टॉटोलॉजिकल बंडल: Difference between revisions

From Vigyanwiki
No edit summary
 
(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
गणित में, टॉटोलॉजिकल बंडल एक ऐसा [[वेक्टर बंडल|सदिश बंडल]] है जो प्राकृतिक टॉटोलॉजिकल विधि से [[ग्रासमैनियन]] पर होता है: <math>V</math> के <math>k</math>-[[आयाम (वेक्टर स्थान)|विमा (सदिश समष्टि)]] के [[रैखिक उपस्थान|रैखिक उपसमष्टि]] ग्रासमैनियन के लिए , <math>k</math>-विमीय सदिश उपसमष्टि <math>W \subseteq V</math> के अनुरूप ग्रासमैनियन में एक बिंदु दिया जाता है, फाइबर पर <math>W</math> स्वयं उप समष्टि <math>W</math> है। [[प्रक्षेप्य स्थान|प्रक्षेप्य समष्टि]] की समष्टि में टॉटोलॉजिकल बंडल को टॉटोलॉजिकल रेखा बंडल के रूप में जाना जाता है।
गणित में, '''टॉटोलॉजिकल बंडल''' एक ऐसा [[वेक्टर बंडल|'''सदिश बंडल''']] है जो प्राकृतिक टॉटोलॉजिकल विधि से [[ग्रासमैनियन]] पर होता है: <math>V</math> के <math>k</math>-[[आयाम (वेक्टर स्थान)|विमा (सदिश समष्टि)]] के [[रैखिक उपस्थान|रैखिक उपसमष्टि]] ग्रासमैनियन के लिए, <math>k</math>-विमीय सदिश उपसमष्टि <math>W \subseteq V</math> के अनुरूप ग्रासमैनियन में एक बिंदु दिया जाता है, फाइबर पर <math>W</math> स्वयं उप समष्टि <math>W</math> है। [[प्रक्षेप्य स्थान|प्रक्षेप्य समष्टि]] की समष्टि में टॉटोलॉजिकल बंडल को '''टॉटोलॉजिकल रेखा बंडल''' के रूप में जाना जाता है।


किसी भी सदिश बंडल (कॉम्पैक्ट स्पेस पर) के बाद से टॉटोलॉजिकल बंडल को [[ सार्वभौमिक बंडल |सार्वभौमिक बंडल]] भी कहा जाता है<ref>Over a noncompact but paracompact base, this remains true provided one uses infinite Grassmannian.</ref>) टॉटोलॉजिकल बंडल का पुलबैक है; कहने का तात्पर्य यह है कि ग्रासमैनियन सदिश बंडलों के लिए वर्गीकृत समष्टि है। इस वजह से, विशिष्ट वर्गों के अध्ययन में टॉटोलॉजिकल बंडल महत्वपूर्ण है।
इस प्रकार से किसी भी सदिश बंडल (संहत समष्टि पर) के बाद से टॉटोलॉजिकल बंडल को [[ सार्वभौमिक बंडल |'''सार्वभौमिक बंडल''']] भी कहा जाता है<ref>Over a noncompact but paracompact base, this remains true provided one uses infinite Grassmannian.</ref> टॉटोलॉजिकल बंडल का पुलबैक है; कहने का तात्पर्य यह है कि ग्रासमैनियन सदिश बंडलों के लिए वर्गीकृत समष्टि है। अतः इस कारण से, विशिष्ट वर्गों के अध्ययन में टॉटोलॉजिकल बंडल महत्वपूर्ण है।


टॉटोलॉजिकल बंडलों का निर्माण बीजगणितीय टोपोलॉजी और बीजगणितीय ज्यामिति दोनों में किया जाता है। बीजगणितीय ज्यामिति में, टॉटोलॉजिकल रेखा बंडल (उल्टे शीफ के रूप में) है
इस प्रकार से टॉटोलॉजिकल बंडलों का निर्माण बीजगणितीय टोपोलॉजी और बीजगणितीय ज्यामिति दोनों में किया जाता है। बीजगणितीय ज्यामिति में, टॉटोलॉजिकल रेखा बंडल (व्युत्क्रम शीफ के रूप में) अधिसमतल बंडल या सेरे के व्यावर्ती शीफ <math>\mathcal{O}_{\mathbb{P}^n}(1)</math> का


:<math>\mathcal{O}_{\mathbb{P}^n}(-1),</math>
:<math>\mathcal{O}_{\mathbb{P}^n}(-1)</math>
हाइपरप्लेन बंडल या सेरे के ट्विस्टिंग शीफ का [[दोहरा बंडल]] <math>\mathcal{O}_{\mathbb{P}^n}(1)</math>. हाइपरप्लेन बंडल हाइपरप्लेन (वि[[भाजक (बीजगणितीय ज्यामिति)]]) के अनुरूप रेखा बंडल है <math>\mathbb{P}^{n-1}</math> में <math>\mathbb{P}^n</math>. टॉटोलॉजिकल रेखा बंडल और हाइपरप्लेन बंडल वास्तव में प्रक्षेप्य समष्टि के [[पिकार्ड समूह]] के दो जनरेटर हैं।<ref>In literature and textbooks, they are both often called canonical generators.</ref>
[[दोहरा बंडल]] है। अतः '''अधिसमतल बंडल''', <math>\mathbb{P}^n</math> में अधिसमतल (वि[[भाजक (बीजगणितीय ज्यामिति)]]) <math>\mathbb{P}^{n-1}</math> के अनुरूप रेखा बंडल है। टॉटोलॉजिकल रेखा बंडल और अधिसमतल बंडल वस्तुतः प्रक्षेप्य समष्टि के [[पिकार्ड समूह]] के दो जनक हैं।<ref>In literature and textbooks, they are both often called canonical generators.</ref>
[[माइकल अतियाह]] के के-सिद्धांत में, [[जटिल प्रक्षेप्य स्थान|जटिल प्रक्षेप्य समष्टि]] पर टॉटोलॉजिकल रेखा बंडल को मानक रेखा बंडल कहा जाता है। मानक बंडल के गोलाकार बंडल को आमतौर पर [[हॉपफ बंडल]] कहा जाता है। (सीएफ. बोतल जनरेटर।)


अधिक आम तौर पर, सदिश बंडल के [[ प्रक्षेप्य बंडल |प्रक्षेप्य बंडल]] के साथ-साथ [[ग्रासमैन बंडल]] पर भी टॉटोलॉजिकल बंडल होते हैं।
इस प्रकार से [[माइकल अतियाह]] के K-सिद्धांत में, [[जटिल प्रक्षेप्य स्थान|जटिल प्रक्षेप्य समष्टि]] पर टॉटोलॉजिकल रेखा बंडल को '''मानक रेखा बंडल''' कहा जाता है। मानक बंडल के गोलाकार बंडल को सामान्यतः [[हॉपफ बंडल]] कहा जाता है। (सीएफ. बोट जनक।)


पुराना शब्द ''कैनोनिकल बंडल'' इस आधार पर अप्रचलित हो गया है कि ''[[विहित वर्ग]]बहुविकल्पी)'' गणितीय शब्दावली में अत्यधिक अतिभारित है, और (इससे भी बदतर) [[बीजगणितीय ज्यामिति]] में कैनोनिकल वर्ग के साथ भ्रम है शायद ही टाला जा सके।
इस प्रकार से अधिक सामान्यतः, सदिश बंडल के [[ प्रक्षेप्य बंडल |प्रक्षेप्य बंडल]] के साथ-साथ [[ग्रासमैन बंडल]] पर भी टॉटोलॉजिकल बंडल होते हैं।
 
प्राचीन शब्द ''कैनोनिकल बंडल'' इस आधार पर अप्रचलित हो गया है कि ''[[विहित वर्ग]]बहुविकल्पी'' गणितीय शब्दावली में अत्यधिक अतिभारित है, और (इससे भी निकृष्ट) [[बीजगणितीय ज्यामिति]] में कैनोनिकल वर्ग के साथ भ्रम है संभवतः अवरोधित किया जा सके।


== सहज परिभाषा ==
== सहज परिभाषा ==


परिभाषा के अनुसार ग्रासमैनियन किसी दिए गए [[सदिश स्थल]] में, दिए गए विमा के रैखिक उप-समष्टिों के लिए पैरामीटर समष्टि हैं <math>W</math>. अगर <math>G</math> ग्रासमैनियन है, और <math>V_g</math> का उपसमष्टि है <math>W</math> तदनुसार <math>g</math> में <math>G</math>, यह पहले से ही लगभग सदिश बंडल के लिए आवश्यक डेटा है: अर्थात् प्रत्येक बिंदु के लिए सदिश समष्टि <math>g</math>, लगातार बदलता रहता है। वह सब जो इस संकेत से टॉटोलॉजिकल बंडल की परिभाषा को रोक सकता है, वह कठिनाई है <math>V_g</math> प्रतिच्छेद करने जा रहे हैं. इसे ठीक करना [[ असंयुक्त संघ |असंयुक्त संघ]] डिवाइस का नियमित अनुप्रयोग है, ताकि बंडल प्रक्षेपण [[फाइबर बंडल]] से हो जो कि समान प्रतियों से बना हो। <math>V_g</math>, जो अब प्रतिच्छेद नहीं करते। इसके साथ ही हमारे पास बंडल है.
परिभाषा के अनुसार ग्रासमैनियन किसी दिए गए [[सदिश स्थल|सदिश]] समष्टि में, दिए गए विमा के रैखिक उप-समष्टि के लिए पैरामीटर समष्टि <math>W</math> हैं। यदि <math>G</math> ग्रासमैनियन है, और <math>V_g</math>, <math>G</math> में <math>g</math> के अनुरूप <math>W</math> का उप-समष्टि है, तो यह पहले से ही लगभग एक सदिश बंडल के लिए आवश्यक डेटा है: अर्थात् प्रत्येक बिंदु <math>g</math> के लिए एक सदिश स्थान, जो निरंतर बदलता रहता है। इस प्रकार से वह सभी जो इस संकेत से टॉटोलॉजिकल बंडल की परिभाषा को रोक सकता है, वह कठिनाई है जिसे <math>V_g</math> प्रतिच्छेद करने जा रहा है। इसे ठीक करना [[ असंयुक्त संघ |असंयुक्त संघ]] उपकरण का नियमित अनुप्रयोग है, ताकि बंडल प्रक्षेपण <math>V_g</math> की समान प्रतियों से बने [[फाइबर बंडल]] से हो, जो अब एक दूसरे को नहीं काटते हैं। इसके साथ ही हमारे निकट बंडल है।


प्रक्षेप्य अंतरिक्ष मामला शामिल है। रिवाज के सन्दर्भ मे <math>P(V)</math> दोहरे अंतरिक्ष अर्थ में टॉटोलॉजिकल बंडल को उपयोगी रूप से ले जा सकता है। यानी साथ में <math>V^*</math> दोहरी जगह, के बिंदु <math>P(V)</math> के सदिश उप-समष्टि ले जाएं <math>V^*</math> यह उनकी गुठली है, जब इसे [[रैखिक कार्यात्मक]]ताओं की (किरणों) के रूप में माना जाता है <math>V^*</math>. अगर <math>V</math> विमा है <math>n+1</math>, टॉटोलॉजिकल [[लाइन बंडल|रेखा बंडल]] टॉटोलॉजिकल बंडल है, और दूसरा, जिसका अभी वर्णन किया गया है, रैंक का है <math>n</math>.
इस प्रकार से प्रक्षेप्य समष्टि स्थिति सम्मिलित है। परिपाटी के अनुसार <math>P(V)</math> दोहरे समष्टि अर्थ में टॉटोलॉजिकल बंडल को उपयोगी रूप से ले जा सकता है। अर्थात <math>V^*</math> दोहरे स्थान के साथ, <math>P(V)</math> के बिंदु <math>V^*</math> के सदिश उप-समष्टि को ले जाते हैं, जो कि उनके कर्नेल हैं, जब <math>V^*</math>पर (किरणों की) रैखिक फलनात्मकता के रूप में माना जाता है। यदि <math>V</math> की विमा <math>n+1</math> है, तो टॉटोलॉजिकल [[लाइन बंडल|रेखा बंडल]] टॉटोलॉजिकल बंडल है, और दूसरा, जिसका अभी वर्णन किया गया है, पद <math>n</math> का है।


== औपचारिक परिभाषा ==
== औपचारिक परिभाषा ==
होने देना <math>G_n(\R^{n+k})</math> में एन-विमीय सदिश उप-समष्टिों का ग्रासमैनियन बनें <math>\R^{n+k};</math> समुच्चय के रूप में यह सभी n-विमीय सदिश उप-समष्टिों का समुच्चय है <math>\R^{n+k}.</math> उदाहरण के लिए, यदि n = 1 है, तो यह वास्तविक प्रक्षेप्य k-स्पेस है।
इस प्रकार से मान लीजिए कि <math>G_n(\R^{n+k})</math> <math>\R^{n+k}</math> में एन-विमीय सदिश उप-समष्टि का ग्रासमैनियन का ग्रासमैनियन है; एक समुच्चय के रूप में यह <math>\R^{n+k}</math> के सभी एन-विमीय सदिश उप-समष्टि का समुच्चय है। अतः इस प्रकार से उदाहरण के लिए, यदि '''''n = 1''''' है, तो यह वास्तविक प्रक्षेप्य k-समष्टि है।


हम टॉटोलॉजिकल बंडल γ को परिभाषित करते हैं<sub>''n'', ''k''</sub> ऊपर <math>G_n(\R^{n+k})</math> निम्नलिखित नुसार। बंडल का कुल समष्टि सभी जोड़ों (वी, वी) का सेट है जिसमें ग्रासमैनियन का बिंदु वी और वी में सदिश वी शामिल है; इसे कार्टेशियन उत्पाद की उप-समष्टि टोपोलॉजी दी गई है <math>G_n(\R^{n+k}) \times \R^{n+k}.</math> प्रक्षेपण मानचित्र π, π(V, v) = V द्वारा दिया जाता है। यदि F, π के अंतर्गत V की पूर्व छवि है, तो इसे a(V, v) + b(V, w) द्वारा सदिश समष्टि की संरचना दी जाती है। ) = (वी, एवी + बीडब्ल्यू)। अंत में, समष्टिीय तुच्छता को देखने के लिए, ग्रासमैनियन में बिंदु<ref>''U'' is open since <math>G_n(\R^{n+k})</math> is given a topology such that
हम टॉटोलॉजिकल बंडल γ<sub>''n'', ''k''</sub> पर <math>G_n(\R^{n+k})</math> पर निम्नानुसार परिभाषित करते हैं। बंडल का कुल समष्टि सभी युग्मों (''V'', ''v'') का समुच्चय है जिसमें ग्रासमैनियन का एक बिंदु ''V'' और''V'' में एक सदिश ''v'' सम्मिलित है; इसे कार्तीय गुणनफल <math>G_n(\R^{n+k}) \times \R^{n+k}</math> की उप-समष्टि टोपोलॉजी दी गई है। इस प्रकार से प्रक्षेपण प्रतिचित्र '''''π, π(V, v) = V''''' द्वारा दिया गया है। यदि '''F, π''' के अंतर्गत V का पूर्व प्रतिबिम्ब है, तो इसे '''a(V, v) + b(V, w) = (V, av + bw)''' द्वारा एक सदिश स्थान की संरचना दी जाती है। अंत में, स्थानीय तुच्छता को देखने के लिए, ग्रासमैनियन में एक बिंदु X दिया गया है, U को सभी V का समूह होने दें,<ref>''U'' is open since <math>G_n(\R^{n+k})</math> is given a topology such that


:<math>\begin{cases} G_n(\R^{n+k}) \to \operatorname{End}(\R^{n+k}) \\ V \mapsto p_V \end{cases}</math>
:<math>\begin{cases} G_n(\R^{n+k}) \to \operatorname{End}(\R^{n+k}) \\ V \mapsto p_V \end{cases}</math>


where <math>p_V</math> is the orthogonal projection onto ''V'', is a homeomorphism onto the image.</ref> और फिर परिभाषित करें
where <math>p_V</math> is the orthogonal projection onto ''V'', is a homeomorphism onto the image.</ref> जैसे कि X पर लाम्बिक प्रक्षेपण p, V को X पर समरूपी रूप से प्रतिचित्रित करता है, और फिर


:<math>\begin{cases} \phi: \pi^{-1}(U) \to U\times X\subseteq  G_n(\R^{n+k}) \times X \\ \phi(V,v) = (V, p(v)) \end{cases}</math>
:<math>\begin{cases} \phi: \pi^{-1}(U) \to U\times X\subseteq  G_n(\R^{n+k}) \times X \\ \phi(V,v) = (V, p(v)) \end{cases}</math>
जो स्पष्ट रूप से होम्योमोर्फिज्म है। इसलिए, परिणाम रैंक n का सदिश बंडल है।
को परिभाषित करता है जो स्पष्ट रूप से एक होमोमोर्फिज्म है। इसलिए, परिणाम पद n का सदिश बंडल है।
 
इस प्रकार से यदि हम <math>\R</math> को [[जटिल क्षेत्र]] <math>\C</math> से बदल दें तो उपरोक्त परिभाषा का अर्थ बना रहता है।


यदि हम प्रतिस्थापित करें तो उपरोक्त परिभाषा का अर्थ बना रहता है <math>\R</math> [[जटिल क्षेत्र]] के साथ <math>\C.</math>
अतः परिभाषा के अनुसार, अनंत ग्रासमैनियन <math>G_n</math> <math>G_n(\R^{n+k})</math> की <math>k\to\infty</math> के रूप में प्रत्यक्ष सीमा है। बंडलों की प्रत्यक्ष सीमा '''''γ<sub>n, k</sub>''''' लेते हुए, <math>G_n</math> का टॉटोलॉजिकल बंडल γ<sub>''n''</sub> देता है। टॉटोलॉजिकल बंडल यह इस अर्थ में सार्वभौमिक बंडल है: प्रत्येक संहत समष्टि X के लिए, प्राकृतिक आक्षेप<math>\begin{cases} [X, G_n] \to \operatorname{Vect}^{\R}_n(X) \\ f \mapsto f^*(\gamma_n) \end{cases}</math>
परिभाषा के अनुसार, अनंत ग्रासमैनियन <math>G_n</math> की सीधी सीमा है <math>G_n(\R^{n+k})</math> जैसा <math>k\to\infty.</math> बंडलों की सीधी सीमा लेना γ<sub>''n'', ''k''</sub> टॉटोलॉजिकल बंडल γ देता है<sub>''n''</sub> का <math>G_n.</math> यह इस अर्थ में सार्वभौमिक बंडल है: प्रत्येक कॉम्पैक्ट स्पेस एक्स के लिए, प्राकृतिक आक्षेप है


:<math>\begin{cases} [X, G_n] \to \operatorname{Vect}^{\R}_n(X) \\ f \mapsto f^*(\gamma_n) \end{cases}</math>
है जहां बाईं ओर कोष्ठक का अर्थ समस्थेयता कक्ष है और दाईं ओर पद एन के वास्तविक सदिश बंडलों के समरूपता वर्गों का समुच्चय है। व्युत्क्रम प्रतिचित्र इस प्रकार दिया गया है: चूंकि X संहत है, कोई भी सदिश बंडल E तुच्छ बंडल का उपबंडल है: कुछ k के लिए <math>E \hookrightarrow X \times \R^{n+k}</math> और इसलिए E समरूपता तक अद्वितीय एक प्रतिचित्र
जहां बाईं ओर कोष्ठक का अर्थ समरूपता वर्ग है और दाईं ओर रैंक एन के वास्तविक सदिश बंडलों के समरूपता वर्गों का सेट है। उलटा नक्शा इस प्रकार दिया गया है: चूंकि एक्स कॉम्पैक्ट है, कोई भी सदिश बंडल तुच्छ बंडल का सबबंडल है: <math>E \hookrightarrow X \times \R^{n+k}</math> कुछ k के लिए और इसलिए E मानचित्र निर्धारित करता है


:<math>\begin{cases}f_E: X \to G_n \\ x \mapsto E_x \end{cases}</math>
:<math>\begin{cases}f_E: X \to G_n \\ x \mapsto E_x \end{cases}</math>
समरूपता तक अद्वितीय।
निर्धारित करता है।


टिप्पणी: बदले में, कोई टॉटोलॉजिकल बंडल को सार्वभौमिक बंडल के रूप में परिभाषित कर सकता है; मान लीजिए कि कोई स्वाभाविक आपत्ति है
'''टिप्पणी''': इसके स्थान पर, कोई टॉटोलॉजिकल बंडल को सार्वभौमिक बंडल के रूप में परिभाषित कर सकता है; मान लीजिए कि किसी X के लिए एक प्राकृतिक आक्षेप


:<math>[X, G_n] = \operatorname{Vect}^{\R}_n(X)</math>
:<math>[X, G_n] = \operatorname{Vect}^{\R}_n(X)</math> है।
किसी भी [[पैराकॉम्पैक्ट स्पेस]] X के लिए <math>G_n</math> कॉम्पैक्ट स्पेस की प्रत्यक्ष सीमा है, यह पैराकॉम्पैक्ट है और इसलिए इसके ऊपर अद्वितीय सदिश बंडल है <math>G_n</math> जो कि पहचान मानचित्र से मेल खाता है <math>G_n.</math> यह वास्तव में टॉटोलॉजिकल बंडल है और, प्रतिबंध के द्वारा, किसी को सभी पर टॉटोलॉजिकल बंडल मिलते हैं <math>G_n(\R^{n+k}).</math>
चूँकि <math>G_n</math> सघन समष्टि की प्रत्यक्ष सीमा है, यह अनुसंहत है और इसलिए <math>G_n</math> के ऊपर एक अद्वितीय सदिश बंडल है जो <math>G_n</math> पर पहचान प्रतिचित्र से मेल खाता है। यह वस्तुतः टॉटोलॉजिकल बंडल है और, प्रतिबंध के द्वारा, किसी को सभी <math>G_n(\R^{n+k})</math> पर टॉटोलॉजिकल बंडल प्राप्त होता है।
== हाइपरप्लेन बंडल ==
== अधिसमतल बंडल ==
वास्तविक प्रक्षेप्य ''k''-स्पेस पर हाइपरप्लेन बंडल ''H'' को इस प्रकार परिभाषित किया गया है। ''H'' का कुल समष्टि सभी युग्मों (''L'', ''f'') का समुच्चय है, जिसमें मूल बिंदु से होकर जाने वाली रेखा ''L'' शामिल है। <math>\R^{k+1}</math> और एफ एल पर रैखिक कार्यात्मक है। प्रक्षेपण मानचित्र π π (एल, एफ) = एल द्वारा दिया गया है (ताकि एल पर फाइबर एल का दोहरी सदिश समष्टि हो।) बाकी बिल्कुल टॉटोलॉजिकल रेखा बंडल की तरह है।
इस प्रकार से वास्तविक प्रक्षेप्य ''k''-समष्टि पर अधिसमतल बंडल ''H'' को इस प्रकार परिभाषित किया गया है। H का कुल स्थान सभी युग्मों (L, f) का समुच्चय है, जिसमें <math>\R^{k+1}</math> में मूल बिंदु से होकर जाने वाली एक रेखा L और L पर एक रैखिक फलनात्मक f सम्मिलित है। प्रक्षेपण प्रतिचित्र π π(''L'', ''f'') = ''L'' द्वारा दिया गया है (ताकि L पर फाइबर L का दोहरी सदिश समष्टि हो।) शेष निश्चित टॉटोलॉजिकल रेखा बंडल के जैसे है।


दूसरे शब्दों में, एच टॉटोलॉजिकल रेखा बंडल का दोहरा बंडल है।
इस प्रकार से दूसरे शब्दों में, H टॉटोलॉजिकल रेखा बंडल का दोहरा बंडल है।


बीजगणितीय ज्यामिति में, हाइपरप्लेन बंडल 'हाइपरप्लेन विभाजक' के अनुरूप रेखा बंडल (उलटा शीफ ​​के रूप में) है
अतः बीजगणितीय ज्यामिति में, अधिसमतल बंडल '''<nowiki/>'अधिसमतल विभाजक''''


:<math>H = \mathbb{P}^{n-1} \sub \mathbb{P}^{n}</math>
:<math>H = \mathbb{P}^{n-1} \sub \mathbb{P}^{n}</math>
मान लीजिए, x के रूप में दिया गया है<sub>0</sub> = 0, जब x<sub>i</sub>सजातीय निर्देशांक हैं. इस प्रकार इसे देखा जा सकता है। यदि D वेइल विभाजक है|(वेइल) विभाजक है <math>X=\mathbb{P}^n,</math> one, X पर संबंधित रेखा बंडल O(D) को परिभाषित करता है
के अनुरूप रेखा बंडल (व्युत्क्रम शीफ ​​के रूप में) होता है, जैसे कि, ''x''<sub>0</sub> = 0, जब ''x<sub>i</sub>'' सजातीय निर्देशांक होते हैं। इस प्रकार इसे देखा जा सकता है। यदि D, <math>X=\mathbb{P}^n</math> पर एक (वेइल) विभाजक है, तो कोई X पर संबंधित लाइन बंडल O(D) को


:<math>\Gamma(U, O(D)) = \{ f \in K | (f) + D \ge 0 \text{ on } U \}</math>
:<math>\Gamma(U, O(D)) = \{ f \in K | (f) + D \ge 0 \text{ on } U \}</math>
जहां K, X पर परिमेय फलनों का क्षेत्र है। D को H मानते हुए, हमारे पास है:
द्वारा परिभाषित करता है, जहां K, X पर तर्कसंगत फलनों का क्षेत्र है। D को H मानते हुए, हमारे निकट है:


:<math>\begin{cases}O(H) \simeq O(1)\\ f \mapsto f x_0\end{cases}</math>
:<math>\begin{cases}O(H) \simeq O(1)\\ f \mapsto f x_0\end{cases}</math>
कहां एक्स<sub>0</sub> हमेशा की तरह, ट्विस्टिंग शीफ़ O(1) के वैश्विक खंड के रूप में देखा जाता है। (वास्तव में, उपरोक्त समरूपता वेइल डिवाइडर और कार्टियर डिवाइडर के बीच सामान्य पत्राचार का हिस्सा है।) अंत में, ट्विस्टिंग शीफ का दोहरा टॉटोलॉजिकल रेखा बंडल (नीचे देखें) से मेल खाता है।
जहाँ X<sub>0</sub> को, सदैव के जैसे, व्यावर्ती शीफ़ O(1) के वैश्विक खंड के रूप में देखा जाता है। (वस्तुतः, उपरोक्त समरूपता वेइल भाजक और कार्टियर भाजक के बीच सामान्य पत्राचार का भाग है।) अंत में, व्यावर्ती शीफ का दोहरा टॉटोलॉजिकल रेखा बंडल (नीचे देखें) से मेल खाता है।


==बीजगणितीय ज्यामिति में टॉटोलॉजिकल रेखा बंडल==
==बीजगणितीय ज्यामिति में टॉटोलॉजिकल रेखा बंडल==


बीजगणितीय ज्यामिति में, यह धारणा किसी भी क्षेत्र k पर मौजूद होती है। ठोस परिभाषा इस प्रकार है. होने देना <math>A = k[y_0, \dots, y_n]</math> और <math>\mathbb{P}^n = \operatorname{Proj}A</math>. ध्यान दें कि हमारे पास है:
बीजगणितीय ज्यामिति में, यह धारणा किसी भी क्षेत्र k पर स्थित होती है। ठोस परिभाषा इस प्रकार है। इस प्रकार से मान लीजिए <math>A = k[y_0, \dots, y_n]</math> और <math>\mathbb{P}^n = \operatorname{Proj}A</math> है। ध्यान दें कि हमारे निकट है:


:<math>\mathbf{Spec} \left (\mathcal{O}_{\mathbb{P}^n}[x_0, \ldots, x_n] \right ) = \mathbb{A}^{n+1}_{\mathbb{P}^n} = \mathbb{A}^{n+1} \times_k {\mathbb{P}^n}</math>
:<math>\mathbf{Spec} \left (\mathcal{O}_{\mathbb{P}^n}[x_0, \ldots, x_n] \right ) = \mathbb{A}^{n+1}_{\mathbb{P}^n} = \mathbb{A}^{n+1} \times_k {\mathbb{P}^n}</math>
जहां स्पेक सापेक्ष स्पेक है। अब, डालें:
जहां '''स्पेक''' सापेक्ष '''स्पेक''' है। अब, डालें:


:<math>L = \mathbf{Spec} \left (\mathcal{O}_{\mathbb{P}^n}[x_0, \dots, x_n]/I \right )</math>
:'''<math>L = \mathbf{Spec} \left (\mathcal{O}_{\mathbb{P}^n}[x_0, \dots, x_n]/I \right )</math>'''
जहां I वैश्विक वर्गों द्वारा उत्पन्न आदर्श शीफ है <math>x_iy_j-x_jy_i</math>. तब L बंद उपयोजना है <math>\mathbb{A}^{n+1}_{\mathbb{P}^n}</math> ही आधार योजना पर <math>\mathbb{P}^n</math>; इसके अलावा, L के बंद बिंदु बिल्कुल (x, y) के ही हैं <math>\mathbb{A}^{n+1} \times_k \mathbb{P}^n</math> जैसे कि या तो x शून्य है या x की छवि है <math>\mathbb{P}^n</math> य है. इस प्रकार, L टॉटोलॉजिकल रेखा बंडल है जैसा कि पहले परिभाषित किया गया है यदि k वास्तविक या जटिल संख्याओं का क्षेत्र है।
जहां I वैश्विक अनुभाग <math>x_iy_j-x_jy_i</math> द्वारा उत्पन्न आदर्श शीफ है। तब L उसी आधार योजना <math>\mathbb{P}^n</math> पर <math>\mathbb{A}^{n+1}_{\mathbb{P}^n}</math> की एक संवृत उपयोजना है; इसके अतिरिक्त, L के संवृत बिंदु निश्चित <math>\mathbb{A}^{n+1} \times_k \mathbb{P}^n</math> के (x, y) हैं जैसे कि या तो x शून्य है या <math>\mathbb{P}^n</math> में x की प्रतिबिम्ब y है। इस प्रकार, L टॉटोलॉजिकल रेखा बंडल है जैसा कि पहले परिभाषित किया गया है यदि k वास्तविक या जटिल संख्याओं का क्षेत्र है।


अधिक संक्षिप्त शब्दों में, एल एफ़िन स्पेस की उत्पत्ति का ब्लो-अप | ब्लो-अप है <math>\mathbb{A}^{n+1}</math>, जहां एल में लोकस x = 0 [[असाधारण भाजक]] है। (सीएफ. हार्टशोर्न, अध्याय I, § 4 का अंत)
अधिक संक्षिप्त शब्दों में, L एफ़िन समष्टि की उत्पत्ति का आवर्धित <math>\mathbb{A}^{n+1}</math> है, जहां L में बिन्दुपथ x = 0 एक [[असाधारण भाजक]] है। (सीएफ. हार्टशोर्न, अध्याय., § 4 का अंत)


सामान्य रूप में, <math>\mathbf{Spec}(\operatorname{Sym} \check{E})</math> परिमित रैंक के समष्टिीय रूप से मुक्त शीफ के अनुरूप [[बीजगणितीय वेक्टर बंडल|बीजगणितीय सदिश बंडल]] है।<ref>Editorial note: this definition differs from Hartshorne in that he does not take dual, but is consistent with the standard practice and the other parts of Wikipedia.</ref> चूँकि हमारे पास सटीक क्रम है:
इस प्रकार से सामान्य रूप में, <math>\mathbf{Spec}(\operatorname{Sym} \check{E})</math> परिमित पद के स्थानीय रूप से मुक्त शीफ E के अनुरूप [[बीजगणितीय वेक्टर बंडल|बीजगणितीय सदिश बंडल]] है।<ref>Editorial note: this definition differs from Hartshorne in that he does not take dual, but is consistent with the standard practice and the other parts of Wikipedia.</ref> चूँकि हमारे निकट यथार्थ क्रम है:


:<math>0 \to I \to \mathcal{O}_{\mathbb{P}^n}[x_0, \ldots, x_n] \overset{x_i \mapsto y_i}{\longrightarrow} \operatorname{Sym} \mathcal{O}_{\mathbb{P}^n}(1) \to 0,</math>
:<math>0 \to I \to \mathcal{O}_{\mathbb{P}^n}[x_0, \ldots, x_n] \overset{x_i \mapsto y_i}{\longrightarrow} \operatorname{Sym} \mathcal{O}_{\mathbb{P}^n}(1) \to 0,</math>
जैसा कि ऊपर परिभाषित है, टॉटोलॉजिकल रेखा बंडल एल, दोहरे से मेल खाता है <math>\mathcal{O}_{\mathbb{P}^n}(-1)</math> सेरे के घुमाव वाले पूले का। व्यवहार में दोनों धारणाओं (टॉटोलॉजिकल रेखा बंडल और ट्विस्टिंग शीफ के दोहरे) का परस्पर उपयोग किया जाता है।
जैसा कि ऊपर परिभाषित गया है, टॉटोलॉजिकल रेखा बंडल L, सेरे के व्यावर्ती शीफ के दोहरे <math>\mathcal{O}_{\mathbb{P}^n}(-1)</math> से मेल खाता है। व्यवहार में दोनों धारणाओं (टॉटोलॉजिकल रेखा बंडल और व्यावर्ती शीफ के दोहरे) का परस्पर उपयोग किया जाता है।


एक क्षेत्र के ऊपर, इसकी दोहरी रेखा बंडल [[हाइपरप्लेन विभाजक]] एच से जुड़ी रेखा बंडल है, जिसके वैश्विक खंड [[रैखिक रूप]] हैं। इसका चेर्न वर्ग −H है। यह एंटी-[[ पर्याप्त लाइन बंडल | पर्याप्त रेखा बंडल]] का उदाहरण है। ऊपर <math>\C,</math> यह कहने के बराबर है कि यह नकारात्मक रेखा बंडल है, जिसका अर्थ है कि इसके चेर्न वर्ग को घटाकर मानक काहलर फॉर्म का डी राम वर्ग है।
अतः इस प्रकार से एक क्षेत्र पर, इसकी दोहरी रेखा बंडल [[हाइपरप्लेन विभाजक|अधिसमतल विभाजक]] H से जुड़ी रेखा बंडल है, जिसके वैश्विक खंड [[रैखिक रूप]] हैं। इसका चेर्न वर्ग −H है। यह प्रति-[[ पर्याप्त लाइन बंडल |पर्याप्त रेखा बंडल]] का उदाहरण है। <math>\C,</math> से अधिक, यह कहने के बराबर है कि यह एक ऋणात्मक रेखा बंडल है, जिसका अर्थ है कि इसके चेर्न वर्ग को घटाकर मानक काहलर रूप का डी राम वर्ग है।


==तथ्य==
==तथ्य==


*टॉटोलॉजिकल रेखा बंडल γ<sub>1, ''k''</sub> फाइबर बंडल है लेकिन फाइबर बंडल नहीं#उदाहरण, k ≥ 1 के लिए। यह अन्य क्षेत्रों पर भी सत्य है।{{citation needed|date=December 2014}}
*टॉटोलॉजिकल रेखा बंडल γ<sub>1, ''k''</sub> स्थानीय रूप से तुच्छ है, परन्तु k ≥ 1 के लिए तुच्छ नहीं है। यह अन्य क्षेत्रों पर भी सत्य है।


वास्तव में, यह दिखाना सीधा है कि, k = 1 के लिए, वास्तविक टॉटोलॉजिकल रेखा बंडल कोई और नहीं बल्कि प्रसिद्ध बंडल है जिसका फाइबर बंडल मोबियस स्ट्रिप है। उपरोक्त तथ्य के पूर्ण प्रमाण के लिए देखें।<ref>{{harvnb|Milnor|Stasheff|1974|loc=§2. Theorem 2.1.}}</ref>
वस्तुतः, यह दिखाना प्रत्यक्ष है कि, k = 1 के लिए, वास्तविक टॉटोलॉजिकल रेखा बंडल कोई और नहीं बल्कि प्रसिद्ध बंडल है जिसका फाइबर बंडल मोबियस स्ट्रिप है। इस प्रकार से उपरोक्त तथ्य के पूर्ण प्रमाण के लिए देखें।<ref>{{harvnb|Milnor|Stasheff|1974|loc=§2. Theorem 2.1.}}</ref>
* रेखा बंडलों का पिकार्ड समूह <math>\mathbb{P}(V)</math> [[अनंत चक्रीय]] है, और [[टॉटोलॉजिकल लाइन बंडल|टॉटोलॉजिकल रेखा बंडल]] जनरेटर है।
* <math>\mathbb{P}(V)</math> पर रेखा बंडलों का पिकार्ड समूह [[अनंत चक्रीय]] है, और [[टॉटोलॉजिकल लाइन बंडल|टॉटोलॉजिकल रेखा बंडल]] जनक है।


* प्रक्षेप्य समष्टि की समष्टि में, जहां टॉटोलॉजिकल बंडल रेखा बंडल है, अनुभागों का संबंधित उलटा शीफ ​​है <math>\mathcal{O}(-1)</math>, हाइपरप्लेन बंडल या प्रोज#द ट्विस्टिंग शीफ का टेंसर व्युत्क्रम (यानी दोहरी सदिश बंडल) <math>\mathcal{O}(1)</math>; दूसरे शब्दों में हाइपरप्लेन बंडल पिकार्ड समूह का सकारात्मक डिग्री वाला जनरेटर है (एक विभाजक (बीजगणितीय ज्यामिति) के रूप में) और टॉटोलॉजिकल बंडल इसके विपरीत है: नकारात्मक डिग्री का जनरेटर।
* प्रक्षेप्य समष्टि की स्थिति में, जहां टॉटोलॉजिकल बंडल रेखा बंडल है, अनुभागों का संबंधित व्युत्क्रम शीफ <math>\mathcal{O}(-1)</math> ​​है, अधिसमतल बंडल या सेरे ट्विस्ट शीफ <math>\mathcal{O}(1)</math> का टेंसर व्युत्क्रम (अर्थात दोहरी सदिश बंडल); दूसरे शब्दों में अधिसमतल बंडल पिकार्ड समूह का धनात्मक घात वाला जनक है (एक विभाजक (बीजगणितीय ज्यामिति) के रूप में) और टॉटोलॉजिकल बंडल इसके विपरीत है: ऋणात्मक घात का जनक।


==यह भी देखें==
==यह भी देखें==
* हॉपफ बंडल
* हॉपफ बंडल
*[[ स्टिफ़ेल-व्हिटनी वर्ग ]]
*[[ स्टिफ़ेल-व्हिटनी वर्ग |स्टिफ़ेल-व्हिटनी वर्ग]]
*[[यूलर अनुक्रम]]
*[[यूलर अनुक्रम]]
*चेर्न वर्ग (टॉटोलॉजिकल बंडलों का चेर्न वर्ग अनंत ग्रासमैनियन के कोहोमोलॉजी रिंग का बीजगणितीय रूप से स्वतंत्र जनरेटर है।)
*चेर्न वर्ग (टॉटोलॉजिकल बंडलों का चेर्न वर्ग अनंत ग्रासमैनियन के सह समरूपता वलय का बीजगणितीय रूप से स्वतंत्र जनक है।)
*बोरेल का प्रमेय
*बोरेल का प्रमेय
* [[थॉम स्पेस]] (टॉटोलॉजिकल बंडलों के थॉम स्पेस γ<sub>''n''</sub> चूँकि n →∞ को [[थॉम स्पेक्ट्रम]] कहा जाता है।)
* [[थॉम स्पेस|थॉम समष्टि]] (टॉटोलॉजिकल बंडलों के थॉम समष्टि γ<sub>''n''</sub> चूँकि n →∞ को [[थॉम स्पेक्ट्रम|थॉम वर्णक्रम]] कहा जाता है।)
*ग्रासमैन बंडल
*ग्रासमैन बंडल


Line 102: Line 103:
==स्रोत==
==स्रोत==
*{{Citation| last1=Atiyah | first1=Michael Francis | author1-link=Michael Atiyah | title=K-theory | publisher=[[Addison-Wesley]] | edition=2nd | series=Advanced Book Classics | isbn=978-0-201-09394-0 | mr=1043170 | year=1989}}
*{{Citation| last1=Atiyah | first1=Michael Francis | author1-link=Michael Atiyah | title=K-theory | publisher=[[Addison-Wesley]] | edition=2nd | series=Advanced Book Classics | isbn=978-0-201-09394-0 | mr=1043170 | year=1989}}
*{{Citation| last1=Griffiths | first1=Phillip | author1-link=Phillip Griffiths | last2=Harris | first2=Joseph | author2-link=Joe Harris (mathematician) | title=Principles of algebraic geometry | publisher=[[John Wiley & Sons]] | location=New York | series=Wiley Classics Library | isbn=978-0-471-05059-9 |mr=1288523 | year=1994 | doi=10.1002/9781118032527| doi-access=free }}.
*{{Citation| last1=Griffiths | first1=Phillip | author1-link=Phillip Griffiths | last2=Harris | first2=Joseph | author2-link=Joe Harris (mathematician) | title=Principles of algebraic geometry | publisher=[[John Wiley & Sons]] | location=New York | series=Wiley Classics Library | isbn=978-0-471-05059-9 |mr=1288523 | year=1994 | doi=10.1002/9781118032527| doi-access=free }}
*{{Citation| last1=Hartshorne | first1=Robin | author1-link=Robin Hartshorne | title=[[Algebraic Geometry (book)|Algebraic Geometry]] | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=978-0-387-90244-9 | oclc=13348052 |mr=0463157 | year=1977}}.
*{{Citation| last1=Hartshorne | first1=Robin | author1-link=Robin Hartshorne | title=[[Algebraic Geometry (book)|Algebraic Geometry]] | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=978-0-387-90244-9 | oclc=13348052 |mr=0463157 | year=1977}}
*{{citation
*{{citation
  | last1 = Milnor | first1 = John W. | author1-link = John Milnor
  | last1 = Milnor | first1 = John W. | author1-link = John Milnor
Line 115: Line 116:
*{{Citation| last1=Rubei | first1=Elena |  title=Algebraic Geometry: A Concise Dictionary | publisher=Walter De Gruyter | location=Berlin/Boston | isbn=978-3-11-031622-3 | year=2014}}
*{{Citation| last1=Rubei | first1=Elena |  title=Algebraic Geometry: A Concise Dictionary | publisher=Walter De Gruyter | location=Berlin/Boston | isbn=978-3-11-031622-3 | year=2014}}


श्रेणी:सदिश बंडल
[[Category: Machine Translated Page]]
[[Category:Created On 10/07/2023]]
[[Category:Created On 10/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]

Latest revision as of 15:40, 4 September 2023

गणित में, टॉटोलॉजिकल बंडल एक ऐसा सदिश बंडल है जो प्राकृतिक टॉटोलॉजिकल विधि से ग्रासमैनियन पर होता है: के -विमा (सदिश समष्टि) के रैखिक उपसमष्टि ग्रासमैनियन के लिए, -विमीय सदिश उपसमष्टि के अनुरूप ग्रासमैनियन में एक बिंदु दिया जाता है, फाइबर पर स्वयं उप समष्टि है। प्रक्षेप्य समष्टि की समष्टि में टॉटोलॉजिकल बंडल को टॉटोलॉजिकल रेखा बंडल के रूप में जाना जाता है।

इस प्रकार से किसी भी सदिश बंडल (संहत समष्टि पर) के बाद से टॉटोलॉजिकल बंडल को सार्वभौमिक बंडल भी कहा जाता है[1] टॉटोलॉजिकल बंडल का पुलबैक है; कहने का तात्पर्य यह है कि ग्रासमैनियन सदिश बंडलों के लिए वर्गीकृत समष्टि है। अतः इस कारण से, विशिष्ट वर्गों के अध्ययन में टॉटोलॉजिकल बंडल महत्वपूर्ण है।

इस प्रकार से टॉटोलॉजिकल बंडलों का निर्माण बीजगणितीय टोपोलॉजी और बीजगणितीय ज्यामिति दोनों में किया जाता है। बीजगणितीय ज्यामिति में, टॉटोलॉजिकल रेखा बंडल (व्युत्क्रम शीफ के रूप में) अधिसमतल बंडल या सेरे के व्यावर्ती शीफ का

दोहरा बंडल है। अतः अधिसमतल बंडल, में अधिसमतल (विभाजक (बीजगणितीय ज्यामिति)) के अनुरूप रेखा बंडल है। टॉटोलॉजिकल रेखा बंडल और अधिसमतल बंडल वस्तुतः प्रक्षेप्य समष्टि के पिकार्ड समूह के दो जनक हैं।[2]

इस प्रकार से माइकल अतियाह के K-सिद्धांत में, जटिल प्रक्षेप्य समष्टि पर टॉटोलॉजिकल रेखा बंडल को मानक रेखा बंडल कहा जाता है। मानक बंडल के गोलाकार बंडल को सामान्यतः हॉपफ बंडल कहा जाता है। (सीएफ. बोट जनक।)

इस प्रकार से अधिक सामान्यतः, सदिश बंडल के प्रक्षेप्य बंडल के साथ-साथ ग्रासमैन बंडल पर भी टॉटोलॉजिकल बंडल होते हैं।

प्राचीन शब्द कैनोनिकल बंडल इस आधार पर अप्रचलित हो गया है कि विहित वर्गबहुविकल्पी गणितीय शब्दावली में अत्यधिक अतिभारित है, और (इससे भी निकृष्ट) बीजगणितीय ज्यामिति में कैनोनिकल वर्ग के साथ भ्रम है संभवतः अवरोधित किया जा सके।

सहज परिभाषा

परिभाषा के अनुसार ग्रासमैनियन किसी दिए गए सदिश समष्टि में, दिए गए विमा के रैखिक उप-समष्टि के लिए पैरामीटर समष्टि हैं। यदि ग्रासमैनियन है, और , में के अनुरूप का उप-समष्टि है, तो यह पहले से ही लगभग एक सदिश बंडल के लिए आवश्यक डेटा है: अर्थात् प्रत्येक बिंदु के लिए एक सदिश स्थान, जो निरंतर बदलता रहता है। इस प्रकार से वह सभी जो इस संकेत से टॉटोलॉजिकल बंडल की परिभाषा को रोक सकता है, वह कठिनाई है जिसे प्रतिच्छेद करने जा रहा है। इसे ठीक करना असंयुक्त संघ उपकरण का नियमित अनुप्रयोग है, ताकि बंडल प्रक्षेपण की समान प्रतियों से बने फाइबर बंडल से हो, जो अब एक दूसरे को नहीं काटते हैं। इसके साथ ही हमारे निकट बंडल है।

इस प्रकार से प्रक्षेप्य समष्टि स्थिति सम्मिलित है। परिपाटी के अनुसार दोहरे समष्टि अर्थ में टॉटोलॉजिकल बंडल को उपयोगी रूप से ले जा सकता है। अर्थात दोहरे स्थान के साथ, के बिंदु के सदिश उप-समष्टि को ले जाते हैं, जो कि उनके कर्नेल हैं, जब पर (किरणों की) रैखिक फलनात्मकता के रूप में माना जाता है। यदि की विमा है, तो टॉटोलॉजिकल रेखा बंडल टॉटोलॉजिकल बंडल है, और दूसरा, जिसका अभी वर्णन किया गया है, पद का है।

औपचारिक परिभाषा

इस प्रकार से मान लीजिए कि में एन-विमीय सदिश उप-समष्टि का ग्रासमैनियन का ग्रासमैनियन है; एक समुच्चय के रूप में यह के सभी एन-विमीय सदिश उप-समष्टि का समुच्चय है। अतः इस प्रकार से उदाहरण के लिए, यदि n = 1 है, तो यह वास्तविक प्रक्षेप्य k-समष्टि है।

हम टॉटोलॉजिकल बंडल γn, k पर पर निम्नानुसार परिभाषित करते हैं। बंडल का कुल समष्टि सभी युग्मों (V, v) का समुच्चय है जिसमें ग्रासमैनियन का एक बिंदु V औरV में एक सदिश v सम्मिलित है; इसे कार्तीय गुणनफल की उप-समष्टि टोपोलॉजी दी गई है। इस प्रकार से प्रक्षेपण प्रतिचित्र π, π(V, v) = V द्वारा दिया गया है। यदि F, π के अंतर्गत V का पूर्व प्रतिबिम्ब है, तो इसे a(V, v) + b(V, w) = (V, av + bw) द्वारा एक सदिश स्थान की संरचना दी जाती है। अंत में, स्थानीय तुच्छता को देखने के लिए, ग्रासमैनियन में एक बिंदु X दिया गया है, U को सभी V का समूह होने दें,[3] जैसे कि X पर लाम्बिक प्रक्षेपण p, V को X पर समरूपी रूप से प्रतिचित्रित करता है, और फिर

को परिभाषित करता है जो स्पष्ट रूप से एक होमोमोर्फिज्म है। इसलिए, परिणाम पद n का सदिश बंडल है।

इस प्रकार से यदि हम को जटिल क्षेत्र से बदल दें तो उपरोक्त परिभाषा का अर्थ बना रहता है।

अतः परिभाषा के अनुसार, अनंत ग्रासमैनियन की के रूप में प्रत्यक्ष सीमा है। बंडलों की प्रत्यक्ष सीमा γn, k लेते हुए, का टॉटोलॉजिकल बंडल γn देता है। टॉटोलॉजिकल बंडल यह इस अर्थ में सार्वभौमिक बंडल है: प्रत्येक संहत समष्टि X के लिए, प्राकृतिक आक्षेप

है जहां बाईं ओर कोष्ठक का अर्थ समस्थेयता कक्ष है और दाईं ओर पद एन के वास्तविक सदिश बंडलों के समरूपता वर्गों का समुच्चय है। व्युत्क्रम प्रतिचित्र इस प्रकार दिया गया है: चूंकि X संहत है, कोई भी सदिश बंडल E तुच्छ बंडल का उपबंडल है: कुछ k के लिए और इसलिए E समरूपता तक अद्वितीय एक प्रतिचित्र

निर्धारित करता है।

टिप्पणी: इसके स्थान पर, कोई टॉटोलॉजिकल बंडल को सार्वभौमिक बंडल के रूप में परिभाषित कर सकता है; मान लीजिए कि किसी X के लिए एक प्राकृतिक आक्षेप

है।

चूँकि सघन समष्टि की प्रत्यक्ष सीमा है, यह अनुसंहत है और इसलिए के ऊपर एक अद्वितीय सदिश बंडल है जो पर पहचान प्रतिचित्र से मेल खाता है। यह वस्तुतः टॉटोलॉजिकल बंडल है और, प्रतिबंध के द्वारा, किसी को सभी पर टॉटोलॉजिकल बंडल प्राप्त होता है।

अधिसमतल बंडल

इस प्रकार से वास्तविक प्रक्षेप्य k-समष्टि पर अधिसमतल बंडल H को इस प्रकार परिभाषित किया गया है। H का कुल स्थान सभी युग्मों (L, f) का समुच्चय है, जिसमें में मूल बिंदु से होकर जाने वाली एक रेखा L और L पर एक रैखिक फलनात्मक f सम्मिलित है। प्रक्षेपण प्रतिचित्र π π(L, f) = L द्वारा दिया गया है (ताकि L पर फाइबर L का दोहरी सदिश समष्टि हो।) शेष निश्चित टॉटोलॉजिकल रेखा बंडल के जैसे है।

इस प्रकार से दूसरे शब्दों में, H टॉटोलॉजिकल रेखा बंडल का दोहरा बंडल है।

अतः बीजगणितीय ज्यामिति में, अधिसमतल बंडल 'अधिसमतल विभाजक'

के अनुरूप रेखा बंडल (व्युत्क्रम शीफ ​​के रूप में) होता है, जैसे कि, x0 = 0, जब xi सजातीय निर्देशांक होते हैं। इस प्रकार इसे देखा जा सकता है। यदि D, पर एक (वेइल) विभाजक है, तो कोई X पर संबंधित लाइन बंडल O(D) को

द्वारा परिभाषित करता है, जहां K, X पर तर्कसंगत फलनों का क्षेत्र है। D को H मानते हुए, हमारे निकट है:

जहाँ X0 को, सदैव के जैसे, व्यावर्ती शीफ़ O(1) के वैश्विक खंड के रूप में देखा जाता है। (वस्तुतः, उपरोक्त समरूपता वेइल भाजक और कार्टियर भाजक के बीच सामान्य पत्राचार का भाग है।) अंत में, व्यावर्ती शीफ का दोहरा टॉटोलॉजिकल रेखा बंडल (नीचे देखें) से मेल खाता है।

बीजगणितीय ज्यामिति में टॉटोलॉजिकल रेखा बंडल

बीजगणितीय ज्यामिति में, यह धारणा किसी भी क्षेत्र k पर स्थित होती है। ठोस परिभाषा इस प्रकार है। इस प्रकार से मान लीजिए और है। ध्यान दें कि हमारे निकट है:

जहां स्पेक सापेक्ष स्पेक है। अब, डालें:

जहां I वैश्विक अनुभाग द्वारा उत्पन्न आदर्श शीफ है। तब L उसी आधार योजना पर की एक संवृत उपयोजना है; इसके अतिरिक्त, L के संवृत बिंदु निश्चित के (x, y) हैं जैसे कि या तो x शून्य है या में x की प्रतिबिम्ब y है। इस प्रकार, L टॉटोलॉजिकल रेखा बंडल है जैसा कि पहले परिभाषित किया गया है यदि k वास्तविक या जटिल संख्याओं का क्षेत्र है।

अधिक संक्षिप्त शब्दों में, L एफ़िन समष्टि की उत्पत्ति का आवर्धित है, जहां L में बिन्दुपथ x = 0 एक असाधारण भाजक है। (सीएफ. हार्टशोर्न, अध्याय., § 4 का अंत)

इस प्रकार से सामान्य रूप में, परिमित पद के स्थानीय रूप से मुक्त शीफ E के अनुरूप बीजगणितीय सदिश बंडल है।[4] चूँकि हमारे निकट यथार्थ क्रम है:

जैसा कि ऊपर परिभाषित गया है, टॉटोलॉजिकल रेखा बंडल L, सेरे के व्यावर्ती शीफ के दोहरे से मेल खाता है। व्यवहार में दोनों धारणाओं (टॉटोलॉजिकल रेखा बंडल और व्यावर्ती शीफ के दोहरे) का परस्पर उपयोग किया जाता है।

अतः इस प्रकार से एक क्षेत्र पर, इसकी दोहरी रेखा बंडल अधिसमतल विभाजक H से जुड़ी रेखा बंडल है, जिसके वैश्विक खंड रैखिक रूप हैं। इसका चेर्न वर्ग −H है। यह प्रति-पर्याप्त रेखा बंडल का उदाहरण है। से अधिक, यह कहने के बराबर है कि यह एक ऋणात्मक रेखा बंडल है, जिसका अर्थ है कि इसके चेर्न वर्ग को घटाकर मानक काहलर रूप का डी राम वर्ग है।

तथ्य

  • टॉटोलॉजिकल रेखा बंडल γ1, k स्थानीय रूप से तुच्छ है, परन्तु k ≥ 1 के लिए तुच्छ नहीं है। यह अन्य क्षेत्रों पर भी सत्य है।

वस्तुतः, यह दिखाना प्रत्यक्ष है कि, k = 1 के लिए, वास्तविक टॉटोलॉजिकल रेखा बंडल कोई और नहीं बल्कि प्रसिद्ध बंडल है जिसका फाइबर बंडल मोबियस स्ट्रिप है। इस प्रकार से उपरोक्त तथ्य के पूर्ण प्रमाण के लिए देखें।[5]

  • प्रक्षेप्य समष्टि की स्थिति में, जहां टॉटोलॉजिकल बंडल रेखा बंडल है, अनुभागों का संबंधित व्युत्क्रम शीफ ​​है, अधिसमतल बंडल या सेरे ट्विस्ट शीफ का टेंसर व्युत्क्रम (अर्थात दोहरी सदिश बंडल); दूसरे शब्दों में अधिसमतल बंडल पिकार्ड समूह का धनात्मक घात वाला जनक है (एक विभाजक (बीजगणितीय ज्यामिति) के रूप में) और टॉटोलॉजिकल बंडल इसके विपरीत है: ऋणात्मक घात का जनक।

यह भी देखें

संदर्भ

  1. Over a noncompact but paracompact base, this remains true provided one uses infinite Grassmannian.
  2. In literature and textbooks, they are both often called canonical generators.
  3. U is open since is given a topology such that
    where is the orthogonal projection onto V, is a homeomorphism onto the image.
  4. Editorial note: this definition differs from Hartshorne in that he does not take dual, but is consistent with the standard practice and the other parts of Wikipedia.
  5. Milnor & Stasheff 1974, §2. Theorem 2.1.

स्रोत

  • Atiyah, Michael Francis (1989), K-theory, Advanced Book Classics (2nd ed.), Addison-Wesley, ISBN 978-0-201-09394-0, MR 1043170
  • Griffiths, Phillip; Harris, Joseph (1994), Principles of algebraic geometry, Wiley Classics Library, New York: John Wiley & Sons, doi:10.1002/9781118032527, ISBN 978-0-471-05059-9, MR 1288523
  • Hartshorne, Robin (1977), Algebraic Geometry, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157, OCLC 13348052
  • Milnor, John W.; Stasheff, James D. (1974), Characteristic Classes, Annals of Mathematics Studies, vol. 76, Princeton, New Jersey: Princeton University Press, MR 0440554
  • Rubei, Elena (2014), Algebraic Geometry: A Concise Dictionary, Berlin/Boston: Walter De Gruyter, ISBN 978-3-11-031622-3