संवर्त विसर्जन: Difference between revisions

From Vigyanwiki
No edit summary
m (Abhishekkshukla moved page बंद विसर्जन to संवर्त विसर्जन without leaving a redirect)
 
(6 intermediate revisions by 4 users not shown)
Line 2: Line 2:




बीजगणितीय ज्यामिति में, योजनाओं का एक संवर्त विसर्जन योजनाओं का एक रूपवाद है<math>f: Z \to X</math> जो Z को X के एक संवर्त उपसमूह के रूप में पहचानता है जिससे स्थानीय रूप से, Z पर नियमित कार्यों को X तक बढ़ाया जा सकता है।<ref>Mumford, ''The Red Book of Varieties and Schemes'', Section II.5</ref> इसके पश्चात की स्थिति को यह कहकर औपचारिक रूप दिया जा सकता है कि <math>f^\#:\mathcal{O}_X\rightarrow f_\ast\mathcal{O}_Z</math> विशेषण है।<ref>{{harvnb|Hartshorne|1977|loc=§II.3}}</ref>
 
बीजगणितीय ज्यामिति में, स्कीम का एक संवर्त विसर्जन स्कीम का एक रूपवाद <math>f: Z \to X</math> है जो Z को X के एक संवर्त उपसमूह के रूप में पहचानता है जिससे स्थानीय रूप से, Z पर नियमित कार्यों को X तक बढ़ाया जा सकता है।<ref>Mumford, ''The Red Book of Varieties and Schemes'', Section II.5</ref> इसके पश्चात की स्थिति को यह कहकर औपचारिक रूप दिया जा सकता है कि <math>f^\#:\mathcal{O}_X\rightarrow f_\ast\mathcal{O}_Z</math> विशेषण है।<ref>{{harvnb|Hartshorne|1977|loc=§II.3}}</ref>


एक उदाहरण विहित मानचित्र <math>R \to R/I</math> द्वारा प्रेरित समावेशन मानचित्र <math>\operatorname{Spec}(R/I) \to \operatorname{Spec}(R)                                                                                                               
एक उदाहरण विहित मानचित्र <math>R \to R/I</math> द्वारा प्रेरित समावेशन मानचित्र <math>\operatorname{Spec}(R/I) \to \operatorname{Spec}(R)                                                                                                               
Line 13: Line 14:


#<math>f: Z \to X</math> एक संवर्त विसर्जन है.
#<math>f: Z \to X</math> एक संवर्त विसर्जन है.
#प्रत्येक खुले संबंध के लिए <math>U = \operatorname{Spec}(R) \subset X</math>, वहाँ एक आदर्श मौजूद है <math>I \subset R</math> ऐसा है कि <math>f^{-1}(U) = \operatorname{Spec}(R/I)</math> यू पर योजनाओं के रूप में
#प्रत्येक विवर्त संबंध के लिए <math>U = \operatorname{Spec}(R) \subset X</math>, वहाँ एक आदर्श उपस्थित है <math>I \subset R</math> ऐसा है कि <math>f^{-1}(U) = \operatorname{Spec}(R/I)</math> यू पर स्कीम के रूप में
#वहाँ एक खुला एफ़िन आवरण मौजूद है <math>X = \bigcup U_j, U_j = \operatorname{Spec} R_j</math> और प्रत्येक j के लिए एक आदर्श मौजूद है <math>I_j \subset R_j</math> ऐसा है कि <math>f^{-1}(U_j) = \operatorname{Spec} (R_j / I_j)</math> जैसे योजनाएं ख़त्म हो गईं <math>U_j</math>.
#वहाँ एक विवर्त एफ़िन आवरण उपस्थित है <math>X = \bigcup U_j, U_j = \operatorname{Spec} R_j</math> और प्रत्येक j के लिए एक आदर्श उपस्थित है <math>I_j \subset R_j</math> ऐसा है कि <math>f^{-1}(U_j) = \operatorname{Spec} (R_j / I_j)</math> जैसे योजनाएं ख़त्म हो गईं <math>U_j</math>.
#आदर्शों का एक अर्ध-सुसंगत पुलिंदा है <math>\mathcal{I}</math> एक्स पर ऐसा कि <math>f_\ast\mathcal{O}_Z\cong \mathcal{O}_X/\mathcal{I}</math> और f [[वैश्विक विशिष्टता]] पर Z का एक समरूपता है <math>\mathcal{O}_X/\mathcal{I}</math> एक्स से अधिक
#आदर्शों का एक अर्ध-सुसंगत शीफ है <math>\mathcal{I}</math> ''X'' पर ऐसा कि <math>f_\ast\mathcal{O}_Z\cong \mathcal{O}_X/\mathcal{I}</math> और f [[वैश्विक विशिष्टता|समाकृतिकता]] पर Z का एक समरूपता है <math>\mathcal{O}_X/\mathcal{I}</math> ''X'' से अधिक है


=== स्थानीय रूप से वलय स्थानों के लिए परिभाषा ===
=== स्थानीय रूप से वलय स्थानों के लिए परिभाषा ===
Line 31: Line 32:
==गुण==
==गुण==


एक संवर्त विसर्जन [[परिमित रूपवाद]] और रेडियल रूपवाद (सार्वभौमिक रूप से इंजेक्शन) है। विशेष रूप से, एक संवर्त विसर्जन सार्वभौमिक रूप से संवर्त है। आधार परिवर्तन और संरचना के अनुसार एक संवर्त विसर्जन स्थिर होता है। संवर्त विसर्जन की धारणा इस अर्थ में स्थानीय है कि f एक संवर्त विसर्जन है यदि और केवल यदि कुछ (समान रूप से प्रत्येक) विवर्त आवरण के लिए <math>X=\bigcup U_j</math> प्रेरित मानचित्र <math>f:f^{-1}(U_j)\rightarrow U_j</math> एक संवर्त विसर्जन है.<ref>{{harvnb|Grothendieck|Dieudonné|1960|loc=4.2.4}}</ref><ref>http://stacks.math.columbia.edu/download/spaces-morphisms.pdf {{Bare URL PDF|date=March 2022}}</ref>
एक संवर्त विसर्जन [[परिमित रूपवाद|परिमित]] और रेडियल (सार्वभौमिक रूप से इंजेक्शन) है। विशेष रूप से, एक संवर्त विसर्जन सार्वभौमिक रूप से संवर्त है। आधार परिवर्तन और संरचना के अनुसार एक संवर्त विसर्जन स्थिर होता है। संवर्त विसर्जन की धारणा इस अर्थ में स्थानीय है कि f एक संवर्त विसर्जन है यदि और केवल यदि कुछ (समान रूप से प्रत्येक) विवर्त आवरण के लिए <math>X=\bigcup U_j</math> प्रेरित मानचित्र <math>f:f^{-1}(U_j)\rightarrow U_j</math> एक संवर्त विसर्जन है.<ref>{{harvnb|Grothendieck|Dieudonné|1960|loc=4.2.4}}</ref><ref>http://stacks.math.columbia.edu/download/spaces-morphisms.pdf {{Bare URL PDF|date=March 2022}}</ref>


यदि रचना <math>Z \to Y \to X</math> एक संवर्त विसर्जन है और <math>Y \to X</math> तो अलग किया गया रूपवाद है जो की <math>Z \to Y</math> का एक संवर्त विसर्जन है. यदि ''X'' एक अलग एस-योजना है, तो एक्स का प्रत्येक s-सेक्शन एक संवर्त विसर्जन है।<ref>{{harvnb|Grothendieck|Dieudonné|1960|loc=5.4.6}}</ref>
यदि रचना <math>Z \to Y \to X</math> एक संवर्त विसर्जन है और <math>Y \to X</math> तो अलग किया गया रूपवाद है जो की <math>Z \to Y</math> का एक संवर्त विसर्जन है. यदि ''X'' एक अलग एस-योजना है, तो X का प्रत्येक s-खंड एक संवर्त विसर्जन है।<ref>{{harvnb|Grothendieck|Dieudonné|1960|loc=5.4.6}}</ref>


यदि <math>i: Z \to X</math> एक संवर्त विसर्जन है और <math>\mathcal{I} \subset \mathcal{O}_X</math> Z को काटने वाले आदर्शों का अर्ध-सुसंगत शीफ़ है, फिर प्रत्यक्ष छवि <math>i_*</math> Z के ऊपर अर्ध-सुसंगत शीव्स की श्रेणी से लेकर X के ऊपर अर्ध-सुसंगत शीव्स की श्रेणी तक <math>\mathcal{G}</math> से युक्त आवश्यक छवि के साथ स्पष्ट पूरी तरह से विश्वासी है ऐसा है कि <math>\mathcal{I} \mathcal{G} = 0</math>.<ref>Stacks, Morphisms of schemes. Lemma 4.1</ref>
यदि <math>i: Z \to X</math> एक संवर्त विसर्जन है और <math>\mathcal{I} \subset \mathcal{O}_X</math> Z को काटने वाले आदर्शों का अर्ध-सुसंगत शीफ़ है, फिर प्रत्यक्ष छवि <math>i_*</math> Z के ऊपर अर्ध-सुसंगत शीव्स की श्रेणी से लेकर X के ऊपर अर्ध-सुसंगत शीव्स की श्रेणी तक <math>\mathcal{G}</math> से युक्त आवश्यक छवि के साथ स्पष्ट पूरी तरह से विश्वासी है ऐसा है कि <math>\mathcal{I} \mathcal{G} = 0</math>.<ref>Stacks, Morphisms of schemes. Lemma 4.1</ref>


परिमित प्रस्तुति का एक सपाट संवर्त विसर्जन एक विवर्त संवर्त उपयोजना का विवर्त विसर्जन है।<ref>Stacks, Morphisms of schemes. Lemma 27.2</ref>
परिमित प्रस्तुति का एक समतल संवर्त विसर्जन एक विवर्त संवर्त उपयोजना का विवर्त विसर्जन है।<ref>Stacks, Morphisms of schemes. Lemma 27.2</ref>




Line 53: Line 54:
*The [[Stacks Project]]
*The [[Stacks Project]]
*{{Hartshorne AG}}
*{{Hartshorne AG}}
[[Category: योजनाओं की आकृतियाँ]]


[[Category: Machine Translated Page]]
[[Category:All articles with bare URLs for citations]]
[[Category:Articles with PDF format bare URLs for citations]]
[[Category:Articles with bare URLs for citations from March 2022]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 10/07/2023]]
[[Category:Created On 10/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:योजनाओं की आकृतियाँ]]

Latest revision as of 16:40, 4 September 2023


बीजगणितीय ज्यामिति में, स्कीम का एक संवर्त विसर्जन स्कीम का एक रूपवाद है जो Z को X के एक संवर्त उपसमूह के रूप में पहचानता है जिससे स्थानीय रूप से, Z पर नियमित कार्यों को X तक बढ़ाया जा सकता है।[1] इसके पश्चात की स्थिति को यह कहकर औपचारिक रूप दिया जा सकता है कि विशेषण है।[2]

एक उदाहरण विहित मानचित्र द्वारा प्रेरित समावेशन मानचित्र है।

अन्य लक्षण

निम्नलिखित समतुल्य हैं:

  1. एक संवर्त विसर्जन है.
  2. प्रत्येक विवर्त संबंध के लिए , वहाँ एक आदर्श उपस्थित है ऐसा है कि यू पर स्कीम के रूप में
  3. वहाँ एक विवर्त एफ़िन आवरण उपस्थित है और प्रत्येक j के लिए एक आदर्श उपस्थित है ऐसा है कि जैसे योजनाएं ख़त्म हो गईं .
  4. आदर्शों का एक अर्ध-सुसंगत शीफ है X पर ऐसा कि और f समाकृतिकता पर Z का एक समरूपता है X से अधिक है

स्थानीय रूप से वलय स्थानों के लिए परिभाषा

स्थानीय रूप से वलय स्थानों के स्थिति में एक रूपवाद एक संवर्त विसर्जन है यदि मानदंडों की एक समान सूची संतुष्ट है[3]

  1. मानचित्र इसकी छवि पर का एक समरूपता है
  2. संबद्ध शीफ़ मानचित्र कर्नेल के साथ विशेषण है।
  3. कर्नेल स्थानीय रूप से अनुभागों द्वारा -मॉड्यूल के रूप में उत्पन्न होता है[4]

एकमात्र बदलती स्थिति तीसरी है। यह एक प्रति-उदाहरण को देखने के लिए शिक्षाप्रद है जिससे यह अनुभव किया जा सकता है कि एक मानचित्र को देखकर तीसरी स्थिति क्या उत्पन्न करती है जो एक संवर्त विसर्जन नहीं है।

यदि हम के स्टाल्क को पर देखें तो कोई खंड नहीं हैं। इसका तात्पर्य यह है कि किसी भी विवर्त उपयोजना जिसमें सम्मिलित है, के लिए शीफ में कोई अनुभाग नहीं है। यह तीसरी नियम का उल्लंघन करता है क्योंकि को आवरण करने वाली कम से कम एक विवर्त उपयोजना में है।

गुण

एक संवर्त विसर्जन परिमित और रेडियल (सार्वभौमिक रूप से इंजेक्शन) है। विशेष रूप से, एक संवर्त विसर्जन सार्वभौमिक रूप से संवर्त है। आधार परिवर्तन और संरचना के अनुसार एक संवर्त विसर्जन स्थिर होता है। संवर्त विसर्जन की धारणा इस अर्थ में स्थानीय है कि f एक संवर्त विसर्जन है यदि और केवल यदि कुछ (समान रूप से प्रत्येक) विवर्त आवरण के लिए प्रेरित मानचित्र एक संवर्त विसर्जन है.[5][6]

यदि रचना एक संवर्त विसर्जन है और तो अलग किया गया रूपवाद है जो की का एक संवर्त विसर्जन है. यदि X एक अलग एस-योजना है, तो X का प्रत्येक s-खंड एक संवर्त विसर्जन है।[7]

यदि एक संवर्त विसर्जन है और Z को काटने वाले आदर्शों का अर्ध-सुसंगत शीफ़ है, फिर प्रत्यक्ष छवि Z के ऊपर अर्ध-सुसंगत शीव्स की श्रेणी से लेकर X के ऊपर अर्ध-सुसंगत शीव्स की श्रेणी तक से युक्त आवश्यक छवि के साथ स्पष्ट पूरी तरह से विश्वासी है ऐसा है कि .[8]

परिमित प्रस्तुति का एक समतल संवर्त विसर्जन एक विवर्त संवर्त उपयोजना का विवर्त विसर्जन है।[9]


यह भी देखें

टिप्पणियाँ

  1. Mumford, The Red Book of Varieties and Schemes, Section II.5
  2. Hartshorne 1977, §II.3
  3. "Section 26.4 (01HJ): Closed immersions of locally ringed spaces—The Stacks project". stacks.math.columbia.edu. Retrieved 2021-08-05.
  4. "Section 17.8 (01B1): Modules locally generated by sections—The Stacks project". stacks.math.columbia.edu. Retrieved 2021-08-05.
  5. Grothendieck & Dieudonné 1960, 4.2.4
  6. http://stacks.math.columbia.edu/download/spaces-morphisms.pdf[bare URL PDF]
  7. Grothendieck & Dieudonné 1960, 5.4.6
  8. Stacks, Morphisms of schemes. Lemma 4.1
  9. Stacks, Morphisms of schemes. Lemma 27.2


संदर्भ