लाप्लास परिवर्तन अवकल समीकरणों अनुप्रयुक्त: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(6 intermediate revisions by 5 users not shown)
Line 1: Line 1:
गणित में, लाप्लास ट्रांसफॉर्म एक शक्तिशाली [[ अभिन्न परिवर्तन ]] है जिसका उपयोग किसी फलन को [[ समय क्षेत्र ]] से लाप्लास ट्रांसफॉर्म या एस-डोमेन समतुल्य परिपथ और प्रतिबाधा या एस-डोमेन में स्विच करने के लिए किया जाता है। लाप्लास ट्रांसफॉर्म का उपयोग कुछ स्थिति में दी गई [[प्रारंभिक मूल्य समस्या]] के साथ [[रैखिक अंतर समीकरण]] को हल करने के लिए किया जा सकता है।
गणित में, लाप्लास परिवर्तन एक शक्तिशाली [[ अभिन्न परिवर्तन |अभिन्न परिवर्तन]] है जिसका उपयोग किसी फलन को समय क्षेत्र से लाप्लास परिवर्तन या एस-डोमेन समतुल्य परिपथ और प्रतिबाधा या एस-डोमेन में स्विच करने के लिए किया जाता है। लाप्लास परिवर्तन का उपयोग कुछ स्थिति में दी गई [[प्रारंभिक मूल्य समस्या]] के साथ रैखिक अवकल समीकरण को हल करने के लिए किया जा सकता है।                                                


पहले [[लाप्लास परिवर्तन]] की निम्नलिखित गुण पर विचार करें:
पहले लाप्लास परिवर्तन की निम्नलिखित गुण पर विचार करें:


:<math>\mathcal{L}\{f'\}=s\mathcal{L}\{f\}-f(0)</math>
:<math>\mathcal{L}\{f'\}=s\mathcal{L}\{f\}-f(0)</math>
Line 8: Line 8:


:<math>\mathcal{L}\{f^{(n)}\}=s^n\mathcal{L}\{f\}-\sum_{i=1}^{n}s^{n-i}f^{(i-1)}(0)</math>
:<math>\mathcal{L}\{f^{(n)}\}=s^n\mathcal{L}\{f\}-\sum_{i=1}^{n}s^{n-i}f^{(i-1)}(0)</math>
अब हम निम्नलिखित अंतर समीकरण पर विचार करते हैं:
अब हम निम्नलिखित अवकल समीकरण पर विचार करते हैं:


:<math>\sum_{i=0}^{n}a_if^{(i)}(t)=\phi(t)</math>
:<math>\sum_{i=0}^{n}a_if^{(i)}(t)=\phi(t)</math>
Line 17: Line 17:


:<math>\sum_{i=0}^{n}a_i\mathcal{L}\{f^{(i)}(t)\}=\mathcal{L}\{\phi(t)\}</math>
:<math>\sum_{i=0}^{n}a_i\mathcal{L}\{f^{(i)}(t)\}=\mathcal{L}\{\phi(t)\}</math>
जिसमे यह प्राप्त होता है
जिसमे यह प्राप्त होता है


:<math>\mathcal{L}\{f(t)\}\sum_{i=0}^{n}a_is^i-\sum_{i=1}^{n}\sum_{j=1}^{i}a_is^{i-j}f^{(j-1)}(0)=\mathcal{L}\{\phi(t)\}</math>
:<math>\mathcal{L}\{f(t)\}\sum_{i=0}^{n}a_is^i-\sum_{i=1}^{n}\sum_{j=1}^{i}a_is^{i-j}f^{(j-1)}(0)=\mathcal{L}\{\phi(t)\}</math>
Line 59: Line 59:
==ग्रन्थसूची                                                                                                  ==
==ग्रन्थसूची                                                                                                  ==
* A. D. Polyanin, ''Handbook of Linear Partial Differential Equations for Engineers and Scientists'', Chapman & Hall/CRC Press, Boca Raton, 2002. {{isbn|1-58488-299-9}}
* A. D. Polyanin, ''Handbook of Linear Partial Differential Equations for Engineers and Scientists'', Chapman & Hall/CRC Press, Boca Raton, 2002. {{isbn|1-58488-299-9}}
[[Category: अभिन्न परिवर्तन]] [[Category: विभेदक समीकरण]] [[Category: अंतर कलन]] [[Category: साधारण अवकल समीकरण|साधारण अवकल समीकरण]]


[[Category: Machine Translated Page]]
[[Category:Created On 21/07/2023]]
[[Category:Created On 21/07/2023]]
[[Category:Machine Translated Page]]
[[Category:अंतर कलन]]
[[Category:अभिन्न परिवर्तन]]
[[Category:विभेदक समीकरण]]
[[Category:साधारण अवकल समीकरण|साधारण अवकल समीकरण]]

Latest revision as of 11:27, 6 September 2023

गणित में, लाप्लास परिवर्तन एक शक्तिशाली अभिन्न परिवर्तन है जिसका उपयोग किसी फलन को समय क्षेत्र से लाप्लास परिवर्तन या एस-डोमेन समतुल्य परिपथ और प्रतिबाधा या एस-डोमेन में स्विच करने के लिए किया जाता है। लाप्लास परिवर्तन का उपयोग कुछ स्थिति में दी गई प्रारंभिक मूल्य समस्या के साथ रैखिक अवकल समीकरण को हल करने के लिए किया जा सकता है।

पहले लाप्लास परिवर्तन की निम्नलिखित गुण पर विचार करें:

इसे गणितीय प्रेरण द्वारा सिद्ध किया जा सकता है

अब हम निम्नलिखित अवकल समीकरण पर विचार करते हैं:

दी गई प्रारंभिक नियमो के साथ

लाप्लास परिवर्तन की रैखिकता का उपयोग करना समीकरण को फिर से लिखने के समान है

जिसमे यह प्राप्त होता है

के लिए समीकरण को हल करने और को से प्रतिस्थापित करने पर प्राप्त होता है

f(t) का समाधान व्युत्क्रम लाप्लास परिवर्तन को पर प्रयुक्त करके प्राप्त किया जाता है।

ध्यान दें कि यदि प्रारंभिक स्थितियाँ सभी शून्य हैं, अर्थात।

तब सूत्र सरल हो जाता है


एक उदाहरण

हम समाधान करना चाहते हैं की

प्रारंभिक नियमो f(0) = 0 और f′(0)=0 के साथ इसका उपयोग किया जाता है ।

हमने ध्यान दिया कि

और हमें यह प्राप्त होता है

जिसमे तब समीकरण समतुल्य होता है

हम निष्कर्ष निकालते हैं की

अब हम प्राप्त करने के लिए लाप्लास व्युत्क्रम परिवर्तन प्रयुक्त करते हैं


ग्रन्थसूची

  • A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC Press, Boca Raton, 2002. ISBN 1-58488-299-9