report |date=October 1976 |publisher=Manufacturing Technology Division, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio 45433 |id=NBSIR 76-1094 |url=https://archive.org/stream/standardsforcom7610evan_0/standardsforcom7610evan_0_djvu.txt |access-date=2017-03-04}}</ref> | |||
*ईआईए ईआईए -232-डी (1986) | *ईआईए ईआईए -232-डी (1986) | ||
* | *टीआईए टीआईए/ईआईए-232-ई (1991) डेटा टर्मिनल उपकरण और डेटा संचार उपकरणों के बीच इंटरफ़ेस सीरियल बाइनरी डेटा इंटरचेंज | ||
* | *टीआईए/ईआईए-232-एफ (अक्टूबर 1997<!-- 1997-10-01 -->) | ||
* | * एएनएसआई / टीआईए-232-एफ-1997 (आर2002) | ||
*टीआईए टीआईए-232-एफ (आर2012) | |||
== मानक की सीमाएँ == | == मानक की सीमाएँ == | ||
क्योंकि RS-232 का उपयोग एक मॉडेम के | क्योंकि RS-232 का उपयोग टर्मिनल को एक मॉडेम से जोड़ने के अपने मूल उद्देश्य से परे किया जाता है, सीमाओं को संबोधित करने के लिए उत्तराधिकारी मानकों को विकसित किया गया है। RS-232 मानक के मुद्दों में सम्मिलित हैं: <ref>{{cite book |author-last1=Horowitz |author-first1=Paul |author-link1=Paul Horowitz |title=The Art of Electronics |year=1989 |publisher=[[Cambridge University Press]] |location=Cambridge, England |edition=2nd |author-first2=Winfield |author-last2=Hill |author-link2=Winfield Hill |isbn=0-521-37095-7 |pages=[https://archive.org/details/artofelectronics00horo/page/723 723–726] |title-link=The Art of Electronics }}</ref> | ||
* बड़े वोल्टेज झूलों और | * बड़े वोल्टेज झूलों और धनात्मक और ऋणत्मक आपूर्ति की आवश्यकता इंटरफ़ेस की बिजली की खपत को बढ़ाती है और बिजली आपूर्ति संरचना को जटिल बनाती है। वोल्टेज स्विंग की आवश्यकता एक संगत इंटरफ़ेस की ऊपरी गति को भी सीमित करती है। | ||
* | *सिंगल-एंड सिग्नलिंग को सामान्य सिग्नल ग्राउंड के रूप में संदर्भित किया जाता है जो शोर प्रतिरक्षा और संचरण दूरी को सीमित करता है। | ||
* दो से अधिक उपकरणों के बीच | * दो से अधिक उपकरणों के बीच मल्टी-ड्रॉप कनेक्शन परिभाषित नहीं है। जबकि मल्टी-ड्रॉप "वर्कअराउंड" तैयार किए गए हैं, उनकी गति और अनुकूलता में सीमाएं हैं। | ||
* मानक | * मानक डीटीई को सीधे डीटीई, या डीसीई को डीसीई से जोड़ने की संभावना को संबोधित नहीं करता है। इन कनेक्शनों को प्राप्त करने के लिए नल (NULL) मॉडेम केबल का उपयोग किया जा सकता है, लेकिन ये मानक द्वारा परिभाषित नहीं हैं, और कुछ ऐसे केबल दूसरों की तुलना में अलग कनेक्शन का उपयोग करते हैं। | ||
* लिंक के | * लिंक के दोनों सिरों पर परिभाषाएँ विषम हैं। यह एक नए विकसित साधन की भूमिका के असाइनमेंट को समस्याग्रस्त बनाता है; डिज़ाइनर को या तो डीटीई-जैसा या डीसीई- जैसा इंटरफ़ेस तय करना चाहिए और कौन सा कनेक्टर पिन असाइनमेंट का उपयोग करना चाहिए। | ||
* इंटरफ़ेस की [[ हेन्डशेकिंग ]] और | *इंटरफ़ेस की [[ हेन्डशेकिंग |हेन्डशेकिंग]] और नियंत्रण रेखाएँ [[ डायल करें |डायल]]-अप संचार सर्किट की स्थापना और निकासी के लिए हैं; विशेष रूप से, प्रवाह नियंत्रण के लिए हैंडशेक लाइनों का उपयोग कई उपकरणों में मज़बूती से कार्यान्वित नहीं किया जाता है। | ||
* डिवाइस को पावर भेजने के लिए कोई विधि निर्दिष्ट नहीं है। जबकि | *डिवाइस को पावर भेजने के लिए कोई विधि निर्दिष्ट नहीं है। जबकि डीटीआर और आरटीएस लाइनों से थोड़ी मात्रा में करंट खींचा जा सकता है, यह केवल कम-शक्ति वाले उपकरणों जैसे कि चूहों के लिए उपयुक्त है। | ||
* मानक में अनुशंसित 25-पिन डी-सब कनेक्टर | *वर्तमान अभ्यास की तुलना में मानक में अनुशंसित 25-पिन डी-सब कनेक्टर बड़ा है। | ||
== आधुनिक व्यक्तिगत कंप्यूटरों में भूमिका == | == आधुनिक व्यक्तिगत कंप्यूटरों में भूमिका == | ||
{{Main| | {{Main|सीरियल पोर्ट}} | ||
[[File:RS232 PCI-E.jpg|thumb|एक नौ-पिन कनेक्टर पर एक RS-232 पोर्ट के साथ PCI एक्सप्रेस X1 कार्ड]] | [[File:RS232 PCI-E.jpg|thumb|एक नौ-पिन कनेक्टर पर एक RS-232 पोर्ट के साथ PCI एक्सप्रेस X1 कार्ड]] | ||
[[ पीसी 97 |पीसी 97]] हार्डवेयर डिजाइन गाइड बुक में,<ref name="pc 97">{{cite book |title=PC 97 Hardware Design Guide |date=1997 |publisher=[[Microsoft Press]] |location=Redmond, Washington, USA |isbn=1-57231-381-1}}</ref> [[ Microsoft |माइक्रोसॉफ्ट]] ने मूल आईबीएम पीसी डिजाइन के आरएस-232 संगत सीरियल पोर्ट के लिए समर्थन हटा दिया। आज, अधिकांश निजी कंप्यूटरों में स्थानीय संचार के लिए RS-232 को USB द्वारा प्रतिस्थापित किया गया है। RS-232 से अधिक लाभ यह है कि USB तेज़ है, कम वोल्टेज का उपयोग करता है, और इसमें ऐसे कनेक्टर हैं जो कनेक्ट करने और उपयोग करने में आसान हैं। RS-232 की तुलना में USB का नुकसान यह है कि यूएसबी (USB) इलेक्ट्रोमैग्नेटिक इंटरफेरेंस (EMI){{dubious|date=January 2018}} के प्रति बहुत कम प्रतिरोधी है और अधिकतम केबल लंबाई बहुत कम है (USB के लिए RS-232 बनाम 3 के लिए 15 मीटर) -5 मीटर , निर्भर करता है) यूएसबी संस्करण और सक्रिय केबल पर)।<ref>{{Cite web|url=https://www.tldp.org/HOWTO/Remote-Serial-Console-HOWTO/serial-distance.html|title=Lengths of serial cables|website=www.tldp.org|access-date=2020-01-01}}</ref><ref>{{Cite book|title=CompTIA A+ Guide to IT technical support|last=Andrews|first=Jean|publisher=Cengage Learning|others=Dark, Joy, West, Jill|year=2020|isbn=978-0-357-10829-1|edition=Tenth|location=Boston, MA, USA|pages=267|oclc=1090438548}}</ref> | |||
प्रयोगशाला स्वचालन या सर्वेक्षण जैसे क्षेत्रों में, RS-232 उपकरणों का उपयोग | |||
प्रयोगशाला स्वचालन या सर्वेक्षण जैसे क्षेत्रों में, RS-232 उपकरणों का उपयोग जारी है। कुछ प्रकार के प्रोग्रामेबल लॉजिक कंट्रोलर, वेरिएबल-फ़्रीक्वेंसी ड्राइव, [[ सर्वो ड्राइव |सर्वो ड्राइव]] और [[ कम्प्यूटरीकृत संख्यात्मक नियंत्रण |कम्प्यूटरीकृत संख्यात्मक नियंत्रण]] उपकरण को RS-232 के माध्यम से प्रोग्राम किया जा सकता है। कंप्यूटर निर्माताओं ने अपने कंप्यूटरों पर [[ DE-9M |DE-9M]] कनेक्टर को फिर से प्रस्तुत करके, या एडेप्टर उपलब्ध कराकर इस मांग का जवाब दिया है। | |||
RS-232 पोर्ट का उपयोग आमतौर पर [[ सर्वर (कम्प्यूटिंग) ]] | RS-232 पोर्ट का उपयोग आमतौर पर हेडलेस सिस्टम जैसे कि [[ सर्वर (कम्प्यूटिंग) |सर्वर]], जहां कोई मॉनिटर या कीबोर्ड स्थापित नहीं है, बूट के दौरान जब [[ ऑपरेटिंग सिस्टम |ऑपरेटिंग सिस्टम]] अभी तक नहीं चल रहा है और इसलिए कोई नेटवर्क कनेक्शन संभव नहीं है, से संचार करने के लिए किया जाता है। RS-232 सीरियल पोर्ट वाला एक कंप्यूटर ईथरनेट पर निगरानी के विकल्प के रूप में एक [[ अंतः स्थापित प्रणाली |अंतः स्थापित प्रणाली]] (एम्बेडेड सिस्टम) (जैसे [[ राउटर (कम्प्यूटिंग) |राउटर]]) के सीरियल पोर्ट के साथ संचार कर सकता है। | ||
=={{anchor|Flow control}}भौतिक इंटरफ़ेस == | =={{anchor|Flow control}}भौतिक इंटरफ़ेस == | ||
RS-232 में, उपयोगकर्ता डेटा | RS-232 में, उपयोगकर्ता डेटा बिट्स की समय श्रृंखला के रूप में भेजा जाता है। दोनों तुल्यकालिक और अतुल्यकालिक प्रसारण मानक द्वारा समर्थित हैं। डेटा सर्किट के अतिरिक्त, मानक डीटीई और डीसीई के बीच कनेक्शन को प्रबंधित करने के लिए उपयोग किए जाने वाले कई नियंत्रण सर्किट को परिभाषित करता है। प्रत्येक डेटा या नियंत्रण सर्किट केवल एक दिशा में संचालित होता है, अर्थात, डीटीई से जुड़े डीसीई को या रिवर्स में संकेत देता है। क्योंकि डेटा संचारित करना और डेटा प्राप्त करना अलग-अलग सर्किट हैं, इंटरफ़ेस पूर्ण द्वैध तरीके से काम कर सकता है, दोनों दिशाओं में समवर्ती डेटा प्रवाह का समर्थन करता है। मानक डेटा स्ट्रीम या वर्ण एन्कोडिंग के भीतर वर्ण फ़्रेमिंग को परिभाषित नहीं करता है। | ||
==={{anchor|DSR}}वोल्टेज का स्तर === | ==={{anchor|DSR}}वोल्टेज का स्तर === | ||
[[File: Rs232 oscilloscope trace.svg|thumb|1 स्टार्ट बिट, 8 डेटा बिट्स (कम से कम महत्वपूर्ण बिट पहले), 1 स्टॉप बिट के साथ एक ASCII K चरित्र (0x4b) के लिए वोल्टेज स्तरों के डायग्रामैटिक आस्टसीलस्कप ट्रेस।यह स्टार्ट-स्टॉप संचार के लिए विशिष्ट है, लेकिन मानक एक चरित्र प्रारूप या बिट ऑर्डर को निर्धारित नहीं करता है।]] | [[File: Rs232 oscilloscope trace.svg|thumb|1 स्टार्ट बिट, 8 डेटा बिट्स (कम से कम महत्वपूर्ण बिट पहले), 1 स्टॉप बिट के साथ एक ASCII K चरित्र (0x4b) के लिए वोल्टेज स्तरों के डायग्रामैटिक आस्टसीलस्कप ट्रेस।यह स्टार्ट-स्टॉप संचार के लिए विशिष्ट है, लेकिन मानक एक चरित्र प्रारूप या बिट ऑर्डर को निर्धारित नहीं करता है।]] | ||
[[File: RS232-UART Oscilloscope Screenshot.png|thumb|RS-232 डेटा लाइन रिसीवर साइड (RXD) के टर्मिनलों पर एक आस्टसीलस्कप (ASCII K वर्ण (0x4b) के लिए 1 स्टार्ट बिट, 8 डेटा बिट्स, 1 स्टॉप बिट, और नो समता बिट्स के साथ) द्वारा जांच की गई।]] | [[File: RS232-UART Oscilloscope Screenshot.png|thumb|RS-232 डेटा लाइन रिसीवर साइड (RXD) के टर्मिनलों पर एक आस्टसीलस्कप (ASCII K वर्ण (0x4b) के लिए 1 स्टार्ट बिट, 8 डेटा बिट्स, 1 स्टॉप बिट, और नो समता बिट्स के साथ) द्वारा जांच की गई।]] | ||
RS-232 मानक | RS-232 मानक डेटा ट्रांसमिशन और नियंत्रण सिग्नल लाइनों के लिए तार्किक एक और तार्किक शून्य स्तर के अनुरूप वोल्टेज स्तर को परिभाषित करता है। वैध संकेत या तो "कॉमन ग्राउंड" (जीएनडी) पिन के संबंध में +3 से +15 वोल्ट की सीमा में या -3 से -15 वोल्ट की सीमा में हैं; फलस्वरूप, -3 से +3 वोल्ट के बीच की सीमा वैध RS-232 स्तर नहीं है। डेटा ट्रांसमिशन लाइनों (टीएक्सडी, आरएक्सडी, और उनके माध्यमिक चैनल समकक्ष) के लिए, तर्क एक को नकारात्मक वोल्टेज के रूप में दर्शाया जाता है और सिग्नल की स्थिति को "मार्क" कहा जाता है। लॉजिक शून्य को सकारात्मक वोल्टेज के साथ संकेत दिया जाता है और सिग्नल की स्थिति को "स्पेस" कहा जाता है। नियंत्रण संकेतों में विपरीत ध्रुवता होती है: मुखरित या सक्रिय अवस्था धनात्मक वोल्टेज होती है और अघोषित या निष्क्रिय स्थिति ऋणात्मक वोल्टेज होती है। नियंत्रण रेखाओं के उदाहरणों में भेजने के लिए अनुरोध (आरटीएस), भेजने के लिए स्पष्ट (सीटीएस), [[ आंकड़ा टर्मिनल |डेटा टर्मिनल]] तैयार (डीटीआर), और डेटा सेट तैयार (डीएसआर) सम्मिलित हैं। | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ RS-232 | |+ RS-232 लॉजिक और वोल्टेज स्तर | ||
! | ! डेटा सर्किट !! कंट्रोल सर्किट्स !! वोल्टेज | ||
|- | |- | ||
| 0 ( | | 0 (स्पेस) || महत्व || +3 to +15 V | ||
|- | |- | ||
| 1 ( | | 1 (चिन्ह) || बहिष्कृत || −15 to −3 V | ||
|} | |} | ||
मानक 25 | मानक 25 V का अधिकतम ओपन-सर्किट वोल्टेज निर्दिष्ट करता है: लाइन ड्राइवर सर्किट के लिए उपलब्ध वोल्टेज के आधार पर, ±5 V, ±10 V, ±12 V, और ±15 V के सिग्नल स्तर आमतौर पर देखे जाते हैं। कुछ RS-232 ड्राइवर चिप्स में 3 या 5 वोल्ट की आपूर्ति से आवश्यक वोल्टेज उत्पन्न करने के लिए इनबिल्ट सर्किट्री होती है। RS-232 ड्राइवर और रिसीवर ग्राउंड पर या ±25 V तक के किसी भी वोल्टेज स्तर पर अनिश्चितकालीन शॉर्ट सर्किट का सामना करने में सक्षम होना चाहिए। स्लीव रेट, या स्तरों के बीच सिग्नल कितनी तेजी से बदलता है, इसे भी नियंत्रित किया जाता है। | ||
क्योंकि वोल्टेज स्तर आमतौर पर एकीकृत सर्किट द्वारा उपयोग किए जाने वाले तर्क स्तर से अधिक होता है, तर्क स्तर का अनुवाद करने के लिए विशेष इंटरफेसिंग ड्राइवर सर्किट की आवश्यकता होती है। ये डिवाइस के आंतरिक सर्किटरी को शॉर्ट सर्किट या ट्रांज़िएंट से भी बचाते हैं जो RS-232 इंटरफ़ेस पर दिखाई दे सकते हैं और डेटा ट्रांसमिशन के लिए कई दर आवश्यकताओं का पालन करने के लिए पर्याप्त करंट प्रदान करते हैं। | |||
क्योंकि | क्योंकि RS-232 सर्किट के दोनों छोर ग्राउंड पिन के शून्य वोल्ट होने पर निर्भर करते हैं, मशीनरी और कंप्यूटर को कनेक्ट करते समय समस्याएँ उत्पन्न होंगी जहाँ एक छोर पर ग्राउंड पिन और दूसरे पर ग्राउंड पिन के बीच वोल्टेज शून्य नहीं है। इससे खतरनाक [[ ग्राउंड लूप |ग्राउंड लूप]] भी हो सकता है। अपेक्षाकृत कम केबल वाले अनुप्रयोगों के लिए एक सामान्य जमीन का उपयोग RS-232 को सीमित करता है। यदि दो डिवाइस काफी दूर हैं या अलग-अलग पावर सिस्टम पर हैं, तो केबल के दोनों छोर पर स्थानीय ग्राउंड कनेक्शन में अलग-अलग वोल्टेज होंगे; यह अंतर संकेतों के नॉइज़ मार्जिन को कम करेगा। बैलेंस्ड, डिफरेंशियल सीरियल कनेक्शन जैसे RS-422 या RS-485 डिफरेंशियल सिग्नलिंग के कारण बड़े ग्राउंड वोल्टेज अंतर को सहन कर सकते हैं।<ref>{{cite web |author-last=Wilson |author-first=Michael R. |title=TIA/EIA-422-B Overview |url=http://www.national.com/an/AN/AN-1031.pdf |work=Application Note 1031 |publisher=[[National Semiconductor]] |access-date=2011-07-28 |date=January 2000 |url-status=dead |archive-url=https://web.archive.org/web/20100106194629/http://www.national.com/an/AN/AN-1031.pdf |archive-date=2010-01-06}}</ref> | ||
अप्रयुक्त इंटरफ़ेस संकेतों को ग्राउंड पर समाप्त कर दिया जाएगा, एक अपरिभाषित तर्क स्थिति है। जहां परिभाषित स्थिति पर नियंत्रण संकेत को स्थायी रूप से सेट करना आवश्यक है, यह एक वोल्टेज स्रोत से जुड़ा होना चाहिए जो तर्क 1 या तर्क 0 स्तरों पर जोर देता है, उदाहरण के लिए एक पुलअप अवरोधक के साथ। कुछ डिवाइस इस उद्देश्य के लिए अपने इंटरफ़ेस कनेक्टर्स पर परीक्षण वोल्टेज प्रदान करते हैं। | |||
=== कनेक्टर्स === | === कनेक्टर्स === | ||
<!-- [[Data terminal equipment]] links here. --> | <!-- [[Data terminal equipment]] links here. --> | ||
RS-232 उपकरणों को डेटा टर्मिनल उपकरण ( | RS-232 उपकरणों को डेटा टर्मिनल उपकरण (डीटीई) या डेटा सर्किट-समापन उपकरण (डीसीई) के रूप में वर्गीकृत किया जा सकता है; यह प्रत्येक उपकरण पर परिभाषित करता है कि कौन से तार प्रत्येक संकेत भेज रहे हैं और प्राप्त कर रहे हैं। मानक रूप से, मेल कनेक्टर्स में डीटीई पिन फ़ंक्शंस होते हैं, और फीमेल कनेक्टर्स में डीसीई पिन फ़ंक्शंस होते हैं। अन्य उपकरणों में कनेक्टर के जेंडर और पिन परिभाषाओं का कोई भी संयोजन हो सकता है। कई टर्मिनल फीमेल कनेक्टर्स के साथ निर्मित किए गए थे लेकिन प्रत्येक छोर पर मेल कनेक्टर वाले केबलों के साथ बेचे गए थे; टर्मिनल, इसकी केबल के साथ, मानक में अनुशंसाओं को पूरा करता है। | ||
मानक | संशोधन सी तक मानक डी-सबमिनीचर 25-पिन कनेक्टर की अनुशंसा करता है और इसे संशोधन डी के रूप में अनिवार्य करता है। अधिकांश डिवाइस मानक में निर्दिष्ट बीस संकेतों में से कुछ को ही लागू करते हैं, इसलिए कम पिन वाले कनेक्टर और केबल अधिकांश कनेक्शन के लिए पर्याप्त हैं, अधिक कॉम्पैक्ट, और कम महंगा। व्यक्तिगत कंप्यूटर निर्माताओं ने DB-25M कनेक्टर को छोटे DE-9M कनेक्टर से बदल दिया। यह कनेक्टर, एक अलग पिनआउट ([[ सीरियल पोर्ट पिनआउट |सीरियल पोर्ट पिनआउट]] देखें) के साथ, व्यक्तिगत कंप्यूटर और संबंधित उपकरणों के लिए आम है। | ||
25-पिन डी- | 25-पिन डी-उप कनेक्टर की उपस्थिति आवश्यक रूप से RS-232-C-संगत इंटरफ़ेस का संकेत नहीं देती है। उदाहरण के लिए, मूल आईबीएम पीसी पर, एक मेल डी-उप एक आरएस-232-सी डीटीई पोर्ट था (पिन पर एक गैर-मानक वर्तमान लूप इंटरफ़ेस के साथ), लेकिन एक ही पीसी मॉडल पर फीमेल डी-उप कनेक्टर समानांतर था। प्रिंटर पोर्ट के लिए "सेंट्रोनिक्स" का उपयोग किया जाता है। कुछ पर्सनल कंप्यूटर अपने सीरियल पोर्ट के कुछ पिनों पर गैर-मानक वोल्टेज या सिग्नल लागू करते हैं। | ||
=== पिनआउट === | === पिनआउट === | ||
निम्न तालिका सूची आमतौर पर RS-232 | निम्न तालिका सूची में आमतौर पर प्रयुक्त RS-232 सिग्नल और पिन असाइनमेंट हैं:<ref>{{cite web |url=http://www.hardwarebook.info/Serial_(PC_9) |title=Serial (PC 9) |author-first=Joakim |author-last=Ögren |access-date=2010-07-07 |archive-url=https://web.archive.org/web/20100811173526/http://www.hardwarebook.info/Serial_%28PC_9%29 |archive-date=2010-08-11 }}</ref> | ||
{| class="wikitable sortable" style="margin:auto; text-align:center;" | {| class="wikitable sortable" style="margin:auto; text-align:center;" | ||
! colspan="3"| | ! colspan="3"|सिग्नल (संकेत) !! colspan="2" |दिशा !! colspan="11" |कनेक्टर पिन | ||
|- | |- | ||
! rowspan="2"| | ! rowspan="2"|नाम !! rowspan="2" |[[V.24]] सर्किट !! rowspan="2" |संक्षेपाक्षर !! rowspan="2" |[[Data terminal equipment|DTE]] !! rowspan="2"|[[Data circuit-terminating equipment|DCE]] !! rowspan="2"|[[DB-25]] !! rowspan="2"|{{nowrap|[[DE-9]]}} {{nowrap|([[TIA-574]])}} !! rowspan="2"|[[Modified Modular Jack|MMJ]] !! colspan="5"|[[8P8C]] ("RJ45") !! colspan="3"|[[10P10C]] ("RJ50") | ||
|- | |- | ||
! [[EIA/TIA-561]] !! Yost (DTE)<ref name="Yost">{{cite web |url=http://yost.com/computers/RJ45-serial/ |title=Yost Serial Device Wiring Standard |access-date=2020-05-10 |archive-url=https://web.archive.org/web/20200617132523/http://yost.com/computers/RJ45-serial/ |archive-date=2020-06-17 |url-status=dead }}</ref> !! Yost (DCE)<ref name="Yost"/> !! Cyclades !! [[Digi International|Digi]] (ALTPIN option) !! [[National Instruments]]<ref name="National Instruments 2013">{{cite web |url=http://www.ni.com/pdf/manuals/371253e.pdf |publisher=National Instruments |title=Serial Quick Reference Guide |website=NI.com |date=July 2013 |access-date=2021-06-18 }}</ref> !! Cyclades !! Digi | ! [[EIA/TIA-561]] !! Yost (DTE)<ref name="Yost">{{cite web |url=http://yost.com/computers/RJ45-serial/ |title=Yost Serial Device Wiring Standard |access-date=2020-05-10 |archive-url=https://web.archive.org/web/20200617132523/http://yost.com/computers/RJ45-serial/ |archive-date=2020-06-17 |url-status=dead }}</ref> !! Yost (DCE)<ref name="Yost"/> !! Cyclades !! [[Digi International|Digi]] (ALTPIN option) !! [[National Instruments]]<ref name="National Instruments 2013">{{cite web |url=http://www.ni.com/pdf/manuals/371253e.pdf |publisher=National Instruments |title=Serial Quick Reference Guide |website=NI.com |date=July 2013 |access-date=2021-06-18 }}</ref> !! Cyclades !! Digi | ||
|- | |- | ||
| | | ट्रांसमिटेड डेटा || 103 || TxD | ||
| Out || In || 2 || 3 || 2 || 6 || 6 || 3 || 3 || 4 || 8 || 4 || 5 | | Out || In || 2 || 3 || 2 || 6 || 6 || 3 || 3 || 4 || 8 || 4 || 5 | ||
|- | |- | ||
| | | रिसीव डेटा || 104 || RxD | ||
| In || Out || 3 || 2 || 5 || 5 || 3 || 6 || 6 || 5 || 9 || 7 || 6 | | In || Out || 3 || 2 || 5 || 5 || 3 || 6 || 6 || 5 || 9 || 7 || 6 | ||
|- | |- | ||
| | | डेटा टर्मिनल रेडी || 108/2 || DTR | ||
| Out || In || 20 || 4 || 1 || 3 || 7 || 2 || 2 || 8 || 7 || 3 || 9 | | Out || In || 20 || 4 || 1 || 3 || 7 || 2 || 2 || 8 || 7 || 3 || 9 | ||
|- | |- | ||
| | | डेटा कैरियर डिटेक्ट || 109 || DCD | ||
| In || Out || 8 || 1 || {{n/a}} || 2 || rowspan="2"|2 || 7 || 7 || 1 || 10 || 8 || 10 | | In || Out || 8 || 1 || {{n/a}} || 2 || rowspan="2"|2 || 7 || 7 || 1 || 10 || 8 || 10 | ||
|- | |- | ||
| | | डेटा सेट रेडी || 107 || DSR | ||
| In || Out || 6 || 6 || 6 || rowspan="2"|1 || {{n/a}} || 8 || {{n/a}} || 5 || 9 || 2 | | In || Out || 6 || 6 || 6 || rowspan="2"|1 || {{n/a}} || 8 || {{n/a}} || 5 || 9 || 2 | ||
|- | |- | ||
| | | रिंग इंडिकेटर || 125 || RI | ||
| In || Out || 22 || 9 || {{n/a}} || {{n/a}} || {{n/a}} || {{n/a}} || {{n/a}} || 2 || 10 || 1 | | In || Out || 22 || 9 || {{n/a}} || {{n/a}} || {{n/a}} || {{n/a}} || {{n/a}} || 2 || 10 || 1 | ||
|- | |- | ||
| | | रिक्वेस्ट टू सेंड || 105 || RTS | ||
| Out || In || 4 || 7 || {{n/a}} || 8 || 8 || 1 || 1 || 2 || 4 || 2 || 3 | | Out || In || 4 || 7 || {{n/a}} || 8 || 8 || 1 || 1 || 2 || 4 || 2 || 3 | ||
|- | |- | ||
| | | क्लियर टू सेंड || 106 || CTS | ||
| In || Out || 5 || 8 || {{n/a}} || 7 || 1 || 8 || 5 || 7 || 3 || 6 || 8 | | In || Out || 5 || 8 || {{n/a}} || 7 || 1 || 8 || 5 || 7 || 3 || 6 || 8 | ||
|- | |- | ||
| | | सिग्नल ग्राउंड || 102 || G | ||
| colspan="2" | Common || 7 || 5 || 3, 4 || 4 || 4, 5 || 4, 5 || 4 || 6 || 6 || 5 || 7 | | colspan="2" | Common || 7 || 5 || 3, 4 || 4 || 4, 5 || 4, 5 || 4 || 6 || 6 || 5 || 7 | ||
|- | |- | ||
| | | प्रोटेक्टिव ग्राउंड || 101 || PG | ||
| colspan="2" | Common || 1 || {{n/a}} || {{n/a}} || {{n/a}} || {{n/a}} || {{n/a}} || {{n/a}} || 3 || {{n/a}} || 1 || 4 | | colspan="2" | Common || 1 || {{n/a}} || {{n/a}} || {{n/a}} || {{n/a}} || {{n/a}} || {{n/a}} || 3 || {{n/a}} || 1 || 4 | ||
|} | |} | ||
सिग्नल ग्राउंड अन्य कनेक्शनों के लिए एक | सिग्नल ग्राउंड अन्य कनेक्शनों के लिए एक सामान्य रिटर्न है; यह योस्ट मानक में दो पिन्स पर दिखाई देता है लेकिन एक ही सिग्नल होता है। DB-25 कनेक्टर में पिन 1 पर एक दूसरा सुरक्षात्मक ग्राउंड सम्मिलित है, जिसे प्रत्येक डिवाइस द्वारा अपने स्वयं के फ्रेम ग्राउंड या इसी तरह से कनेक्ट करने का इरादा है। सुरक्षात्मक ग्राउंड को सिग्नल ग्राउंड से जोड़ना एक सामान्य अभ्यास है लेकिन अनुशंसित नहीं है। | ||
ध्यान दें कि ईआईए/टीआईए 561 डीएसआर और आरआई | ध्यान दें कि ईआईए/टीआईए 561 में डीएसआर और आरआई का संयोजन है,,<ref>{{cite web| url = http://www.hardwarebook.info/RS-232D| title = Hardware Book RS-232D}}</ref><ref>{{cite web| url = http://www.t0rchthe.net/rj45console/index.html| title = RS-232D EIA/TIA-561 RJ45 Pinout}}</ref> और यॉस्ट मानक में डीएसआर और डीसीडी का संयोजन है। | ||
=== केबल === | === केबल === | ||
{{main| | {{main|सीरियल केबल}} | ||
मानक अधिकतम केबल लंबाई को परिभाषित नहीं करता है, बल्कि | |||
मानक अधिकतम केबल लंबाई को परिभाषित नहीं करता है, बल्कि एक अधिकतम समाई है जो एक अनुरूप ड्राइव सर्किट को सहन करना चाहिए। एक व्यापक रूप से इस्तेमाल किया जाने वाला सामान्य नियम इंगित करता है कि 15 मीटर (50 फीट) से अधिक लंबे केबलों की क्षमता बहुत अधिक होगी जब तक कि विशेष केबलों का उपयोग नहीं किया जाता है। कम क्षमता वाले केबलों का उपयोग करके लगभग 300 मीटर (1,000 फीट) तक की बड़ी दूरी पर संचार बनाए रखा जा सकता है।<ref>{{cite web |url=http://aplawrence.com/Unixart/serial.art.html |title=Serial Wiring |date=1992 |work=A. P. Lawrence |author-last=Lawrence |author-first=Tony |access-date=2011-07-28}}</ref> लंबी दूरी के लिए, अन्य सिग्नल मानक, जैसे RS-422, उच्च गति के लिए बेहतर अनुकूल हैं। | |||
चूंकि मानक परिभाषाएं हमेशा सही ढंग से लागू नहीं होती हैं, इसलिए | चूंकि मानक परिभाषाएं हमेशा सही ढंग से लागू नहीं होती हैं, इसलिए प्रलेखन से परामर्श करना, ब्रेकआउट बॉक्स के साथ कनेक्शन का परीक्षण करना या दो उपकरणों को आपस में जोड़ने पर काम करने वाले केबल को खोजने के लिए परीक्षण और त्रुटि का उपयोग करना अक्सर आवश्यक होता है। एक पूरी तरह से मानक-अनुरूप डीसीई डिवाइस और एक डीटीई डिवाइस को जोड़ने से एक केबल का उपयोग होगा जो प्रत्येक कनेक्टर में समान पिन नंबरों को जोड़ता है (एक तथाकथित "स्ट्रेट केबल")। केबल और कनेक्टर्स के बीच लिंग बेमेल को हल करने के लिए "लिंग परिवर्तक" उपलब्ध हैं। विभिन्न प्रकार के कनेक्टर्स के साथ उपकरणों को जोड़ने के लिए एक केबल की आवश्यकता होती है जो नीचे दी गई तालिका के अनुसार संबंधित पिनों को जोड़ती है। एक छोर पर 9 पिन और दूसरे छोर पर 25 पिन वाले केबल आम हैं। [[ 8P8C |8P8C]] कनेक्टर वाले उपकरणों के निर्माता आमतौर पर DB-25 या DE-9 कनेक्टर (या कभी-कभी विनिमेय कनेक्टर के साथ एक केबल प्रदान करते हैं ताकि वे कई उपकरणों के साथ काम कर सकें)। खराब-गुणवत्ता वाले केबल डेटा और नियंत्रण रेखाओं (जैसे रिंग इंडिकेटर) के बीच [[ क्रॉसस्टॉक |क्रॉसस्टॉक]] द्वारा गलत संकेत दे सकते हैं। | ||
यदि कोई दिया गया केबल डेटा कनेक्शन की अनुमति नहीं देगा, खासकर | एक अशक्त मॉडेम केबल आवश्यक हो सकता है यदि कोई दिया गया केबल डेटा कनेक्शन की अनुमति नहीं देगा, खासकर अगर जेंडर चेंजर उपयोग में हो। मानक में जेंडर चेंजर और अशक्त मॉडेम केबलों का उल्लेख नहीं किया गया है, इसलिए उनके लिए आधिकारिक रूप से स्वीकृत डिज़ाइन नहीं है। | ||
== डेटा और नियंत्रण संकेत == | == डेटा और नियंत्रण संकेत == | ||
[[File:CAN Connecteur.svg|thumb|एक 9-पिन का पुरुष पिनआउट (डी-सबमिनिएचर, डी -9) सीरियल पोर्ट आमतौर पर 1990 के कंप्यूटर पर पाया जाता है]] | [[File:CAN Connecteur.svg|thumb|एक 9-पिन का पुरुष पिनआउट (डी-सबमिनिएचर, डी -9) सीरियल पोर्ट आमतौर पर 1990 के कंप्यूटर पर पाया जाता है]] | ||
[[File:DB-25 male.svg|thumb|एक 25-पिन सीरियल पोर्ट (डी-सबमिनेटर, डीबी -25) का पुरुष पिनआउट आमतौर पर 1980 के कंप्यूटर पर पाया जाता है]] | [[File:DB-25 male.svg|thumb|एक 25-पिन सीरियल पोर्ट (डी-सबमिनेटर, डीबी -25) का पुरुष पिनआउट आमतौर पर 1980 के कंप्यूटर पर पाया जाता है]] | ||
निम्न तालिका | निम्न तालिका अनुशंसित DB-25 कनेक्टर्स पर आमतौर पर उपयोग किए जाने वाले RS-232 सिग्नल (जिसे "सर्किट" कहा जाता है) और उनके पिन असाइनमेंट सूचीबद्ध करती है।<ref>{{cite web |url=http://www.hardwarebook.info/Serial_(PC_25) |title=Serial (PC 25) |work=Hardware Book |author-last=Ögren |author-first=Joakim |date=2008-09-18 |access-date=2011-07-28}}</ref> (सामान्य रूप से उपयोग किए जाने वाले अन्य कनेक्टर्स के लिए सीरियल पोर्ट पिनआउट देखें, जो मानक द्वारा परिभाषित नहीं हैं।) | ||
{| class="wikitable sortable" style="margin:auto; text-align:center;" | {| class="wikitable sortable" style="margin:auto; text-align:center;" | ||
! colspan="3" | | ! colspan="3" | सर्किट !! colspan="2" | Direction !! rowspan="2" | [[DB-25]] पिन | ||
|- | |- | ||
! | ! नाम !! width="400px" | विशिष्ट उद्देश्य !! संक्षेपाक्षर !! डीटीई !! डीसीई | ||
|- | |- | ||
| align="left" | [[Data Terminal Ready]] || align="left" | | | align="left" | [[Data Terminal Ready|डेटा टर्मिनल रेडी]] || align="left" | डीटीई कॉल प्राप्त करने, आरंभ करने, या जारी रखने के लिए तैयार है। || डीटीआर || बाहर || अंदर || 20 | ||
|- | |- | ||
| align="left" | [[Data Carrier Detect]] || align="left" | | | align="left" | [[Data Carrier Detect|डेटा कैरियर डिटेक्ट]] || align="left" | डीसीई एक दूरस्थ डीसीई से एक वाहक प्राप्त कर रहा है। || डीसीडी || अंदर || बाहर || 8 | ||
|- | |- | ||
| align="left" | | | align="left" | डेटा सेट रेडी || align="left" | डीसीई डाटा प्राप्त करने और भेजने के लिए तैयार है। || डीएसआर || अंदर || बाहर || 6 | ||
|- | |- | ||
| align="left" | | | align="left" | रिंग इंडिकेटर || align="left" | डीसीई ने टेलीफोन लाइन पर एक इनकमिंग रिंग सिग्नल का पता लगाया है। || आरआई || अंदर || बाहर || 22 | ||
|- | |- | ||
| align="left" | | | align="left" | रिक्वेस्ट टू सेंड || align="left" | डीटीई अनुरोध करता है कि डीसीई डेटा संचारित करने की तैयारी करे। || आरटीएस || बाहर || अंदर || 4 | ||
|- | |- | ||
| align="left" | | | align="left" | रेसिव टू रिसीव || align="left" | डीटीई डीसीई से डेटा प्राप्त करने के लिए तैयार है। यदि उपयोग में है, तो यह माना जाता है कि आरटीएस हमेशा मुखर है || आरटीआर || बाहर || अंदर || 4 | ||
|- | |- | ||
| align="left" | | | align="left" | क्लियर टू सेंड || align="left" | डीसीई डीटीई से डेटा स्वीकार करने के लिए तैयार है। || सीटीएस || अंदर || बाहर || 5 | ||
|- | |- | ||
| align="left" | | | align="left" | ट्रांसमिटेड डेटा || align="left" | डीटीई से डीसीई तक डेटा ले जाती है। || टीएक्सडी || बाहर || अंदर || 2 | ||
|- | |- | ||
| align="left" | | | align="left" | रिसीव्ड डेटा || align="left" | डीसीई से डीटीई तक डेटा ले जाता है। || आरएक्सडी || अंदर || बाहर || 3 | ||
|- | |- | ||
| align="left" | | | align="left" | कॉमन ग्राउंड || align="left" | उपरोक्त सभी के लिए जीरो वोल्टेज संदर्भ। || जीएनडी || colspan="2" | <small>कॉमन</small>|| 7 | ||
|- | |- | ||
| align="left" | | | align="left" | प्रोटेक्टिव ग्राउंड || align="left" | चेसिस ग्राउंड से जुड़ा हुआ है। || पीजी || colspan="2" | <small>कॉमन</small>|| 1 | ||
|} | |} | ||
संकेतों को डीटीई के दृष्टिकोण से नामित किया गया | संकेतों को डीटीई के दृष्टिकोण से नामित किया गया है। ग्राउंड पिन अन्य कनेक्शनों के लिए सामान्य रिटर्न है और "शून्य" वोल्टेज स्थापित करता है जिससे अन्य पिनों पर वोल्टेज संदर्भित होते हैं। DB-25 कनेक्टर में पिन 1 पर एक दूसरा "प्रोटेक्टिव ग्राउंड" शामिल है; यह आंतरिक रूप से उपकरण फ्रेम ग्राउंड से जुड़ा है, और इसे केबल या कनेक्टर्स में सिग्नल ग्राउंड से नहीं जोड़ा जाना चाहिए। | ||
==={{anchor|RI}}रिंग इंडिकेटर === | ==={{anchor|RI}}रिंग इंडिकेटर === | ||
[[File:Modem US Robotics Courier Dual Standard.jpg|thumb|right| | [[File:Modem US Robotics Courier Dual Standard.jpg|thumb|right|यूएस रोबोटिक्स कूरियर बाहरी मॉडेम में एक DB-25 कनेक्टर था जो कनेक्टेड [[ टेलीफोन लाइन ]] बजने पर होस्ट कंप्यूटर को सूचित करने के लिए रिंग संकेतक सिग्नल का उपयोग करता था]] | ||
रिंग इंडिकेटर ( | रिंग इंडिकेटर (आरआई) डीसीई से डीटीई डिवाइस को भेजा गया सिग्नल है। यह टर्मिनल डिवाइस को इंगित करता है कि फोन लाइन बज रही है। कई कंप्यूटर सीरियल पोर्ट में, आरआई सिग्नल की स्थिति बदलने पर एक [[ हार्डवेयर अंतराल |हार्डवेयर]] व्यवधान उत्पन्न होता है। इस हार्डवेयर व्यवधान के लिए समर्थन होने का अर्थ है कि किसी प्रोग्राम या ऑपरेटिंग सिस्टम को आरआई पिन की स्थिति में बदलाव के बारे में सूचित किया जा सकता है, बिना सॉफ्टवेयर को पिन की स्थिति को "पोल" करने की आवश्यकता है। आरआई दूसरे सिग्नल के अनुरूप नहीं है जो समान जानकारी को विपरीत तरीके से ले जाता है। | ||
एक बाहरी मॉडेम पर रिंग इंडिकेटर पिन की स्थिति | एक बाहरी मॉडेम पर, रिंग इंडिकेटर पिन की स्थिति अक्सर "एए" (ऑटो आंसर) लाइट से जुड़ी होती है, जो RI सिग्नल द्वारा रिंग का पता चलने पर चमकती है।घोषित आरआई सिग्नल रिंगिंग पैटर्न का बारीकी से पालन करता है, जो सॉफ़्टवेयर को विशिष्ट रिंग पैटर्न का पता लगाने की अनुमति दे सकता है। | ||
रिंग इंडिकेटर सिग्नल का उपयोग कुछ पुराने | रिंग इंडिकेटर सिग्नल का उपयोग कुछ पुराने अनइंटरप्टिबल पावर सप्लाई (यूपीएस) द्वारा किया जाता है ताकि कंप्यूटर को बिजली की विफलता की स्थिति का संकेत मिल सके। | ||
कुछ व्यक्तिगत | कुछ व्यक्तिगत कंप्यूटरों को वेक-ऑन-रिंग के लिए कॉन्फ़िगर किया जा सकता है, जिससे फ़ोन कॉल का उत्तर देने के लिए कंप्यूटर को निलंबित कर दिया जाता है। | ||
=== आरटीएस, सीटीएस, और आरटीआर === | === आरटीएस, सीटीएस, और आरटीआर === | ||
{{further| | {{further|फ्लो कंट्रोल (डेटा) हार्डवेयर फ्लो कंट्रोल}} | ||
रिक्वेस्ट टू सेंड (आरटीएस) और क्लियर टू सेंड (सीटीएस) सिग्नल मूल रूप से [[ बेल 202 मॉडेम |बेल 202]] जैसे हॉफ-डुप्लेक्स (एक समय में एक दिशा) मोडेम के साथ उपयोग के लिए परिभाषित किए गए थे। ये मोडेम जरूरत न होने पर अपने ट्रांसमीटर को निष्क्रिय कर देते हैं और एक प्रेषित करना चाहिए पुन: सक्षम होने पर रिसीवर को सिंक्रनाइज़ेशन प्रस्तावना। डीटीई डीसीई को संचारित करने की अपनी इच्छा को इंगित करने के लिए आरटीएस पर जोर देता है, और प्रतिक्रिया में,डीसीई ने सीटीएस को अनुमति देने का दावा करता है, एक बार डीसीई के साथ दूर अंत में सिंक्रनाइज़ेशन प्राप्त हो जाता है। ऐसे मोडेम अब आम उपयोग में नहीं हैं। ऐसा कोई सुसंगत संकेत नहीं है जिसका उपयोग डीटीई डीसीई से आने वाले डेटा को अस्थायी रूप से रोकने के लिए कर सके। इस प्रकार RS-232 का आरटीएस और सीटीएस सिग्नलों का उपयोग मानक के पुराने संस्करणों के अनुसार असममित है। | |||
यह योजना वर्तमान में RS-232 से RS-485 कन्वर्टर्स में | यह योजना वर्तमान में RS-232 से RS-485 कन्वर्टर्स में कार्यरत है। RS-485 एक मल्टीपल-एक्सेस बस है जिस पर एक समय में केवल एक डिवाइस ट्रांसमिट कर सकता है, एक अवधारणा RS-232 में प्रदान नहीं की गई है। RS-232 डिवाइस आरटीएस पर जोर देती है, कनवर्टर को RS-485 बस का नियंत्रण लेने के लिए कहती है ताकि कनवर्टर, और इस प्रकार RS-232 डिवाइस, बस पर डेटा भेज सके। | ||
आधुनिक संचार वातावरण पूर्ण-द्वैध (दोनों दिशाओं एक साथ) | आधुनिक संचार वातावरण पूर्ण-द्वैध (दोनों दिशाओं में एक साथ) मोडेम का उपयोग करते हैं। उस परिवेश में, डीटीई के पास आरटीएस को अक्षम करने का कोई कारण नहीं है। हालांकि, लाइन की गुणवत्ता बदलने, डेटा के प्रसंस्करण में देरी आदि की संभावना के कारण सममित, द्विदिश प्रवाह नियंत्रण की आवश्यकता है। | ||
दोनों दिशाओं में प्रवाह नियंत्रण प्रदान करने वाला एक | विभिन्न उपकरण निर्माताओं द्वारा 1980 के दशक के अंत में दोनों दिशाओं में प्रवाह नियंत्रण प्रदान करने वाला एक असममित विकल्प विकसित और विपणन किया गया था। यह आरटीएस सिग्नल को फिर से परिभाषित करता है जिसका अर्थ है कि डीटीई डीसीई से डेटा प्राप्त करने के लिए तैयार है। इस योजना को अंततः RS-232-E (वास्तव में उस समय तक TIA-232-E) संस्करण में एक नए सिग्नल, "आरटीआर (रेडी टू रिसीव)" को परिभाषित करके संहिताबद्ध किया गया, जो सीसीआईटीटी (CCITT) V.24 सर्किट 133 है। TIA-232-E और संबंधित अंतरराष्ट्रीय मानकों को यह दर्शाने के लिए अद्यतन किया गया था कि सर्किट 133, लागू होने पर, आरटीएस (भेजने के लिए अनुरोध) के समान पिन साझा करता है, और जब 133 उपयोग में होता है, तो आरटीएस को डीसीई द्वारा हर समय मुखर माना जाता है।<ref>{{cite newsgroup |title=Re: EIA-232 full duplex RTS/CTS flow control standard proposal |author-first=Casey |author-last=Leedom |date=1990-02-20 |newsgroup=comp.dcom.modems |message-id=49249@lll-winken.LLNL.GOV |url=http://groups.google.com/group/comp.dcom.modems/msg/39042605325cc765?dmode=source |access-date=2014-02-03}}</ref> | ||
इस | इस योजना में, जिसे आमतौर पर "आरटीएस/सीटीएस प्रवाह नियंत्रण" या "आरटीएस/सीटीएस हैंडशेकिंग" कहा जाता है (हालांकि तकनीकी रूप से सही नाम "आरटीआर/सीटीएस" होगा), डीटीई डीसीई से डेटा प्राप्त करने के लिए तैयार है, यदि ऐसा है, तो यह आरटीएस पर जोर देता है। और डीसीई जब भी डीटीई से डेटा प्राप्त करने के लिए तैयार होता है, सीटीएस पर जोर देता है। आरटीएस और सीटीएस के आधे-द्वैध मोडेम के मूल उपयोग के विपरीत, ये दो सिग्नल एक-दूसरे से स्वतंत्र रूप से काम करते हैं। यह हार्डवेयर प्रवाह नियंत्रण का एक उदाहरण है। हालांकि, RS-232 से लैस उपकरणों पर उपलब्ध विकल्पों के विवरण में "हार्डवेयर प्रवाह नियंत्रण" का मतलब हमेशा आरटीएस/सीटीएस हाथ मिलाना नहीं होता है। | ||
इस प्रोटोकॉल का उपयोग करने वाले उपकरण को कुछ अतिरिक्त डेटा बफर करने के लिए तैयार रहना चाहिए, क्योंकि रिमोट सिस्टम स्थानीय सिस्टम के आरटीआर को डी-एसर्ट करने से ठीक पहले ट्रांसमिट करना शुरू कर सकता है। | |||
== | === 3-वायर और 5-वायर RS-232 === | ||
EIA-232 मानक कई विशेषताओं के लिए कनेक्शन निर्दिष्ट करता है जो अधिकांश कार्यान्वयन में उपयोग नहीं किए जाते | एक न्यूनतम "3-तार" RS-232 कनेक्शन जिसमें केवल डेटा प्राप्त करने वाले डेटा को प्रसारित करना शामिल है, और जमीन का उपयोग आमतौर पर तब किया जाता है जब RS-232 की पूर्ण सुविधाओं की आवश्यकता नहीं होती है। यहां तक कि एक दो-तार कनेक्शन (डेटा और ग्राउंड) का उपयोग किया जा सकता है यदि डेटा प्रवाह एक तरफा है (उदाहरण के लिए, एक डिजिटल पोस्टल स्केल जो समय-समय पर वज़न रीडिंग भेजता है, या एक जीपीएस रिसीवर जो समय-समय पर स्थिति भेजता है, यदि कोई कॉन्फ़िगरेशन नहीं है RS-232 आवश्यक है)। जब दो-तरफ़ा डेटा के अलावा केवल हार्डवेयर प्रवाह नियंत्रण की आवश्यकता होती है, तो आरटीएस और सीटीएस लाइनों को 5-वायर संस्करण में जोड़ा जाता है। | ||
== प्रायः प्रयोग उपयोग की जाने वाली विशेषताएं == | |||
EIA-232 मानक कई विशेषताओं के लिए कनेक्शन निर्दिष्ट करता है जो कि अधिकांश कार्यान्वयन में उपयोग नहीं किए जाते हैं। इनके इस्तेमाल के लिए 25-पिन कनेक्टर और केबल की जरूरत होती है। | |||
=== सिग्नल दर चयन === | === सिग्नल दर चयन === | ||
डीटीई या डीसीई "उच्च" या "कम" सिग्नलिंग दर के उपयोग को निर्दिष्ट कर सकता है। दरें, साथ ही कौन सा डिवाइस दर का चयन करेगा, दोनों को डीटीई और डीसीई दोनों में कॉन्फ़िगर किया जाना चाहिए। प्रीसेट डिवाइस पिन 23 को ऑन पर सेट करके उच्च दर का चयन करता है। | |||
=== [[ लूपबैक ]] परीक्षण === | === [[ लूपबैक |लूपबैक]] परीक्षण === | ||
कई | कई डीसीई उपकरणों में परीक्षण के लिए उपयोग की जाने वाली लूपबैक क्षमता होती है। सक्षम होने पर, सिग्नल रिसीवर को भेजे जाने के बजाय प्रेषक को वापस प्रतिध्वनित किया जाता है। यदि समर्थित है, तो डीटीई स्थानीय डीसीई (जिससे यह जुड़ा हुआ है) को पिन 18 चालू करके लूपबैक मोड में प्रवेश करने का संकेत दे सकता है, या रिमोट डीसीई (जिससे स्थानीय डीसीई जुड़ा हुआ है) पिन को लूपबैक मोड पर सेट करके पूछ सकता है प्रवेश। 21 पर। बाद वाला संचार लिंक के साथ-साथ दोनों डीसीई का परीक्षण करता है। जब डीसीई टेस्ट मोड में होता है, तो यह पिन 25 को सेट करके डीटीई को सिग्नल देता है। | ||
लूपबैक परीक्षण के | लूपबैक परीक्षण के सामान्य रूप से उपयोग किए जाने वाले संस्करण में किसी भी अंत की कोई विशेष क्षमता सम्मिलित नहीं होती है। एक हार्डवेयर लूपबैक केवल एक ही कनेक्टर में पूरक पिन को एक साथ जोड़ने वाला तार है (लूपबैक देखें)। | ||
लूपबैक परीक्षण अक्सर एक विशेष डीटीई के साथ किया जाता है जिसे | लूपबैक परीक्षण अक्सर एक विशेष डीटीई के साथ किया जाता है जिसे बिट त्रुटि दर परीक्षक (या बीईआरटी) कहा जाता है। | ||
=== टाइमिंग सिग्नल === | === टाइमिंग सिग्नल (समय संकेत) === | ||
कुछ सिंक्रोनस डिवाइस डेटा ट्रांसमिशन को | कुछ सिंक्रोनस डिवाइस डेटा ट्रांसमिशन को सिंक्रोनाइज़ करने के लिए [[ घड़ी संकेत |घड़ी संकेत]] प्रदान करते हैं, खासकर उच्च डेटा दरों पर। डीसीई द्वारा पिन 15 और 17 पर दो टाइमिंग सिग्नल प्रदान किए जाते हैं। पिन 15 ट्रांसमीटर क्लॉक है, या टाइमिंग (एसटी) भेजें; डीटीई अगले बिट को डेटा लाइन (पिन 2) पर रखता है जब यह बंद से चालू होता है (इसलिए जब डीसीई बिट को पंजीकृत करता है तो यह चालू से बंद संक्रमण के दौरान स्थिर रहता है)। पिन 17 रिसीवर घड़ी है, या समय प्राप्त करें (आरटी); डीटीई डेटा लाइन (पिन 3) से अगले बिट को पढ़ता है जब यह घड़ी ऑन से ऑफ़ में परिवर्तित होती है। | ||
वैकल्पिक रूप से, डीटीई | वैकल्पिक रूप से, डीटीई प्रेषित डेटा के लिए पिन 24 पर ट्रांसमीटर टाइमिंग (टीटी) नामक घड़ी संकेत प्रदान कर सकता है। जब घड़ी बंद से चालू होती है तो डेटा बदल जाता है, और चालू से बंद संक्रमण के दौरान पढ़ा जाता है। टीटी का उपयोग उस मुद्दे को दूर करने के लिए किया जा सकता है जहां एसटी को अज्ञात लंबाई और देरी के केबल को पार करना चाहिए, एक और अज्ञात देरी के बाद डीटीई से थोड़ा बाहर घड़ी और उसी अज्ञात केबल देरी पर डीसीई। लौटा देना चाहिए। चूंकि प्रेषित बिट और टीटी के बीच संबंध डीटीई डिजाइन में तय किया जा सकता है, और चूंकि दोनों सिग्नल एक ही केबल लंबाई को पार करते हैं, इसलिए टीटी का उपयोग करने से समस्या समाप्त हो जाती है। टीटी को प्रेषित डेटा के साथ संरेखित करने के लिए एक उपयुक्त चरण बदलाव के साथ एसटी को लूप करके उत्पन्न किया जा सकता है। टीटी पर एसटी लूप वापस डीटीई को आवृत्ति संदर्भ के रूप में डीसीई का उपयोग करने देता है, और घड़ी को डेटा टाइमिंग में सुधारता है। | ||
[[ तुल्यकालिक डेटा लिंक नियंत्रण |तुल्यकालिक डेटा लिंक नियंत्रण]] (एसडीएलसी), [[ एचडीएलसी |एचडीएलसी]] और X.25 जैसे प्रोटोकॉल के लिए सिंक्रोनस क्लॉकिंग की आवश्यकता होती है। | |||
=== माध्यमिक चैनल === | === माध्यमिक चैनल === | ||
प्राथमिक चैनल की क्षमता के समान एक द्वितीयक डेटा चैनल वैकल्पिक रूप से डीटीई और डीसीई उपकरणों द्वारा कार्यान्वित किया जा सकता है। पिन असाइनमेंट निम्नानुसार हैं: | |||
{| class="wikitable" style="margin:auto;" | {| class="wikitable" style="margin:auto;" | ||
! | ! सिग्नल (संकेत) !! पिन | ||
|- | |- | ||
| | | कॉमन ग्राउंड || 7 (प्राथमिक के समान) | ||
|- | |- | ||
| | | माध्यमिक प्रेषित डेटा (एसटीडी) || 14 | ||
|- | |- | ||
| | | माध्यमिक प्राप्त डेटा (एसआरडी) || 16 | ||
|- | |- | ||
| | | भेजने के लिए द्वितीयक अनुरोध (एसआरटीएस) || 19 | ||
|- | |- | ||
| | | माध्यमिक स्पष्ट भेजने के लिए (एससीटीएस) || 13 | ||
|- | |- | ||
| | | सेकेंडरी कैरियर डिटेक्ट (एसडीसीडी) || 12 | ||
|} | |} | ||
== संबंधित मानक == | == संबंधित मानक == | ||
अन्य सीरियल सिग्नलिंग | अन्य सीरियल सिग्नलिंग मानकों के अनुरूप RS-232 पोर्ट के साथ अंतर्संचालन नहीं किया जा सकता है। उदाहरण के लिए, लगभग +5 V और 0 V के टीटीएल स्तर का उपयोग करने से सिग्नल स्तर मानक के अपरिभाषित क्षेत्र में गिर जाता है। ऐसे स्तर कभी-कभी एनएमईए 0183-संगत जीपीएस ([[ ग्लोबल पोजिशनिंग सिस्टम |ग्लोबल पोजिशनिंग सिस्टम]]) रिसीवर और गहराई खोजक के साथ उपयोग किए जाते हैं। | ||
20 एमए करंट लूप हाई के लिए 20 एमए ([[ अंकीय वर्तमान पाश इंटरफ़ेस |अंकीय वर्तमान पाश इंटरफ़ेस]]) करंट की अनुपस्थिति और लो के लिए लूप में करंट की उपस्थिति का उपयोग करता है; यह सिग्नलिंग विधि अक्सर लंबी दूरी के लिए और ऑप्टिकली पृथक ([[ ऑप्टो आइसोलेटर |ऑप्टो आइसोलेटर]]) लिंक के लिए उपयोग की जाती है। करंट-लूप डिवाइस को एनालॉग RS-232 पोर्ट से कनेक्ट करने के लिए एक स्तर के अनुवादक की आवश्यकता होती है। करंट-लूप डिवाइस वोल्टेज की आपूर्ति कर सकते हैं जो एक अनुपालन डिवाइस की अनिवार्य वोल्टेज सीमा से अधिक है। मूल आईबीएम पीसी सीरियल पोर्ट कार्ड ने 20 एमए वर्तमान-लूप इंटरफ़ेस लागू किया, जो [[ प्लग-संगत |प्लग-संगत]] उपकरण के अन्य आपूर्तिकर्ताओं द्वारा कभी भी अनुकरण नहीं किया गया था। | |||
RS-232 के समान | अन्य सीरियल इंटरफेस RS-232 के समान: | ||
*RS-422-RS-232 के समान एक उच्च गति प्रणाली लेकिन अंतर | *RS-422 - RS-232 के समान एक उच्च-गति प्रणाली लेकिन अंतर संकेतन के साथ | ||
*RS-423-RS-422 के समान | *RS-423 - RS-422 के समान लेकिन असंतुलित सिग्नलिंग के साथ एक उच्च गति प्रणाली | ||
*[[ RS-449 ]]- | *[[ RS-449 |RS-449]] - कार्यात्मक और यांत्रिक इंटरफ़ेस जो RS-422 और RS-423 सिग्नल का उपयोग करता है; RS-232 की तरह कभी भी पकड़ा नहीं गया और ईआईए द्वारा वापस ले लिया गया | ||
*RS-485-RS-422 का | *RS-485 - RS-422 का संतति जिसे मल्टीड्रॉप कॉन्फ़िगरेशन में बस के रूप में इस्तेमाल किया जा सकता है | ||
*[[ MIL-STD-188 ]]- | *[[ MIL-STD-188 ]]-जैसी प्रणाली लेकिन बेहतर प्रतिबाधा और समय नियंत्रण में वृद्धि के साथ | ||
*[[ ईआईए -530 ]]-एक | *EIA-530 ([[ ईआईए -530 |ईआईए -530]]) - एक EIA-232 पिनआउट कॉन्फ़िगरेशन में RS-422 या RS-423 ([[ आरएस -423 |आरएस -423]]) विद्युत गुणों का उपयोग करने वाली एक उच्च-गति प्रणाली, इस प्रकार दोनों के सर्वश्रेष्ठ संयोजन; RS-449 को प्रतिस्थापित करता है | ||
*EIA/TIA-561-मॉड्यूलर कनेक्टर | *EIA/TIA-561 - आठ-स्थिति, आठ-संपर्क (8P8C) मॉड्यूलर कनेक्टर के लिए RS-232 पिनआउट को परिभाषित करता है (जिसे अनुचित तरीके से RJ45 कनेक्टर कहा जा सकता है) | ||
* | *EIA/TIA-562 - EIA/TIA-232 का निम्न-वोल्टेज संस्करण | ||
*TIA-574-EIA-232 इलेक्ट्रिकल सिग्नलिंग के साथ उपयोग के लिए 9-पिन डी- | *TIA-574 - EIA-232 इलेक्ट्रिकल सिग्नलिंग के साथ उपयोग के लिए 9-पिन डी-सबमिनीचर कनेक्टर पिनआउट का मानकीकरण करता है, जैसा कि आईबीएम पीसी/एटी (IBM PC/AT) पर उत्पन्न हुआ है | ||
*EIA/TIA-694-TIA/EIA-232-F के समान लेकिन 512 kbit/s तक उच्च डेटा दरों के लिए समर्थन के साथ | *EIA/TIA-694 - TIA/EIA-232-F के समान लेकिन 512 kbit/s तक की उच्च डेटा दरों के लिए समर्थन के साथ | ||
== विकास उपकरण == | == विकास उपकरण == | ||
RS-232 का उपयोग | RS-232 का उपयोग करते हुए सिस्टम का विकास या समस्या निवारण करते समय, समस्याओं का पता लगाने के लिए हार्डवेयर संकेतों की बारीकी से जांच करना महत्वपूर्ण हो सकता है। यह एल ई डी के साथ सरल उपकरणों का उपयोग करके किया जा सकता है जो डेटा और नियंत्रण संकेतों के तर्क स्तर को इंगित करता है। "वाई" केबल्स का उपयोग एक दिशा में सभी ट्रैफ़िक की निगरानी के लिए दूसरे सीरियल पोर्ट का उपयोग करने की अनुमति देने के लिए किया जा सकता है। एक [[ सीरियल लाइन विश्लेषक |सीरियल लाइन विश्लेषक]] एक [[ तर्क विश्लेषक |तर्क विश्लेषक]] के समान एक उपकरण है, लेकिन RS-232 के वोल्टेज स्तर, कनेक्टर्स, और जहां उपयोग किया जाता है, क्लॉक सिग्नल के लिए विशेष है; यह डेटा एकत्र करता है, संग्रहीत करता है और प्रदर्शित करता है और संकेतों को नियंत्रित करता है, जिससे डेवलपर्स उन्हें विस्तार से देख सकते हैं। कुछ केवल संकेतों को तरंगों के रूप में प्रदर्शित करते हैं; अधिक विस्तृत संस्करणों में ASCII या अन्य सामान्य कोड में वर्णों को डिकोड करने की क्षमता और RS-232 जैसे एसडीएलसी, एचडीएलसी, डीडीसीएमपी ([[ DDCMP |DDCMP]]) और X.25 पर उपयोग किए जाने वाले सामान्य प्रोटोकॉल की व्याख्या करना शामिल है। सीरियल लाइन एनालाइजर स्टैंडअलोन यूनिट के रूप में, सामान्य प्रयोजन के लॉजिक एनालाइजर और [[ आस्टसीलस्कप |ऑसिलोस्कोप]] के लिए सॉफ्टवेयर और इंटरफेस केबल के रूप में और आम पर्सनल कंप्यूटर और डिवाइस पर चलने वाले प्रोग्राम के रूप में उपलब्ध हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
* एसिंक्रोनस सीरियल कम्युनिकेशन | * एसिंक्रोनस सीरियल कम्युनिकेशन | ||
* [[ बॉड ]] | * [[ बॉड |बॉड रेट]] | ||
* [[ सिंक्रोनस और एसिंक्रोनस सिग्नलिंग की तुलना ]] | * [[ सिंक्रोनस और एसिंक्रोनस सिग्नलिंग की तुलना ]] | ||
* सिंक्रोनस सीरियल कम्युनिकेशन | * सिंक्रोनस सीरियल कम्युनिकेशन | ||
Line 266: | Line 276: | ||
==संदर्भ== | ==संदर्भ== | ||
{{Reflist}} | {{Reflist}} | ||
==अग्रिम पठन== | ==अग्रिम पठन== | ||
*{{cite book |title=Serial Port Complete: COM Ports, USB Virtual COM Ports, and Ports for Embedded Systems |edition=2nd |author-first=Jan |author-last=Axelson |publisher=Lakeview Research |date=2007 |isbn=978-1-931-44806-2}} | *{{cite book |title=Serial Port Complete: COM Ports, USB Virtual COM Ports, and Ports for Embedded Systems |edition=2nd |author-first=Jan |author-last=Axelson |publisher=Lakeview Research |date=2007 |isbn=978-1-931-44806-2}} | ||
Line 274: | Line 282: | ||
* {{cite web |title=RS232C Standard |work=Knowledgebase |publisher=[[National Instruments]] |url=http://digital.ni.com/public.nsf/allkb/1C8F13D0806056F886256FAC00649176 |access-date=2017-03-05 |url-status=live |archive-url=https://web.archive.org/web/20170305224454/http://digital.ni.com/public.nsf/allkb/1C8F13D0806056F886256FAC00649176 |archive-date=2017-03-05}} | * {{cite web |title=RS232C Standard |work=Knowledgebase |publisher=[[National Instruments]] |url=http://digital.ni.com/public.nsf/allkb/1C8F13D0806056F886256FAC00649176 |access-date=2017-03-05 |url-status=live |archive-url=https://web.archive.org/web/20170305224454/http://digital.ni.com/public.nsf/allkb/1C8F13D0806056F886256FAC00649176 |archive-date=2017-03-05}} | ||
* {{cite book|title=ITU-T Recommendation V.24 - Data Communication over the telephone network - List of definitions for interchange circuits between data terminal equipment (DTE) and data circuit-terminating equipment (DCE) |publisher=[[International Telecommunication Union]] (ITU-T) |date=March 1993 |url=https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-V.24-199303-S!!PDF-E&type=items |access-date=2017-03-05 |url-status=live |archive-url=https://web.archive.org/web/20150817230221/http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-V.24-199303-S%21%21PDF-E&type=items |archive-date=2015-08-17 }} | * {{cite book|title=ITU-T Recommendation V.24 - Data Communication over the telephone network - List of definitions for interchange circuits between data terminal equipment (DTE) and data circuit-terminating equipment (DCE) |publisher=[[International Telecommunication Union]] (ITU-T) |date=March 1993 |url=https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-V.24-199303-S!!PDF-E&type=items |access-date=2017-03-05 |url-status=live |archive-url=https://web.archive.org/web/20150817230221/http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-V.24-199303-S%21%21PDF-E&type=items |archive-date=2015-08-17 }} | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
* {{Commons category-inline|RS-232}} | * {{Commons category-inline|RS-232}} | ||
* {{Wikibooks-inline|Serial Programming:RS-232 Connections}} | * {{Wikibooks-inline|Serial Programming:RS-232 Connections}} | ||
{{DEFAULTSORT:Rs-232}} | {{DEFAULTSORT:Rs-232}} | ||
[[Category: | [[Category:All accuracy disputes|Rs-232]] | ||
[[Category:Created with V14 On 06/09/2022]] | [[Category:All articles with unsourced statements|Rs-232]] | ||
[[Category:Articles with disputed statements from January 2018|Rs-232]] | |||
[[Category:Articles with hatnote templates targeting a nonexistent page|Rs-232]] | |||
[[Category:Articles with invalid date parameter in template|Rs-232]] | |||
[[Category:Articles with short description|Rs-232]] | |||
[[Category:Articles with unsourced statements from April 2011|Rs-232]] | |||
[[Category:Articles with unsourced statements from April 2022|Rs-232]] | |||
[[Category:CS1 français-language sources (fr)|Rs-232]] | |||
[[Category:CS1 maint|Rs-232]] | |||
[[Category:CS1 Ελληνικά-language sources (el)|Rs-232]] | |||
[[Category:Citation Style 1 templates|W]] | |||
[[Category:Collapse templates|Rs-232]] | |||
[[Category:Created with V14 On 06/09/2022|Rs-232]] | |||
[[Category:Lua-based templates|Rs-232]] | |||
[[Category:Machine Translated Page|Rs-232]] | |||
[[Category:Missing redirects|Rs-232]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Rs-232]] | |||
[[Category:Pages with script errors|Rs-232]] | |||
[[Category:Short description with empty Wikidata description|Rs-232]] | |||
[[Category:Sidebars with styles needing conversion|Rs-232]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready|Rs-232]] | |||
[[Category:Templates based on the Citation/CS1 Lua module|Rs-232]] | |||
[[Category:Templates generating COinS|Cite web]] | |||
[[Category:Templates generating microformats|Rs-232]] | |||
[[Category:Templates that add a tracking category|Rs-232]] | |||
[[Category:Templates that are not mobile friendly|Rs-232]] | |||
[[Category:Templates that generate short descriptions|Rs-232]] | |||
[[Category:Templates used by AutoWikiBrowser|Cite web]] | |||
[[Category:Templates using TemplateData|Rs-232]] | |||
[[Category:Webarchive template wayback links|Rs-232]] | |||
[[Category:Wikipedia fully protected templates|Cite web]] | |||
[[Category:Wikipedia metatemplates|Rs-232]] | |||
[[Category:ईआईए मानक|Rs-232]] | |||
[[Category:कंप्यूटर हार्डवेयर मानक|Rs-232]] | |||
[[Category:दूरसंचार उपकरण|Rs-232]] | |||
[[Category:नेटवर्किंग मानक|Rs-232]] | |||
[[Category:१ ९ ६० में कंप्यूटर से संबंधित परिचय|Rs-232]] |
Latest revision as of 11:59, 4 September 2023
दूरसंचार में, RS-232 या अनुशंसित मानक 232[1] मूल रूप से 1960 में डेटा के सीरियल कम्युनिकेशन ट्रांसमिशन के लिए शुरू किया गया एक मानक है।[2] यह औपचारिक रूप से एक डीटीई (डेटा टर्मिनल उपकरण) जैसे कि एक कंप्यूटर टर्मिनल और एक डीसीई (डेटा सर्किट-टर्मिनेटिंग उपकरण या डेटा संचार उपकरण), जैसे कि एक मॉडेम के बीच कनेक्टिंग सिग्नल को परिभाषित करता है। मानक विद्युत विशेषताओं और संकेतों के समय, संकेतों का अर्थ, और भौतिक आकार और कनेक्टर्स के पिनआउट को परिभाषित करता है। मानक का वर्तमान संस्करण डेटा टर्मिनल उपकरण और डेटा सर्किट-समापन उपकरण के बीच टीआईए-232-एफ इंटरफ़ेस है, जो 1997 में जारी सीरियल बाइनरी डेटा इंटरचेंज को नियोजित करता है। RS-232 मानक आमतौर पर कंप्यूटर सीरियल पोर्ट में उपयोग किया जाता था और है अभी भी व्यापक रूप से उपयोग किया जाता है। औद्योगिक संचार उपकरण में उपयोग किया जाता है।
RS-232 मानक का अनुपालन करने वाला एक सीरियल पोर्ट कभी कई प्रकार के कंप्यूटरों की एक मानक विशेषता थी। पर्सनल कंप्यूटर ने उन्हें न केवल मोडेम, बल्कि प्रिंटर, कंप्यूटर माउस, डेटा स्टोरेज, अबाधित विद्युत आपूर्ति (UPS) और अन्य परिधीय उपकरणों के कनेक्शन के लिए भी उपयोग किया।
RS-422, RS-485 और ईथरनेट जैसे बाद के इंटरफेस की तुलना में, RS-232 में कम संचरण गति, कम अधिकतम केबल लंबाई, बड़ा वोल्टेज स्विंग, बड़ा मानक कनेक्टर, कोई मल्टीपॉइंट क्षमता और सीमित मल्टीड्रॉप क्षमता नहीं है। आधुनिक व्यक्तिगत कंप्यूटरों में, USB ने अपने अधिकांश परिधीय इंटरफ़ेस भूमिकाओं में RS-232 को विस्थापित कर दिया है। उनकी सादगी और अतीत की सर्वव्यापकता के लिए धन्यवाद, हालांकि, RS-232 इंटरफेस अभी भी उपयोग किए जाते हैं - विशेष रूप से औद्योगिक मशीनों, नेटवर्किंग उपकरण और वैज्ञानिक उपकरणों में जहां एक छोटी दूरी, पॉइंट-टू-पॉइंट, कम गति वाले वायर्ड कनेक्शन की आवश्यकता होती है।[citation needed]
मानक का दायरा
जहां तक 1969 का इलेक्ट्रॉनिक इंडस्ट्रीज एसोसिएशन (ईआईए) मानक RS-232-C[3] परिभाषित करता है:
- इलेक्ट्रिकल सिग्नल (विद्युत संकेत) विशेषताओं में वोल्टेज स्तर, संकेतन दर, संकेतों का समय और स्लीव दर, वोल्टेज झेलने का स्तर, शार्ट सर्किट व्यवहार और अधिकतम भार क्षमता सम्मिलित हैं।
- इंटरफ़ेस यांत्रिक विशेषताओं, प्लगेबल कनेक्टर और पिन पहचान।
- इंटरफ़ेस कनेक्टर में प्रत्येक सर्किट के कार्य।
- चयनित टेलीकॉम अनुप्रयोगों के लिए इंटरफेस सर्किट के सामान्य सबसेट।
मानक ऐसे तत्वों को वर्ण एन्कोडिंग (अर्थात एएससीआईआई (ASCII), ईबीसीडीआईसी (EBCDIC) या अन्य), वर्णों की फ़्रेमिंग (बिट्स प्रारंभ या बंद करना, आदि), बिट्स के संचरण क्रम, या त्रुटि पहचान प्रोटोकॉल के रूप में परिभाषित नहीं करता है। सीरियल पोर्ट हार्डवेयर कैरेक्टर फॉर्मेट और ट्रांसमिशन बिट रेट सेट करता है, आमतौर पर एक यूएआरटी (सार्वभौमिक अतुल्यकालिक रिसीवर-ट्रांसमीटर), जिसमें आंतरिक लॉजिक लेवल को RS-232-संगत सिग्नल लेवल में बदलने के लिए सर्किट भी हो सकते हैं। मानक संचरण के लिए बिट दर को परिभाषित नहीं करता है, सिवाय इसके कि यह कहता है कि यह प्रति सेकंड 20,000 बिट से कम बिट दर के लिए अभिप्रेत है।
इतिहास
RS-232 को पहली बार 1960[2]में इलेक्ट्रॉनिक इंडस्ट्रीज एसोसिएशन (EIA) द्वारा अनुशंसित मानक के रूप में प्रस्तुत किया गया था।[4][1] मूल डीटीई इलेक्ट्रोमैकेनिकल टेलेटाइपराइटर थे, और मूल डीसीई (आमतौर पर) मोडेम थे। जब इलेक्ट्रॉनिक टर्मिनल (स्मार्ट और डंब) उपयोग में आए, तो उन्हें अक्सर टेलेटाइपराइटर के साथ विनिमेय होने के लिए डिज़ाइन किया गया था, और इसलिए RS-232 का समर्थन किया।
क्योंकि मानक कंप्यूटर, प्रिंटर, परीक्षण उपकरण, पीओएस टर्मिनल और इसी तरह के उपकरण के लिए आवश्यकताओं को पूरा नहीं करता था, डिजाइनरों ने अक्सर विशेष रूप से अपने उपकरणों पर RS-232 संगत इंटरफ़ेस को लागू करने के लिए मानक की व्याख्या की। परिणामी सामान्य समस्याएं कनेक्टर्स पर सर्किट के गैर-मानक पिन असाइनमेंट, और गलत या अनुपलब्ध नियंत्रण सिग्नल थे। मानकों के अनुपालन की इस कमी ने अलग-अलग उपकरणों के कनेक्शन के लिए ब्रेकआउट बॉक्स, पैच बॉक्स, परीक्षण उपकरण, किताबें और अन्य सहायता का एक संपन्न उद्योग बनाया। मानक से एक सामान्य विचलन सिग्नल को कम वोल्टेज पर चला रहा था। इसलिए कुछ निर्माताओं ने ट्रांसमीटर बनाए जो +5 V और -5 V की आपूर्ति करते थे और उन्हें "RS-232 संगत" के रूप में लेबल किया।[citation needed]
बाद में पर्सनल कंप्यूटर (और अन्य उपकरण) मानक का उपयोग करने लगे ताकि वे मौजूदा उपकरणों से जुड़ सकें। कई वर्षों के लिए, एक RS-232-संगत पोर्ट धारावाहिक संचार के लिए एक मानक सुविधा थी, जैसे कि कई कंप्यूटरों पर मॉडेम कनेक्शन (कंप्यूटर के साथ डीटीई के रूप में कार्य करना)। 1990 के दशक के अंत तक यह व्यापक उपयोग में रहा। व्यक्तिगत कंप्यूटर बाह्य उपकरणों के लिए, इसे काफी हद तक अन्य इंटरफ़ेस मानकों, जैसे कि USB द्वारा प्रतिस्थापित किया गया है। RS-232 का उपयोग अभी भी बाह्य उपकरणों, औद्योगिक उपकरणों (जैसे PLCs), कंसोल पोर्ट्स, और विशेष प्रयोजन के उपकरणों के पुराने डिज़ाइनों को जोड़ने के लिए किया जाता है।
इसके इतिहास के दौरान मानक का कई बार नाम बदला गया है क्योंकि प्रायोजक संगठन ने अपना नाम बदल दिया है और इसे ईआईए (EIA) RS-232, ईआईए 232, और हाल ही में टीआईए (TIA) 232 के रूप में जाना जाता है। इलेक्ट्रॉनिक्स उद्योग द्वारा मानक को संशोधित और अद्यतन करना जारी है। एसोसिएशन और 1988 से टेलीकॉम इंडस्ट्री एसोसिएशन (TIA) द्वारा।[5] संशोधन सी अगस्त 1969 के एक दस्तावेज में जारी किया गया था। संशोधन डी 1986 में जारी किया गया था। 1997. तब से सीसीआईटीटी (CCITT) मानक आईटीयू-टी/सीसीआईटीटी V.24 (ITU-T/CCITT V.24 ) में समय और विवरण में संशोधन C के साथ परिवर्तन किए गए हैं, जिसका उद्देश्य अनुकूलता में सुधार करना है, लेकिन वर्तमान मानक के लिए निर्मित उपकरण पुराने संस्करणों के साथ इंटरऑपरेट करेगा।[citation needed]
संबंधित आईटीयू-टी मानकों में वी.24 (सर्किट आइडेंटिफिकेशन) और आईटीयू-टी/सीसीआईटीटी वी.28 (ITU-T/CCITT V.28 ) (सिग्नल वोल्टेज और टाइमिंग विशेषताएँ) शामिल हैं।[citation needed]
ईआईए -232 के संशोधन डी में, डी-सबमिनेटर कनेक्टर को औपचारिक रूप से मानक के हिस्से के रूप में सम्मिलित किया गया था (इसे केवल RS-232-C के परिशिष्ट में संदर्भित किया गया था)। वोल्टेज रेंज को ± 25 वोल्ट तक बढ़ाया गया था, और सर्किट कैपेसिटेंस सीमा को स्पष्ट रूप से 2500pF के रूप में बताया गया था। EIA-232 के संशोधन E ने एक नया, छोटा, मानक D-शेल 26-पिन "ऑल्ट ए (Alt A)" कनेक्टर पेश किया, और CCITT मानकों V.24, V.28, और ISO 2110 के साथ संगतता में सुधार के लिए अन्य परिवर्तन किए।[6]
विशिष्टता आलेख पुनरीक्षण इतिहास:
- ईआईए आरएस-232 (मई 1960) "डेटा टर्मिनल उपकरण और डेटा के बीच इंटरफेस" [2]
- ईआईए आरएस -232-ए (अक्टूबर 1963)[2]
- ईआईए आरएस -232-बी (अक्टूबर 1965)[2]
- ईआईए आरएस -232-सी (अगस्त 1969) डेटा टर्मिनल उपकरण और डेटा संचार उपकरणों के बीच इंटरफ़ेस सीरियल बाइनरी डेटा इंटरचेंज को नियोजित करता है[2]
- ईआईए ईआईए -232-डी (1986)
- टीआईए टीआईए/ईआईए-232-ई (1991) डेटा टर्मिनल उपकरण और डेटा संचार उपकरणों के बीच इंटरफ़ेस सीरियल बाइनरी डेटा इंटरचेंज
- टीआईए/ईआईए-232-एफ (अक्टूबर 1997)
- एएनएसआई / टीआईए-232-एफ-1997 (आर2002)
- टीआईए टीआईए-232-एफ (आर2012)
मानक की सीमाएँ
क्योंकि RS-232 का उपयोग टर्मिनल को एक मॉडेम से जोड़ने के अपने मूल उद्देश्य से परे किया जाता है, सीमाओं को संबोधित करने के लिए उत्तराधिकारी मानकों को विकसित किया गया है। RS-232 मानक के मुद्दों में सम्मिलित हैं: [7]
- बड़े वोल्टेज झूलों और धनात्मक और ऋणत्मक आपूर्ति की आवश्यकता इंटरफ़ेस की बिजली की खपत को बढ़ाती है और बिजली आपूर्ति संरचना को जटिल बनाती है। वोल्टेज स्विंग की आवश्यकता एक संगत इंटरफ़ेस की ऊपरी गति को भी सीमित करती है।
- सिंगल-एंड सिग्नलिंग को सामान्य सिग्नल ग्राउंड के रूप में संदर्भित किया जाता है जो शोर प्रतिरक्षा और संचरण दूरी को सीमित करता है।
- दो से अधिक उपकरणों के बीच मल्टी-ड्रॉप कनेक्शन परिभाषित नहीं है। जबकि मल्टी-ड्रॉप "वर्कअराउंड" तैयार किए गए हैं, उनकी गति और अनुकूलता में सीमाएं हैं।
- मानक डीटीई को सीधे डीटीई, या डीसीई को डीसीई से जोड़ने की संभावना को संबोधित नहीं करता है। इन कनेक्शनों को प्राप्त करने के लिए नल (NULL) मॉडेम केबल का उपयोग किया जा सकता है, लेकिन ये मानक द्वारा परिभाषित नहीं हैं, और कुछ ऐसे केबल दूसरों की तुलना में अलग कनेक्शन का उपयोग करते हैं।
- लिंक के दोनों सिरों पर परिभाषाएँ विषम हैं। यह एक नए विकसित साधन की भूमिका के असाइनमेंट को समस्याग्रस्त बनाता है; डिज़ाइनर को या तो डीटीई-जैसा या डीसीई- जैसा इंटरफ़ेस तय करना चाहिए और कौन सा कनेक्टर पिन असाइनमेंट का उपयोग करना चाहिए।
- इंटरफ़ेस की हेन्डशेकिंग और नियंत्रण रेखाएँ डायल-अप संचार सर्किट की स्थापना और निकासी के लिए हैं; विशेष रूप से, प्रवाह नियंत्रण के लिए हैंडशेक लाइनों का उपयोग कई उपकरणों में मज़बूती से कार्यान्वित नहीं किया जाता है।
- डिवाइस को पावर भेजने के लिए कोई विधि निर्दिष्ट नहीं है। जबकि डीटीआर और आरटीएस लाइनों से थोड़ी मात्रा में करंट खींचा जा सकता है, यह केवल कम-शक्ति वाले उपकरणों जैसे कि चूहों के लिए उपयुक्त है।
- वर्तमान अभ्यास की तुलना में मानक में अनुशंसित 25-पिन डी-सब कनेक्टर बड़ा है।
आधुनिक व्यक्तिगत कंप्यूटरों में भूमिका
पीसी 97 हार्डवेयर डिजाइन गाइड बुक में,[8] माइक्रोसॉफ्ट ने मूल आईबीएम पीसी डिजाइन के आरएस-232 संगत सीरियल पोर्ट के लिए समर्थन हटा दिया। आज, अधिकांश निजी कंप्यूटरों में स्थानीय संचार के लिए RS-232 को USB द्वारा प्रतिस्थापित किया गया है। RS-232 से अधिक लाभ यह है कि USB तेज़ है, कम वोल्टेज का उपयोग करता है, और इसमें ऐसे कनेक्टर हैं जो कनेक्ट करने और उपयोग करने में आसान हैं। RS-232 की तुलना में USB का नुकसान यह है कि यूएसबी (USB) इलेक्ट्रोमैग्नेटिक इंटरफेरेंस (EMI)[dubious ] के प्रति बहुत कम प्रतिरोधी है और अधिकतम केबल लंबाई बहुत कम है (USB के लिए RS-232 बनाम 3 के लिए 15 मीटर) -5 मीटर , निर्भर करता है) यूएसबी संस्करण और सक्रिय केबल पर)।[9][10]
प्रयोगशाला स्वचालन या सर्वेक्षण जैसे क्षेत्रों में, RS-232 उपकरणों का उपयोग जारी है। कुछ प्रकार के प्रोग्रामेबल लॉजिक कंट्रोलर, वेरिएबल-फ़्रीक्वेंसी ड्राइव, सर्वो ड्राइव और कम्प्यूटरीकृत संख्यात्मक नियंत्रण उपकरण को RS-232 के माध्यम से प्रोग्राम किया जा सकता है। कंप्यूटर निर्माताओं ने अपने कंप्यूटरों पर DE-9M कनेक्टर को फिर से प्रस्तुत करके, या एडेप्टर उपलब्ध कराकर इस मांग का जवाब दिया है।
RS-232 पोर्ट का उपयोग आमतौर पर हेडलेस सिस्टम जैसे कि सर्वर, जहां कोई मॉनिटर या कीबोर्ड स्थापित नहीं है, बूट के दौरान जब ऑपरेटिंग सिस्टम अभी तक नहीं चल रहा है और इसलिए कोई नेटवर्क कनेक्शन संभव नहीं है, से संचार करने के लिए किया जाता है। RS-232 सीरियल पोर्ट वाला एक कंप्यूटर ईथरनेट पर निगरानी के विकल्प के रूप में एक अंतः स्थापित प्रणाली (एम्बेडेड सिस्टम) (जैसे राउटर) के सीरियल पोर्ट के साथ संचार कर सकता है।
भौतिक इंटरफ़ेस
RS-232 में, उपयोगकर्ता डेटा बिट्स की समय श्रृंखला के रूप में भेजा जाता है। दोनों तुल्यकालिक और अतुल्यकालिक प्रसारण मानक द्वारा समर्थित हैं। डेटा सर्किट के अतिरिक्त, मानक डीटीई और डीसीई के बीच कनेक्शन को प्रबंधित करने के लिए उपयोग किए जाने वाले कई नियंत्रण सर्किट को परिभाषित करता है। प्रत्येक डेटा या नियंत्रण सर्किट केवल एक दिशा में संचालित होता है, अर्थात, डीटीई से जुड़े डीसीई को या रिवर्स में संकेत देता है। क्योंकि डेटा संचारित करना और डेटा प्राप्त करना अलग-अलग सर्किट हैं, इंटरफ़ेस पूर्ण द्वैध तरीके से काम कर सकता है, दोनों दिशाओं में समवर्ती डेटा प्रवाह का समर्थन करता है। मानक डेटा स्ट्रीम या वर्ण एन्कोडिंग के भीतर वर्ण फ़्रेमिंग को परिभाषित नहीं करता है।
वोल्टेज का स्तर
RS-232 मानक डेटा ट्रांसमिशन और नियंत्रण सिग्नल लाइनों के लिए तार्किक एक और तार्किक शून्य स्तर के अनुरूप वोल्टेज स्तर को परिभाषित करता है। वैध संकेत या तो "कॉमन ग्राउंड" (जीएनडी) पिन के संबंध में +3 से +15 वोल्ट की सीमा में या -3 से -15 वोल्ट की सीमा में हैं; फलस्वरूप, -3 से +3 वोल्ट के बीच की सीमा वैध RS-232 स्तर नहीं है। डेटा ट्रांसमिशन लाइनों (टीएक्सडी, आरएक्सडी, और उनके माध्यमिक चैनल समकक्ष) के लिए, तर्क एक को नकारात्मक वोल्टेज के रूप में दर्शाया जाता है और सिग्नल की स्थिति को "मार्क" कहा जाता है। लॉजिक शून्य को सकारात्मक वोल्टेज के साथ संकेत दिया जाता है और सिग्नल की स्थिति को "स्पेस" कहा जाता है। नियंत्रण संकेतों में विपरीत ध्रुवता होती है: मुखरित या सक्रिय अवस्था धनात्मक वोल्टेज होती है और अघोषित या निष्क्रिय स्थिति ऋणात्मक वोल्टेज होती है। नियंत्रण रेखाओं के उदाहरणों में भेजने के लिए अनुरोध (आरटीएस), भेजने के लिए स्पष्ट (सीटीएस), डेटा टर्मिनल तैयार (डीटीआर), और डेटा सेट तैयार (डीएसआर) सम्मिलित हैं।
डेटा सर्किट | कंट्रोल सर्किट्स | वोल्टेज |
---|---|---|
0 (स्पेस) | महत्व | +3 to +15 V |
1 (चिन्ह) | बहिष्कृत | −15 to −3 V |
मानक 25 V का अधिकतम ओपन-सर्किट वोल्टेज निर्दिष्ट करता है: लाइन ड्राइवर सर्किट के लिए उपलब्ध वोल्टेज के आधार पर, ±5 V, ±10 V, ±12 V, और ±15 V के सिग्नल स्तर आमतौर पर देखे जाते हैं। कुछ RS-232 ड्राइवर चिप्स में 3 या 5 वोल्ट की आपूर्ति से आवश्यक वोल्टेज उत्पन्न करने के लिए इनबिल्ट सर्किट्री होती है। RS-232 ड्राइवर और रिसीवर ग्राउंड पर या ±25 V तक के किसी भी वोल्टेज स्तर पर अनिश्चितकालीन शॉर्ट सर्किट का सामना करने में सक्षम होना चाहिए। स्लीव रेट, या स्तरों के बीच सिग्नल कितनी तेजी से बदलता है, इसे भी नियंत्रित किया जाता है।
क्योंकि वोल्टेज स्तर आमतौर पर एकीकृत सर्किट द्वारा उपयोग किए जाने वाले तर्क स्तर से अधिक होता है, तर्क स्तर का अनुवाद करने के लिए विशेष इंटरफेसिंग ड्राइवर सर्किट की आवश्यकता होती है। ये डिवाइस के आंतरिक सर्किटरी को शॉर्ट सर्किट या ट्रांज़िएंट से भी बचाते हैं जो RS-232 इंटरफ़ेस पर दिखाई दे सकते हैं और डेटा ट्रांसमिशन के लिए कई दर आवश्यकताओं का पालन करने के लिए पर्याप्त करंट प्रदान करते हैं।
क्योंकि RS-232 सर्किट के दोनों छोर ग्राउंड पिन के शून्य वोल्ट होने पर निर्भर करते हैं, मशीनरी और कंप्यूटर को कनेक्ट करते समय समस्याएँ उत्पन्न होंगी जहाँ एक छोर पर ग्राउंड पिन और दूसरे पर ग्राउंड पिन के बीच वोल्टेज शून्य नहीं है। इससे खतरनाक ग्राउंड लूप भी हो सकता है। अपेक्षाकृत कम केबल वाले अनुप्रयोगों के लिए एक सामान्य जमीन का उपयोग RS-232 को सीमित करता है। यदि दो डिवाइस काफी दूर हैं या अलग-अलग पावर सिस्टम पर हैं, तो केबल के दोनों छोर पर स्थानीय ग्राउंड कनेक्शन में अलग-अलग वोल्टेज होंगे; यह अंतर संकेतों के नॉइज़ मार्जिन को कम करेगा। बैलेंस्ड, डिफरेंशियल सीरियल कनेक्शन जैसे RS-422 या RS-485 डिफरेंशियल सिग्नलिंग के कारण बड़े ग्राउंड वोल्टेज अंतर को सहन कर सकते हैं।[11]
अप्रयुक्त इंटरफ़ेस संकेतों को ग्राउंड पर समाप्त कर दिया जाएगा, एक अपरिभाषित तर्क स्थिति है। जहां परिभाषित स्थिति पर नियंत्रण संकेत को स्थायी रूप से सेट करना आवश्यक है, यह एक वोल्टेज स्रोत से जुड़ा होना चाहिए जो तर्क 1 या तर्क 0 स्तरों पर जोर देता है, उदाहरण के लिए एक पुलअप अवरोधक के साथ। कुछ डिवाइस इस उद्देश्य के लिए अपने इंटरफ़ेस कनेक्टर्स पर परीक्षण वोल्टेज प्रदान करते हैं।
कनेक्टर्स
RS-232 उपकरणों को डेटा टर्मिनल उपकरण (डीटीई) या डेटा सर्किट-समापन उपकरण (डीसीई) के रूप में वर्गीकृत किया जा सकता है; यह प्रत्येक उपकरण पर परिभाषित करता है कि कौन से तार प्रत्येक संकेत भेज रहे हैं और प्राप्त कर रहे हैं। मानक रूप से, मेल कनेक्टर्स में डीटीई पिन फ़ंक्शंस होते हैं, और फीमेल कनेक्टर्स में डीसीई पिन फ़ंक्शंस होते हैं। अन्य उपकरणों में कनेक्टर के जेंडर और पिन परिभाषाओं का कोई भी संयोजन हो सकता है। कई टर्मिनल फीमेल कनेक्टर्स के साथ निर्मित किए गए थे लेकिन प्रत्येक छोर पर मेल कनेक्टर वाले केबलों के साथ बेचे गए थे; टर्मिनल, इसकी केबल के साथ, मानक में अनुशंसाओं को पूरा करता है।
संशोधन सी तक मानक डी-सबमिनीचर 25-पिन कनेक्टर की अनुशंसा करता है और इसे संशोधन डी के रूप में अनिवार्य करता है। अधिकांश डिवाइस मानक में निर्दिष्ट बीस संकेतों में से कुछ को ही लागू करते हैं, इसलिए कम पिन वाले कनेक्टर और केबल अधिकांश कनेक्शन के लिए पर्याप्त हैं, अधिक कॉम्पैक्ट, और कम महंगा। व्यक्तिगत कंप्यूटर निर्माताओं ने DB-25M कनेक्टर को छोटे DE-9M कनेक्टर से बदल दिया। यह कनेक्टर, एक अलग पिनआउट (सीरियल पोर्ट पिनआउट देखें) के साथ, व्यक्तिगत कंप्यूटर और संबंधित उपकरणों के लिए आम है।
25-पिन डी-उप कनेक्टर की उपस्थिति आवश्यक रूप से RS-232-C-संगत इंटरफ़ेस का संकेत नहीं देती है। उदाहरण के लिए, मूल आईबीएम पीसी पर, एक मेल डी-उप एक आरएस-232-सी डीटीई पोर्ट था (पिन पर एक गैर-मानक वर्तमान लूप इंटरफ़ेस के साथ), लेकिन एक ही पीसी मॉडल पर फीमेल डी-उप कनेक्टर समानांतर था। प्रिंटर पोर्ट के लिए "सेंट्रोनिक्स" का उपयोग किया जाता है। कुछ पर्सनल कंप्यूटर अपने सीरियल पोर्ट के कुछ पिनों पर गैर-मानक वोल्टेज या सिग्नल लागू करते हैं।
पिनआउट
निम्न तालिका सूची में आमतौर पर प्रयुक्त RS-232 सिग्नल और पिन असाइनमेंट हैं:[12]
सिग्नल (संकेत) | दिशा | कनेक्टर पिन | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
नाम | V.24 सर्किट | संक्षेपाक्षर | DTE | DCE | DB-25 | DE-9 (TIA-574) | MMJ | 8P8C ("RJ45") | 10P10C ("RJ50") | ||||||
EIA/TIA-561 | Yost (DTE)[13] | Yost (DCE)[13] | Cyclades | Digi (ALTPIN option) | National Instruments[14] | Cyclades | Digi | ||||||||
ट्रांसमिटेड डेटा | 103 | TxD | Out | In | 2 | 3 | 2 | 6 | 6 | 3 | 3 | 4 | 8 | 4 | 5 |
रिसीव डेटा | 104 | RxD | In | Out | 3 | 2 | 5 | 5 | 3 | 6 | 6 | 5 | 9 | 7 | 6 |
डेटा टर्मिनल रेडी | 108/2 | DTR | Out | In | 20 | 4 | 1 | 3 | 7 | 2 | 2 | 8 | 7 | 3 | 9 |
डेटा कैरियर डिटेक्ट | 109 | DCD | In | Out | 8 | 1 | — | 2 | 2 | 7 | 7 | 1 | 10 | 8 | 10 |
डेटा सेट रेडी | 107 | DSR | In | Out | 6 | 6 | 6 | 1 | — | 8 | — | 5 | 9 | 2 | |
रिंग इंडिकेटर | 125 | RI | In | Out | 22 | 9 | — | — | — | — | — | 2 | 10 | 1 | |
रिक्वेस्ट टू सेंड | 105 | RTS | Out | In | 4 | 7 | — | 8 | 8 | 1 | 1 | 2 | 4 | 2 | 3 |
क्लियर टू सेंड | 106 | CTS | In | Out | 5 | 8 | — | 7 | 1 | 8 | 5 | 7 | 3 | 6 | 8 |
सिग्नल ग्राउंड | 102 | G | Common | 7 | 5 | 3, 4 | 4 | 4, 5 | 4, 5 | 4 | 6 | 6 | 5 | 7 | |
प्रोटेक्टिव ग्राउंड | 101 | PG | Common | 1 | — | — | — | — | — | — | 3 | — | 1 | 4 |
सिग्नल ग्राउंड अन्य कनेक्शनों के लिए एक सामान्य रिटर्न है; यह योस्ट मानक में दो पिन्स पर दिखाई देता है लेकिन एक ही सिग्नल होता है। DB-25 कनेक्टर में पिन 1 पर एक दूसरा सुरक्षात्मक ग्राउंड सम्मिलित है, जिसे प्रत्येक डिवाइस द्वारा अपने स्वयं के फ्रेम ग्राउंड या इसी तरह से कनेक्ट करने का इरादा है। सुरक्षात्मक ग्राउंड को सिग्नल ग्राउंड से जोड़ना एक सामान्य अभ्यास है लेकिन अनुशंसित नहीं है।
ध्यान दें कि ईआईए/टीआईए 561 में डीएसआर और आरआई का संयोजन है,,[15][16] और यॉस्ट मानक में डीएसआर और डीसीडी का संयोजन है।
केबल
मानक अधिकतम केबल लंबाई को परिभाषित नहीं करता है, बल्कि एक अधिकतम समाई है जो एक अनुरूप ड्राइव सर्किट को सहन करना चाहिए। एक व्यापक रूप से इस्तेमाल किया जाने वाला सामान्य नियम इंगित करता है कि 15 मीटर (50 फीट) से अधिक लंबे केबलों की क्षमता बहुत अधिक होगी जब तक कि विशेष केबलों का उपयोग नहीं किया जाता है। कम क्षमता वाले केबलों का उपयोग करके लगभग 300 मीटर (1,000 फीट) तक की बड़ी दूरी पर संचार बनाए रखा जा सकता है।[17] लंबी दूरी के लिए, अन्य सिग्नल मानक, जैसे RS-422, उच्च गति के लिए बेहतर अनुकूल हैं।
चूंकि मानक परिभाषाएं हमेशा सही ढंग से लागू नहीं होती हैं, इसलिए प्रलेखन से परामर्श करना, ब्रेकआउट बॉक्स के साथ कनेक्शन का परीक्षण करना या दो उपकरणों को आपस में जोड़ने पर काम करने वाले केबल को खोजने के लिए परीक्षण और त्रुटि का उपयोग करना अक्सर आवश्यक होता है। एक पूरी तरह से मानक-अनुरूप डीसीई डिवाइस और एक डीटीई डिवाइस को जोड़ने से एक केबल का उपयोग होगा जो प्रत्येक कनेक्टर में समान पिन नंबरों को जोड़ता है (एक तथाकथित "स्ट्रेट केबल")। केबल और कनेक्टर्स के बीच लिंग बेमेल को हल करने के लिए "लिंग परिवर्तक" उपलब्ध हैं। विभिन्न प्रकार के कनेक्टर्स के साथ उपकरणों को जोड़ने के लिए एक केबल की आवश्यकता होती है जो नीचे दी गई तालिका के अनुसार संबंधित पिनों को जोड़ती है। एक छोर पर 9 पिन और दूसरे छोर पर 25 पिन वाले केबल आम हैं। 8P8C कनेक्टर वाले उपकरणों के निर्माता आमतौर पर DB-25 या DE-9 कनेक्टर (या कभी-कभी विनिमेय कनेक्टर के साथ एक केबल प्रदान करते हैं ताकि वे कई उपकरणों के साथ काम कर सकें)। खराब-गुणवत्ता वाले केबल डेटा और नियंत्रण रेखाओं (जैसे रिंग इंडिकेटर) के बीच क्रॉसस्टॉक द्वारा गलत संकेत दे सकते हैं।
एक अशक्त मॉडेम केबल आवश्यक हो सकता है यदि कोई दिया गया केबल डेटा कनेक्शन की अनुमति नहीं देगा, खासकर अगर जेंडर चेंजर उपयोग में हो। मानक में जेंडर चेंजर और अशक्त मॉडेम केबलों का उल्लेख नहीं किया गया है, इसलिए उनके लिए आधिकारिक रूप से स्वीकृत डिज़ाइन नहीं है।
डेटा और नियंत्रण संकेत
निम्न तालिका अनुशंसित DB-25 कनेक्टर्स पर आमतौर पर उपयोग किए जाने वाले RS-232 सिग्नल (जिसे "सर्किट" कहा जाता है) और उनके पिन असाइनमेंट सूचीबद्ध करती है।[18] (सामान्य रूप से उपयोग किए जाने वाले अन्य कनेक्टर्स के लिए सीरियल पोर्ट पिनआउट देखें, जो मानक द्वारा परिभाषित नहीं हैं।)
सर्किट | Direction | DB-25 पिन | |||
---|---|---|---|---|---|
नाम | विशिष्ट उद्देश्य | संक्षेपाक्षर | डीटीई | डीसीई | |
डेटा टर्मिनल रेडी | डीटीई कॉल प्राप्त करने, आरंभ करने, या जारी रखने के लिए तैयार है। | डीटीआर | बाहर | अंदर | 20 |
डेटा कैरियर डिटेक्ट | डीसीई एक दूरस्थ डीसीई से एक वाहक प्राप्त कर रहा है। | डीसीडी | अंदर | बाहर | 8 |
डेटा सेट रेडी | डीसीई डाटा प्राप्त करने और भेजने के लिए तैयार है। | डीएसआर | अंदर | बाहर | 6 |
रिंग इंडिकेटर | डीसीई ने टेलीफोन लाइन पर एक इनकमिंग रिंग सिग्नल का पता लगाया है। | आरआई | अंदर | बाहर | 22 |
रिक्वेस्ट टू सेंड | डीटीई अनुरोध करता है कि डीसीई डेटा संचारित करने की तैयारी करे। | आरटीएस | बाहर | अंदर | 4 |
रेसिव टू रिसीव | डीटीई डीसीई से डेटा प्राप्त करने के लिए तैयार है। यदि उपयोग में है, तो यह माना जाता है कि आरटीएस हमेशा मुखर है | आरटीआर | बाहर | अंदर | 4 |
क्लियर टू सेंड | डीसीई डीटीई से डेटा स्वीकार करने के लिए तैयार है। | सीटीएस | अंदर | बाहर | 5 |
ट्रांसमिटेड डेटा | डीटीई से डीसीई तक डेटा ले जाती है। | टीएक्सडी | बाहर | अंदर | 2 |
रिसीव्ड डेटा | डीसीई से डीटीई तक डेटा ले जाता है। | आरएक्सडी | अंदर | बाहर | 3 |
कॉमन ग्राउंड | उपरोक्त सभी के लिए जीरो वोल्टेज संदर्भ। | जीएनडी | कॉमन | 7 | |
प्रोटेक्टिव ग्राउंड | चेसिस ग्राउंड से जुड़ा हुआ है। | पीजी | कॉमन | 1 |
संकेतों को डीटीई के दृष्टिकोण से नामित किया गया है। ग्राउंड पिन अन्य कनेक्शनों के लिए सामान्य रिटर्न है और "शून्य" वोल्टेज स्थापित करता है जिससे अन्य पिनों पर वोल्टेज संदर्भित होते हैं। DB-25 कनेक्टर में पिन 1 पर एक दूसरा "प्रोटेक्टिव ग्राउंड" शामिल है; यह आंतरिक रूप से उपकरण फ्रेम ग्राउंड से जुड़ा है, और इसे केबल या कनेक्टर्स में सिग्नल ग्राउंड से नहीं जोड़ा जाना चाहिए।
रिंग इंडिकेटर
रिंग इंडिकेटर (आरआई) डीसीई से डीटीई डिवाइस को भेजा गया सिग्नल है। यह टर्मिनल डिवाइस को इंगित करता है कि फोन लाइन बज रही है। कई कंप्यूटर सीरियल पोर्ट में, आरआई सिग्नल की स्थिति बदलने पर एक हार्डवेयर व्यवधान उत्पन्न होता है। इस हार्डवेयर व्यवधान के लिए समर्थन होने का अर्थ है कि किसी प्रोग्राम या ऑपरेटिंग सिस्टम को आरआई पिन की स्थिति में बदलाव के बारे में सूचित किया जा सकता है, बिना सॉफ्टवेयर को पिन की स्थिति को "पोल" करने की आवश्यकता है। आरआई दूसरे सिग्नल के अनुरूप नहीं है जो समान जानकारी को विपरीत तरीके से ले जाता है।
एक बाहरी मॉडेम पर, रिंग इंडिकेटर पिन की स्थिति अक्सर "एए" (ऑटो आंसर) लाइट से जुड़ी होती है, जो RI सिग्नल द्वारा रिंग का पता चलने पर चमकती है।घोषित आरआई सिग्नल रिंगिंग पैटर्न का बारीकी से पालन करता है, जो सॉफ़्टवेयर को विशिष्ट रिंग पैटर्न का पता लगाने की अनुमति दे सकता है।
रिंग इंडिकेटर सिग्नल का उपयोग कुछ पुराने अनइंटरप्टिबल पावर सप्लाई (यूपीएस) द्वारा किया जाता है ताकि कंप्यूटर को बिजली की विफलता की स्थिति का संकेत मिल सके।
कुछ व्यक्तिगत कंप्यूटरों को वेक-ऑन-रिंग के लिए कॉन्फ़िगर किया जा सकता है, जिससे फ़ोन कॉल का उत्तर देने के लिए कंप्यूटर को निलंबित कर दिया जाता है।
आरटीएस, सीटीएस, और आरटीआर
रिक्वेस्ट टू सेंड (आरटीएस) और क्लियर टू सेंड (सीटीएस) सिग्नल मूल रूप से बेल 202 जैसे हॉफ-डुप्लेक्स (एक समय में एक दिशा) मोडेम के साथ उपयोग के लिए परिभाषित किए गए थे। ये मोडेम जरूरत न होने पर अपने ट्रांसमीटर को निष्क्रिय कर देते हैं और एक प्रेषित करना चाहिए पुन: सक्षम होने पर रिसीवर को सिंक्रनाइज़ेशन प्रस्तावना। डीटीई डीसीई को संचारित करने की अपनी इच्छा को इंगित करने के लिए आरटीएस पर जोर देता है, और प्रतिक्रिया में,डीसीई ने सीटीएस को अनुमति देने का दावा करता है, एक बार डीसीई के साथ दूर अंत में सिंक्रनाइज़ेशन प्राप्त हो जाता है। ऐसे मोडेम अब आम उपयोग में नहीं हैं। ऐसा कोई सुसंगत संकेत नहीं है जिसका उपयोग डीटीई डीसीई से आने वाले डेटा को अस्थायी रूप से रोकने के लिए कर सके। इस प्रकार RS-232 का आरटीएस और सीटीएस सिग्नलों का उपयोग मानक के पुराने संस्करणों के अनुसार असममित है।
यह योजना वर्तमान में RS-232 से RS-485 कन्वर्टर्स में कार्यरत है। RS-485 एक मल्टीपल-एक्सेस बस है जिस पर एक समय में केवल एक डिवाइस ट्रांसमिट कर सकता है, एक अवधारणा RS-232 में प्रदान नहीं की गई है। RS-232 डिवाइस आरटीएस पर जोर देती है, कनवर्टर को RS-485 बस का नियंत्रण लेने के लिए कहती है ताकि कनवर्टर, और इस प्रकार RS-232 डिवाइस, बस पर डेटा भेज सके।
आधुनिक संचार वातावरण पूर्ण-द्वैध (दोनों दिशाओं में एक साथ) मोडेम का उपयोग करते हैं। उस परिवेश में, डीटीई के पास आरटीएस को अक्षम करने का कोई कारण नहीं है। हालांकि, लाइन की गुणवत्ता बदलने, डेटा के प्रसंस्करण में देरी आदि की संभावना के कारण सममित, द्विदिश प्रवाह नियंत्रण की आवश्यकता है।
विभिन्न उपकरण निर्माताओं द्वारा 1980 के दशक के अंत में दोनों दिशाओं में प्रवाह नियंत्रण प्रदान करने वाला एक असममित विकल्प विकसित और विपणन किया गया था। यह आरटीएस सिग्नल को फिर से परिभाषित करता है जिसका अर्थ है कि डीटीई डीसीई से डेटा प्राप्त करने के लिए तैयार है। इस योजना को अंततः RS-232-E (वास्तव में उस समय तक TIA-232-E) संस्करण में एक नए सिग्नल, "आरटीआर (रेडी टू रिसीव)" को परिभाषित करके संहिताबद्ध किया गया, जो सीसीआईटीटी (CCITT) V.24 सर्किट 133 है। TIA-232-E और संबंधित अंतरराष्ट्रीय मानकों को यह दर्शाने के लिए अद्यतन किया गया था कि सर्किट 133, लागू होने पर, आरटीएस (भेजने के लिए अनुरोध) के समान पिन साझा करता है, और जब 133 उपयोग में होता है, तो आरटीएस को डीसीई द्वारा हर समय मुखर माना जाता है।[19]
इस योजना में, जिसे आमतौर पर "आरटीएस/सीटीएस प्रवाह नियंत्रण" या "आरटीएस/सीटीएस हैंडशेकिंग" कहा जाता है (हालांकि तकनीकी रूप से सही नाम "आरटीआर/सीटीएस" होगा), डीटीई डीसीई से डेटा प्राप्त करने के लिए तैयार है, यदि ऐसा है, तो यह आरटीएस पर जोर देता है। और डीसीई जब भी डीटीई से डेटा प्राप्त करने के लिए तैयार होता है, सीटीएस पर जोर देता है। आरटीएस और सीटीएस के आधे-द्वैध मोडेम के मूल उपयोग के विपरीत, ये दो सिग्नल एक-दूसरे से स्वतंत्र रूप से काम करते हैं। यह हार्डवेयर प्रवाह नियंत्रण का एक उदाहरण है। हालांकि, RS-232 से लैस उपकरणों पर उपलब्ध विकल्पों के विवरण में "हार्डवेयर प्रवाह नियंत्रण" का मतलब हमेशा आरटीएस/सीटीएस हाथ मिलाना नहीं होता है।
इस प्रोटोकॉल का उपयोग करने वाले उपकरण को कुछ अतिरिक्त डेटा बफर करने के लिए तैयार रहना चाहिए, क्योंकि रिमोट सिस्टम स्थानीय सिस्टम के आरटीआर को डी-एसर्ट करने से ठीक पहले ट्रांसमिट करना शुरू कर सकता है।
3-वायर और 5-वायर RS-232
एक न्यूनतम "3-तार" RS-232 कनेक्शन जिसमें केवल डेटा प्राप्त करने वाले डेटा को प्रसारित करना शामिल है, और जमीन का उपयोग आमतौर पर तब किया जाता है जब RS-232 की पूर्ण सुविधाओं की आवश्यकता नहीं होती है। यहां तक कि एक दो-तार कनेक्शन (डेटा और ग्राउंड) का उपयोग किया जा सकता है यदि डेटा प्रवाह एक तरफा है (उदाहरण के लिए, एक डिजिटल पोस्टल स्केल जो समय-समय पर वज़न रीडिंग भेजता है, या एक जीपीएस रिसीवर जो समय-समय पर स्थिति भेजता है, यदि कोई कॉन्फ़िगरेशन नहीं है RS-232 आवश्यक है)। जब दो-तरफ़ा डेटा के अलावा केवल हार्डवेयर प्रवाह नियंत्रण की आवश्यकता होती है, तो आरटीएस और सीटीएस लाइनों को 5-वायर संस्करण में जोड़ा जाता है।
प्रायः प्रयोग उपयोग की जाने वाली विशेषताएं
EIA-232 मानक कई विशेषताओं के लिए कनेक्शन निर्दिष्ट करता है जो कि अधिकांश कार्यान्वयन में उपयोग नहीं किए जाते हैं। इनके इस्तेमाल के लिए 25-पिन कनेक्टर और केबल की जरूरत होती है।
सिग्नल दर चयन
डीटीई या डीसीई "उच्च" या "कम" सिग्नलिंग दर के उपयोग को निर्दिष्ट कर सकता है। दरें, साथ ही कौन सा डिवाइस दर का चयन करेगा, दोनों को डीटीई और डीसीई दोनों में कॉन्फ़िगर किया जाना चाहिए। प्रीसेट डिवाइस पिन 23 को ऑन पर सेट करके उच्च दर का चयन करता है।
लूपबैक परीक्षण
कई डीसीई उपकरणों में परीक्षण के लिए उपयोग की जाने वाली लूपबैक क्षमता होती है। सक्षम होने पर, सिग्नल रिसीवर को भेजे जाने के बजाय प्रेषक को वापस प्रतिध्वनित किया जाता है। यदि समर्थित है, तो डीटीई स्थानीय डीसीई (जिससे यह जुड़ा हुआ है) को पिन 18 चालू करके लूपबैक मोड में प्रवेश करने का संकेत दे सकता है, या रिमोट डीसीई (जिससे स्थानीय डीसीई जुड़ा हुआ है) पिन को लूपबैक मोड पर सेट करके पूछ सकता है प्रवेश। 21 पर। बाद वाला संचार लिंक के साथ-साथ दोनों डीसीई का परीक्षण करता है। जब डीसीई टेस्ट मोड में होता है, तो यह पिन 25 को सेट करके डीटीई को सिग्नल देता है।
लूपबैक परीक्षण के सामान्य रूप से उपयोग किए जाने वाले संस्करण में किसी भी अंत की कोई विशेष क्षमता सम्मिलित नहीं होती है। एक हार्डवेयर लूपबैक केवल एक ही कनेक्टर में पूरक पिन को एक साथ जोड़ने वाला तार है (लूपबैक देखें)।
लूपबैक परीक्षण अक्सर एक विशेष डीटीई के साथ किया जाता है जिसे बिट त्रुटि दर परीक्षक (या बीईआरटी) कहा जाता है।
टाइमिंग सिग्नल (समय संकेत)
कुछ सिंक्रोनस डिवाइस डेटा ट्रांसमिशन को सिंक्रोनाइज़ करने के लिए घड़ी संकेत प्रदान करते हैं, खासकर उच्च डेटा दरों पर। डीसीई द्वारा पिन 15 और 17 पर दो टाइमिंग सिग्नल प्रदान किए जाते हैं। पिन 15 ट्रांसमीटर क्लॉक है, या टाइमिंग (एसटी) भेजें; डीटीई अगले बिट को डेटा लाइन (पिन 2) पर रखता है जब यह बंद से चालू होता है (इसलिए जब डीसीई बिट को पंजीकृत करता है तो यह चालू से बंद संक्रमण के दौरान स्थिर रहता है)। पिन 17 रिसीवर घड़ी है, या समय प्राप्त करें (आरटी); डीटीई डेटा लाइन (पिन 3) से अगले बिट को पढ़ता है जब यह घड़ी ऑन से ऑफ़ में परिवर्तित होती है।
वैकल्पिक रूप से, डीटीई प्रेषित डेटा के लिए पिन 24 पर ट्रांसमीटर टाइमिंग (टीटी) नामक घड़ी संकेत प्रदान कर सकता है। जब घड़ी बंद से चालू होती है तो डेटा बदल जाता है, और चालू से बंद संक्रमण के दौरान पढ़ा जाता है। टीटी का उपयोग उस मुद्दे को दूर करने के लिए किया जा सकता है जहां एसटी को अज्ञात लंबाई और देरी के केबल को पार करना चाहिए, एक और अज्ञात देरी के बाद डीटीई से थोड़ा बाहर घड़ी और उसी अज्ञात केबल देरी पर डीसीई। लौटा देना चाहिए। चूंकि प्रेषित बिट और टीटी के बीच संबंध डीटीई डिजाइन में तय किया जा सकता है, और चूंकि दोनों सिग्नल एक ही केबल लंबाई को पार करते हैं, इसलिए टीटी का उपयोग करने से समस्या समाप्त हो जाती है। टीटी को प्रेषित डेटा के साथ संरेखित करने के लिए एक उपयुक्त चरण बदलाव के साथ एसटी को लूप करके उत्पन्न किया जा सकता है। टीटी पर एसटी लूप वापस डीटीई को आवृत्ति संदर्भ के रूप में डीसीई का उपयोग करने देता है, और घड़ी को डेटा टाइमिंग में सुधारता है।
तुल्यकालिक डेटा लिंक नियंत्रण (एसडीएलसी), एचडीएलसी और X.25 जैसे प्रोटोकॉल के लिए सिंक्रोनस क्लॉकिंग की आवश्यकता होती है।
माध्यमिक चैनल
प्राथमिक चैनल की क्षमता के समान एक द्वितीयक डेटा चैनल वैकल्पिक रूप से डीटीई और डीसीई उपकरणों द्वारा कार्यान्वित किया जा सकता है। पिन असाइनमेंट निम्नानुसार हैं:
सिग्नल (संकेत) | पिन |
---|---|
कॉमन ग्राउंड | 7 (प्राथमिक के समान) |
माध्यमिक प्रेषित डेटा (एसटीडी) | 14 |
माध्यमिक प्राप्त डेटा (एसआरडी) | 16 |
भेजने के लिए द्वितीयक अनुरोध (एसआरटीएस) | 19 |
माध्यमिक स्पष्ट भेजने के लिए (एससीटीएस) | 13 |
सेकेंडरी कैरियर डिटेक्ट (एसडीसीडी) | 12 |
संबंधित मानक
अन्य सीरियल सिग्नलिंग मानकों के अनुरूप RS-232 पोर्ट के साथ अंतर्संचालन नहीं किया जा सकता है। उदाहरण के लिए, लगभग +5 V और 0 V के टीटीएल स्तर का उपयोग करने से सिग्नल स्तर मानक के अपरिभाषित क्षेत्र में गिर जाता है। ऐसे स्तर कभी-कभी एनएमईए 0183-संगत जीपीएस (ग्लोबल पोजिशनिंग सिस्टम) रिसीवर और गहराई खोजक के साथ उपयोग किए जाते हैं।
20 एमए करंट लूप हाई के लिए 20 एमए (अंकीय वर्तमान पाश इंटरफ़ेस) करंट की अनुपस्थिति और लो के लिए लूप में करंट की उपस्थिति का उपयोग करता है; यह सिग्नलिंग विधि अक्सर लंबी दूरी के लिए और ऑप्टिकली पृथक (ऑप्टो आइसोलेटर) लिंक के लिए उपयोग की जाती है। करंट-लूप डिवाइस को एनालॉग RS-232 पोर्ट से कनेक्ट करने के लिए एक स्तर के अनुवादक की आवश्यकता होती है। करंट-लूप डिवाइस वोल्टेज की आपूर्ति कर सकते हैं जो एक अनुपालन डिवाइस की अनिवार्य वोल्टेज सीमा से अधिक है। मूल आईबीएम पीसी सीरियल पोर्ट कार्ड ने 20 एमए वर्तमान-लूप इंटरफ़ेस लागू किया, जो प्लग-संगत उपकरण के अन्य आपूर्तिकर्ताओं द्वारा कभी भी अनुकरण नहीं किया गया था।
अन्य सीरियल इंटरफेस RS-232 के समान:
- RS-422 - RS-232 के समान एक उच्च-गति प्रणाली लेकिन अंतर संकेतन के साथ
- RS-423 - RS-422 के समान लेकिन असंतुलित सिग्नलिंग के साथ एक उच्च गति प्रणाली
- RS-449 - कार्यात्मक और यांत्रिक इंटरफ़ेस जो RS-422 और RS-423 सिग्नल का उपयोग करता है; RS-232 की तरह कभी भी पकड़ा नहीं गया और ईआईए द्वारा वापस ले लिया गया
- RS-485 - RS-422 का संतति जिसे मल्टीड्रॉप कॉन्फ़िगरेशन में बस के रूप में इस्तेमाल किया जा सकता है
- MIL-STD-188 -जैसी प्रणाली लेकिन बेहतर प्रतिबाधा और समय नियंत्रण में वृद्धि के साथ
- EIA-530 (ईआईए -530) - एक EIA-232 पिनआउट कॉन्फ़िगरेशन में RS-422 या RS-423 (आरएस -423) विद्युत गुणों का उपयोग करने वाली एक उच्च-गति प्रणाली, इस प्रकार दोनों के सर्वश्रेष्ठ संयोजन; RS-449 को प्रतिस्थापित करता है
- EIA/TIA-561 - आठ-स्थिति, आठ-संपर्क (8P8C) मॉड्यूलर कनेक्टर के लिए RS-232 पिनआउट को परिभाषित करता है (जिसे अनुचित तरीके से RJ45 कनेक्टर कहा जा सकता है)
- EIA/TIA-562 - EIA/TIA-232 का निम्न-वोल्टेज संस्करण
- TIA-574 - EIA-232 इलेक्ट्रिकल सिग्नलिंग के साथ उपयोग के लिए 9-पिन डी-सबमिनीचर कनेक्टर पिनआउट का मानकीकरण करता है, जैसा कि आईबीएम पीसी/एटी (IBM PC/AT) पर उत्पन्न हुआ है
- EIA/TIA-694 - TIA/EIA-232-F के समान लेकिन 512 kbit/s तक की उच्च डेटा दरों के लिए समर्थन के साथ
विकास उपकरण
RS-232 का उपयोग करते हुए सिस्टम का विकास या समस्या निवारण करते समय, समस्याओं का पता लगाने के लिए हार्डवेयर संकेतों की बारीकी से जांच करना महत्वपूर्ण हो सकता है। यह एल ई डी के साथ सरल उपकरणों का उपयोग करके किया जा सकता है जो डेटा और नियंत्रण संकेतों के तर्क स्तर को इंगित करता है। "वाई" केबल्स का उपयोग एक दिशा में सभी ट्रैफ़िक की निगरानी के लिए दूसरे सीरियल पोर्ट का उपयोग करने की अनुमति देने के लिए किया जा सकता है। एक सीरियल लाइन विश्लेषक एक तर्क विश्लेषक के समान एक उपकरण है, लेकिन RS-232 के वोल्टेज स्तर, कनेक्टर्स, और जहां उपयोग किया जाता है, क्लॉक सिग्नल के लिए विशेष है; यह डेटा एकत्र करता है, संग्रहीत करता है और प्रदर्शित करता है और संकेतों को नियंत्रित करता है, जिससे डेवलपर्स उन्हें विस्तार से देख सकते हैं। कुछ केवल संकेतों को तरंगों के रूप में प्रदर्शित करते हैं; अधिक विस्तृत संस्करणों में ASCII या अन्य सामान्य कोड में वर्णों को डिकोड करने की क्षमता और RS-232 जैसे एसडीएलसी, एचडीएलसी, डीडीसीएमपी (DDCMP) और X.25 पर उपयोग किए जाने वाले सामान्य प्रोटोकॉल की व्याख्या करना शामिल है। सीरियल लाइन एनालाइजर स्टैंडअलोन यूनिट के रूप में, सामान्य प्रयोजन के लॉजिक एनालाइजर और ऑसिलोस्कोप के लिए सॉफ्टवेयर और इंटरफेस केबल के रूप में और आम पर्सनल कंप्यूटर और डिवाइस पर चलने वाले प्रोग्राम के रूप में उपलब्ध हैं।
यह भी देखें
- एसिंक्रोनस सीरियल कम्युनिकेशन
- बॉड रेट
- सिंक्रोनस और एसिंक्रोनस सिग्नलिंग की तुलना
- सिंक्रोनस सीरियल कम्युनिकेशन
- यूनिवर्सल एसिंक्रोनस रिसीवर/ट्रांसमीटर (UART)
संदर्भ
- ↑ 1.0 1.1 ] Archived 2012-11-29 at the Wayback Machine Landis + Gyr ट्यूटोरियल (EIA देखें)
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 Evans, Jr., John M.; O'Neill, Joseph T.; Little, John L.; Albus, James S.; Barbera, Anthony J.; Fife, Dennis W.; Fong, Elizabeth N.; Gilsinn, David E.; Holberton, Frances E.; Lucas, Brian G.; Lyon, Gordon E.; Marron, Beatrice A. S.; Neumann, Albercht J.; Vickers, Mabel V.; Walker, Justin C. (October 1976), Standards for Computer Aided Manufacturing (Second Interim Report ed.), Office of Developmental Automation and Control Technology, Institute for Computer Sciences and Technology, National Bureau of Standards, Washington, DC, USA: Manufacturing Technology Division, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio 45433, NBSIR 76-1094, retrieved 2017-03-04
- ↑ EIA standard RS-232-C: Interface between Data Terminal Equipment and Data Communication Equipment Employing Serial Binary Data Interchange. Washington, USA: Electronic Industries Association, Engineering Department. 1969. OCLC 38637094.
- ↑ "RS232 Tutorial on Data Interface and cables". ARC Electronics. 2010. Retrieved 2011-07-28.
- ↑ "TIA Facts at a Glance". About TIA. Telecommunications Industry Association. Retrieved 2011-07-28.
- ↑ S. Mackay, E. Wright, D. Reynders, J. Park, Practical Industrial Data Networks: Design, Installation, and Troubleshooting, Newnes, 2004 ISBN 07506 5807X, pages 41-42
- ↑ Horowitz, Paul; Hill, Winfield (1989). The Art of Electronics (2nd ed.). Cambridge, England: Cambridge University Press. pp. 723–726. ISBN 0-521-37095-7.
- ↑ PC 97 Hardware Design Guide. Redmond, Washington, USA: Microsoft Press. 1997. ISBN 1-57231-381-1.
- ↑ "Lengths of serial cables". www.tldp.org. Retrieved 2020-01-01.
- ↑ Andrews, Jean (2020). CompTIA A+ Guide to IT technical support. Dark, Joy, West, Jill (Tenth ed.). Boston, MA, USA: Cengage Learning. p. 267. ISBN 978-0-357-10829-1. OCLC 1090438548.
- ↑ Wilson, Michael R. (January 2000). "TIA/EIA-422-B Overview" (PDF). Application Note 1031. National Semiconductor. Archived from the original (PDF) on 2010-01-06. Retrieved 2011-07-28.
- ↑ Ögren, Joakim. "Serial (PC 9)". Archived from the original on 2010-08-11. Retrieved 2010-07-07.
- ↑ 13.0 13.1 "Yost Serial Device Wiring Standard". Archived from the original on 2020-06-17. Retrieved 2020-05-10.
- ↑ "Serial Quick Reference Guide" (PDF). NI.com. National Instruments. July 2013. Retrieved 2021-06-18.
- ↑ "Hardware Book RS-232D".
- ↑ "RS-232D EIA/TIA-561 RJ45 Pinout".
- ↑ Lawrence, Tony (1992). "Serial Wiring". A. P. Lawrence. Retrieved 2011-07-28.
- ↑ Ögren, Joakim (2008-09-18). "Serial (PC 25)". Hardware Book. Retrieved 2011-07-28.
- ↑ Leedom, Casey (1990-02-20). "Re: EIA-232 full duplex RTS/CTS flow control standard proposal". Newsgroup: comp.dcom.modems. Usenet: 49249@lll-winken.LLNL.GOV. Retrieved 2014-02-03.
अग्रिम पठन
- Axelson, Jan (2007). Serial Port Complete: COM Ports, USB Virtual COM Ports, and Ports for Embedded Systems (2nd ed.). Lakeview Research. ISBN 978-1-931-44806-2.
- Interface Circuits for TIA/EIA-232-F: Design Notes (PDF). September 2002. SLLA037. Archived (PDF) from the original on 2017-03-05. Retrieved 2017-03-05.
{{cite book}}
:|work=
ignored (help) - Fundamentals of RS–232 Serial Communications (PDF). Dallas Semiconductor. 1998-03-09. Application Note 83. Archived (PDF) from the original on 2017-03-05. Retrieved 2017-03-05.
- "RS232C Standard". Knowledgebase. National Instruments. Archived from the original on 2017-03-05. Retrieved 2017-03-05.
- ITU-T Recommendation V.24 - Data Communication over the telephone network - List of definitions for interchange circuits between data terminal equipment (DTE) and data circuit-terminating equipment (DCE). International Telecommunication Union (ITU-T). March 1993. Archived from the original on 2015-08-17. Retrieved 2017-03-05.
बाहरी संबंध
- Media related to RS-232 at Wikimedia Commons
- Serial Programming:RS-232 Connections at Wikibooks