विशेषता वर्ग: Difference between revisions

From Vigyanwiki
m (10 revisions imported from alpha:विशेषता_वर्ग)
No edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{Short description|Association of cohomology classes to principal bundles
{{Short description|Association of cohomology classes to principal bundles
}}
}}
गणित में, विशेषता वर्ग ''X'' के प्रत्येक [[प्रमुख बंडल]] को ''X'' के सह-समरूपता वर्ग के साथ जोड़ने का एक तरीका है। [[ सह-समरूपता |सह-समरूपता]] वर्ग मापता है कि बंडल किस सीमा तक "मुड़ा हुआ" है और क्या इसमें [[अनुभाग (फाइबर बंडल)|अनुभाग]] हैं। चारित्रिक वर्ग वैश्विक अपरिवर्तनीय हैं जो वैश्विक उत्पाद संरचना से स्थानीय उत्पाद संरचना के विचलन को मापते हैं। वे बीजीय टोपोलॉजी, अंतर ज्यामिति और बीजगणितीय ज्यामिति में एकीकृत ज्यामितीय अवधारणाओं में से एक हैं।
गणित में, '''विशेषता वर्ग''' ''X'' के प्रत्येक [[प्रमुख बंडल]] को ''X'' के सह-समरूपता वर्ग के साथ जोड़ने का एक तरीका है। [[ सह-समरूपता |सह-समरूपता]] वर्ग मापता है कि बंडल किस सीमा तक "मुड़ा हुआ" है और क्या इसमें [[अनुभाग (फाइबर बंडल)|अनुभाग]] हैं। चारित्रिक वर्ग वैश्विक अपरिवर्तनीय हैं जो वैश्विक उत्पाद संरचना से स्थानीय उत्पाद संरचना के विचलन को मापते हैं। वे बीजीय टोपोलॉजी, अंतर ज्यामिति और बीजगणितीय ज्यामिति में एकीकृत ज्यामितीय अवधारणाओं में से एक हैं।


विशेषता वर्ग की धारणा 1935 में मैनिफोल्ड्स पर सदिश फ़ील्ड के बारे में एडुआर्ड स्टिफ़ेल और [[हस्लर व्हिटनी]] के काम में उत्पन्न हुई थी।
विशेषता वर्ग की धारणा 1935 में मैनिफोल्ड्स पर सदिश फ़ील्ड के बारे में एडुआर्ड स्टिफ़ेल और [[हस्लर व्हिटनी]] के काम में उत्पन्न हुई थी।
Line 65: Line 65:
* {{cite book|first1=John W.|last1=Milnor|authorlink1=John Milnor| first2=Jim|last2=Stasheff| authorlink2=James D. Stasheff|title=Characteristic classes|series=Annals of Mathematics Studies|volume=76|publisher=[[Princeton University Press]], Princeton, NJ; [[University of Tokyo Press]], Tokyo|year= 1974|isbn=0-691-08122-0}}
* {{cite book|first1=John W.|last1=Milnor|authorlink1=John Milnor| first2=Jim|last2=Stasheff| authorlink2=James D. Stasheff|title=Characteristic classes|series=Annals of Mathematics Studies|volume=76|publisher=[[Princeton University Press]], Princeton, NJ; [[University of Tokyo Press]], Tokyo|year= 1974|isbn=0-691-08122-0}}


{{DEFAULTSORT:Characteristic Class}}[[Category: विशेषता वर्ग| विशेषता वर्ग]]
{{DEFAULTSORT:Characteristic Class}}


 
[[Category:Articles with hatnote templates targeting a nonexistent page|Characteristic Class]]
 
[[Category:Created On 05/07/2023|Characteristic Class]]
[[Category: Machine Translated Page]]
[[Category:Lua-based templates|Characteristic Class]]
[[Category:Created On 05/07/2023]]
[[Category:Machine Translated Page|Characteristic Class]]
[[Category:Vigyan Ready]]
[[Category:Pages with script errors|Characteristic Class]]
[[Category:Templates Vigyan Ready|Characteristic Class]]
[[Category:Templates that add a tracking category|Characteristic Class]]
[[Category:Templates that generate short descriptions|Characteristic Class]]
[[Category:Templates using TemplateData|Characteristic Class]]
[[Category:विशेषता वर्ग| विशेषता वर्ग]]

Latest revision as of 09:33, 6 September 2023

गणित में, विशेषता वर्ग X के प्रत्येक प्रमुख बंडल को X के सह-समरूपता वर्ग के साथ जोड़ने का एक तरीका है। सह-समरूपता वर्ग मापता है कि बंडल किस सीमा तक "मुड़ा हुआ" है और क्या इसमें अनुभाग हैं। चारित्रिक वर्ग वैश्विक अपरिवर्तनीय हैं जो वैश्विक उत्पाद संरचना से स्थानीय उत्पाद संरचना के विचलन को मापते हैं। वे बीजीय टोपोलॉजी, अंतर ज्यामिति और बीजगणितीय ज्यामिति में एकीकृत ज्यामितीय अवधारणाओं में से एक हैं।

विशेषता वर्ग की धारणा 1935 में मैनिफोल्ड्स पर सदिश फ़ील्ड के बारे में एडुआर्ड स्टिफ़ेल और हस्लर व्हिटनी के काम में उत्पन्न हुई थी।

परिभाषा

मान लीजिए कि G टोपोलॉजिकल समूह है, और टोपोलॉजिकल स्पेस के लिए, के ऊपर प्रमुख G-बंडलों के समरूपता वर्गों के समूह के लिए लिखें। यह टॉप (टोपोलॉजिकल स्पेस और निरंतर फंक्शन की श्रेणी) से समूह तक कंट्रावेरिएंट गुणक है (समूह और फ़ंक्शंस की श्रेणी), पुलबैक ऑपरेशन के लिए एक मानचित्र भेज रहा है।

प्रिंसिपल G-बंडलों का विशेषता वर्ग c तब से कोहोमोलॉजी गुणक में प्राकृतिक परिवर्तन होता है, जिसे समूह के लिए गुणक के रूप में भी माना जाता है।

दूसरे शब्दों में, विशेषता वर्ग प्रत्येक प्रिंसिपल G-बंडल के साथ H*(X) में अवयव c(P) को जोड़ता है, जैसे कि, अगर f : Y → X सतत मानचित्र है, तो c(f*P) = f*c(P) बाईं ओर P से Y तक के पुलबैक का वर्ग है; दाईं ओर कोहोमोलॉजी में प्रेरित मानचित्र के अंतर्गत P के वर्ग की छवि है।

विशेषता संख्या

विशेषता वर्ग कोहॉमोलॉजी समूहों के अवयव हैं;[1] कोई भी विशेषता वर्गों से पूर्णांक प्राप्त कर सकता है, जिन्हें विशेषता संख्या कहा जाता है। विशेषता संख्याओं के कुछ महत्वपूर्ण उदाहरण स्टिफ़ेल-व्हिटनी संख्याएँ, चेर्न संख्याएँ, पोंट्रीगिन संख्याएँ और यूलर विशेषताएँ हैं।

मौलिक वर्ग के साथ आयाम n के एक उन्मुख मैनिफोल्ड M को देखते हुए, और विशेषता वर्गों के साथ G-बंडल, कोई कुल डिग्री n के विशेषता वर्गों के उत्पाद को मूल वर्ग के साथ जोड़ सकता है। विशेषता विशेषता संख्याओं की संख्या विशेषता वर्गों में डिग्री n के एकपदी की संख्या है, या समकक्ष रूप से n से में विभाजन है।

औपचारिक रूप से, दिया गया है, जैसे कि संबंधित विशेषता संख्या है:

जहां कोहोमोलॉजी कक्षाओं के कप उत्पाद को दर्शाता है। इन्हें विभिन्न प्रकार से या तो विशेषता वर्गों के उत्पाद के रूप में नोट किया जाता है, जैसे कि , या कुछ वैकल्पिक संकेतन द्वारा, जैसे कि , के अनुरूप पोंट्रीगिन संख्या के लिए, या यूलर विशेषता के लिए है।

डी राम कोहोमोलॉजी के दृष्टिकोण से, कोई व्यक्ति विशेषता वर्गों का प्रतिनिधित्व करने वाले विभेदक रूप ले सकता है,[2] पच्चर गुणनफल ले सकता है ताकि कोई एक शीर्ष आयामी रूप प्राप्त कर सके, और फिर कई गुना पर एकीकृत हो सके; यह उत्पाद को कोहोमोलॉजी में लेने और मूल वर्ग के साथ जोड़ने के समान है।

यह नॉन-ओरिएंटेबल मैनिफोल्ड्स के लिए भी काम करता है, जिसमें -ओरिएंटेशन होता है, जिस स्थिति में किसी को -मूल्यवान विशेषता संख्याएं प्राप्त होती हैं, जैसे कि स्टिफ़ेल-व्हिटनी संख्याएं।

विशेषता संख्याएँ उन्मुख और गैर-उन्मुख बोर्डिज़्म प्रश्न को हल करती हैं: दो मैनिफ़ोल्ड (क्रमशः उन्मुख या गैर-उन्मुख) समन्वयात्मक होते हैं यदि और केवल तभी जब उनकी विशेषता संख्याएँ समान हों।

प्रेरणा

विशेषता वर्ग आवश्यक तरीके से कोहोलॉजी सिद्धांत की घटनाएं हैं - वे विरोधाभासी निर्माण हैं, जिस तरह से खंड एक स्थान पर एक प्रकार का फंक्शन है, और खंड के अस्तित्व से विरोधाभास की ओर ले जाने के लिए हमें उस भिन्नता की आवश्यकता होती है। वास्तव में, कोहोमोलॉजी सिद्धांत होमोलॉजी और होमोटॉपी सिद्धांत के बाद विकसित हुआ, जो अंतरिक्ष में मानचित्रण पर आधारित दोनों सहसंयोजक सिद्धांत हैं; और 1930 के दशक में अपनी प्रारंभिक अवस्था में विशेषता वर्ग सिद्धांत (बाधा सिद्धांत के भाग के रूप में) प्रमुख कारण था कि समरूपता के लिए एक 'दोहरे' सिद्धांत की मांग की गई थी। सामान्य गॉस-बोनट प्रमेय को सिद्ध करने के लिए, वक्रता अपरिवर्तनीयों के प्रति विशेषता वर्ग दृष्टिकोण एक सिद्धांत बनाने का एक विशेष कारण था।

जब सिद्धांत को 1950 के आसपास एक संगठित आधार पर रखा गया था (परिभाषाओं को होमोटॉपी सिद्धांत में घटाकर) यह स्पष्ट हो गया कि उस समय ज्ञात सबसे मौलिक विशेषता वर्ग (स्टीफेल-व्हिटनी वर्ग, चेर्न वर्ग और पोंट्रीगिन वर्ग) थे शास्त्रीय रैखिक समूहों और उनकी अधिकतम टोरस संरचना के प्रतिबिंब। इससे भी अधिक, चेर्न वर्ग स्वयं इतना नया नहीं था, जो ग्रासमैनियन पर शुबर्ट कैलकुलस और बीजगणितीय ज्यामिति के इतालवी स्कूल के काम में परिलक्षित होता था। दूसरी ओर अब एक ऐसा ढाँचा था जो वर्गों के परिवारों का निर्माण करता था, जब भी कोई सदिश बंडल सम्मिलित होता था।

मुख्य तंत्र तब इस प्रकार दिखाई दिया: सदिश बंडल ले जाने वाले स्पेस एक्स को देखते हुए, सीडब्ल्यू कॉम्प्लेक्स में प्रासंगिक रैखिक समूह जी के लिए एक्स से वर्गीकृत स्पेस बीजी तक मैपिंग निहित है। होमोटॉपी सिद्धांत के लिए प्रासंगिक जानकारी ली जाती है कॉम्पैक्ट उपसमूहों द्वारा जैसे कि ऑर्थोगोनल समूह और जी के एकात्मक समूह। एक बार कोहोमोलॉजी गणना की गई, एक बार और सभी के लिए, कोहोलॉजी की विरोधाभासी संपत्ति का मतलब था कि बंडल के लिए विशेषता वर्गों को परिभाषित किया जाएगा समान आयामों में. उदाहरण के लिए चेर्न वर्ग वास्तव में प्रत्येक सम आयाम में श्रेणीबद्ध घटकों वाला एक वर्ग है।

यह अभी भी उत्कृष्ट व्याख्या है, हालांकि किसी दिए गए ज्यामितीय सिद्धांत में अतिरिक्त संरचना को ध्यान में रखना लाभदायक है। जब 1955 के बाद से के-सिद्धांत और कोबॉर्डिज्म सिद्धांत के आगमन के साथ कोहोलॉजी 'असाधारण' हो गई, तो यह कहने के लिए कि विशेषता वर्ग क्या थे, वास्तव में हर जगह एच अक्षर को बदलना आवश्यक था।

विशेषता वर्ग बाद में कई गुना के फोलियों के लिए पाए गए, उनके पास (संशोधित अर्थ में, कुछ स्वीकृत विलक्षणताओं के साथ फोलियों के लिए) होमोटॉपी सिद्धांत में वर्गीकरण स्पेस सिद्धांत है।

गणित और भौतिकी के पुनर्मेल के बाद बाद के काम में, इंस्टेंटन सिद्धांत में साइमन डोनाल्डसन और डाइटर कोट्सचिक द्वारा नए विशेषता वर्ग पाए गए। चेर्न के फंक्शन और दृष्टिकोण भी महत्वपूर्ण साबित हुए हैं: चेर्न-साइमन्स सिद्धांत देखें।

स्थिरता

स्थिर होमोटॉपी सिद्धांत की भाषा में, चेर्न वर्ग, स्टिफ़ेल-व्हिटनी वर्ग और पोंट्रीगिन वर्ग स्थिर हैं, जबकि यूलर वर्गअस्थिर है।

सीधे तौर पर, स्थिर वर्ग वह है जो तुच्छ बंडल जोड़ने पर नहीं बदलता है: । अधिक संक्षेप में, इसका मतलब है कि के लिए वर्गीकृत स्थान में कोहोमोलॉजी वर्ग को सम्मिलित करने के तहत में कोहोमोलॉजी वर्ग से वापस खींचता है (जो कि से मेल खाता है) समावेशन और समान)। समान रूप से, सभी परिमित चारित्रिक वर्ग में एक स्थिर वर्ग से पीछे हट जाते हैं।

यह यूलर वर्ग के स्तिथि में नहीं है, जैसा कि वहां विस्तृत है, कम से कम इसलिए नहीं क्योंकि के-आयामी बंडल का यूलर वर्ग में रहता है (इसलिए से वापस खींचता है, इसलिए यह नहीं हो सकता है में एक वर्ग से वापस खींचें, क्योंकि आयाम भिन्न होते हैं।

यह भी देखें

टिप्पणियाँ

  1. Informally, characteristic classes "live" in cohomology.
  2. By Chern–Weil theory, these are polynomials in the curvature; by Hodge theory, one can take harmonic form.

संदर्भ

  • Chern, Shiing-Shen (1995). Complex manifolds without potential theory. Springer-Verlag Press. ISBN 0-387-90422-0. ISBN 3-540-90422-0.
    The appendix of this book: "Geometry of characteristic classes" is a very neat and profound introduction to the development of the ideas of characteristic classes.
  • Hatcher, Allen, Vector bundles & K-theory
  • Husemoller, Dale (1966). Fibre bundles (3rd Edition, Springer 1993 ed.). McGraw Hill. ISBN 0387940871.
  • Milnor, John W.; Stasheff, Jim (1974). Characteristic classes. Annals of Mathematics Studies. Vol. 76. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo. ISBN 0-691-08122-0.