रीमैनियन मैनिफोल्ड्स की वक्रता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{For|अधिक प्राथमिक चर्चा|समिष्ट की वक्रता}}
[[Image:Gaussian curvature.svg|thumb|बाएं से दाएं: नकारात्मक [[गाऊसी वक्रता]] ([[hyperboloid]]) की सतह, शून्य गाऊसी वक्रता की सतह ([[सिलेंडर (ज्यामिति)]]), और सकारात्मक गाऊसी वक्रता (गोलाकार) की सतह। उच्च आयामों में, [[ कई गुना |कई गुना]] में अलग-अलग दिशाओं में अलग-अलग वक्रताएं हो सकती हैं, जो [[रीमैन वक्रता टेंसर]] द्वारा वर्णित है।]]गणित में, विशेष रूप से अवकल ज्यामिति, 2 से अधिक आयाम वाले रीमैनियन मैनिफोल्ड्स की अतिसूक्ष्म ज्यामिति इतनी सम्मिश्र है कि किसी दिए गए बिंदु पर एकल संख्या द्वारा वर्णित नहीं किया जा सकता है। रीमैन ने इन मैनिफोल्ड्स के लिए [[वक्रता]] को परिभाषित करने के लिए अमूर्त और कठोर विधि को प्रस्तुत किया जाता है, जिसे अब रीमैन वक्रता टेंसर के रूप में जाना जाता है। इसी तरह की धारणाओं को सतहों और अन्य वस्तुओं की अवकल ज्यामिति में हर जगह अनुप्रयोग मिला है। छद्म-[[रीमैनियन मैनिफोल्ड]] की वक्रता को केवल थोड़े से संशोधनों के साथ उसी तरह व्यक्त किया जा सकता है।
 
[[Image:Gaussian curvature.svg|thumb|बाएं से दाएं: नकारात्मक [[गाऊसी वक्रता]] ([[hyperboloid]]) की सतह, शून्य गाऊसी वक्रता की सतह ([[सिलेंडर (ज्यामिति)]]), और सकारात्मक गाऊसी वक्रता (गोलाकार) की सतह। उच्च आयामों में, [[ कई गुना |कई गुना]] में अलग-अलग दिशाओं में अलग-अलग वक्रताएं हो सकती हैं, जो [[रीमैन वक्रता टेंसर]] द्वारा वर्णित है।]]गणित में, विशेष रूप से [[विभेदक ज्यामिति]], 2 से अधिक आयाम वाले [[रीमैन|रीमैनियन मैनिफोल्ड्स]] की अतिसूक्ष्म ज्यामिति इतनी सम्मिश्र है कि किसी दिए गए बिंदु पर एकल संख्या द्वारा वर्णित नहीं किया जा सकता है। रीमैन ने इन मैनिफोल्ड्स के लिए [[वक्रता]] को परिभाषित करने के लिए अमूर्त और कठोर विधि को पेश किया जाता है, जिसे अब रीमैन वक्रता टेंसर के रूप में जाना जाता है। इसी तरह की धारणाओं को सतहों और अन्य वस्तुओं की विभेदक ज्यामिति में हर जगह अनुप्रयोग मिला है। छद्म-[[रीमैनियन मैनिफोल्ड]] की वक्रता को केवल थोड़े से संशोधनों के साथ उसी तरह व्यक्त किया जा सकता है।
== रीमैनियन मैनिफोल्ड की वक्रता को व्यक्त करने के विधियाँ                ==
== रीमैनियन मैनिफोल्ड की वक्रता को व्यक्त करने के विधियाँ                ==


===रीमैन वक्रता टेंसर                  ===
===रीमैन वक्रता टेंसर                  ===
{{Main|रीमैन वक्रता टेंसर }}
{{Main|रीमैन वक्रता टेंसर}}


रीमैनियन मैनिफोल्ड की वक्रता को विभिन्न विधियों से वर्णित किया जा सकता है; सबसे मानक वक्रता टेंसर है, जो निम्नलिखित सूत्र द्वारा [[लेवी-सिविटा कनेक्शन]] (या [[सहसंयोजक विभेदन]]) <math>\nabla</math> और [[झूठ व्युत्पन्न|ली ब्रैकेट]] <math>[\cdot,\cdot]</math> के संदर्भ में दिया गया है।:
रीमैनियन मैनिफोल्ड की वक्रता को विभिन्न विधियों से वर्णित किया जा सकता है; सबसे मानक वक्रता टेंसर है, जो निम्नलिखित सूत्र द्वारा [[लेवी-सिविटा कनेक्शन]] (या [[सहसंयोजक विभेदन]]) <math>\nabla</math> और [[झूठ व्युत्पन्न|ली ब्रैकेट]] <math>[\cdot,\cdot]</math> के संदर्भ में दिया गया है।:


:<math>R(u,v)w=\nabla_u\nabla_v w - \nabla_v \nabla_u w -\nabla_{[u,v]} w .                                                                                                    </math>
:<math>R(u,v)w=\nabla_u\nabla_v w - \nabla_v \nabla_u w -\nabla_{[u,v]} w .                                                                                                    </math>
जहाँ <math>R(u,v)</math> मैनिफोल्ड के स्पर्शरेखा स्थान का रैखिक परिवर्तन है; यह प्रत्येक तर्क में रैखिक है। अगर <math>u=\partial/\partial x_i</math> और <math>v=\partial/\partial x_j</math> तब समन्वित सदिश क्षेत्र हैं तो <math>[u,v]=0</math> और इसलिए सूत्र सरल हो जाता है
जहाँ <math>R(u,v)</math> मैनिफोल्ड के स्पर्शरेखा स्थान का रैखिक परिवर्तन है; यह प्रत्येक तर्क में रैखिक है। अगर <math>u=\partial/\partial x_i</math> और <math>v=\partial/\partial x_j</math> तब समन्वित सदिश फ़ील्ड  हैं तो <math>[u,v]=0</math> और इसलिए सूत्र सरल हो जाता है


:<math>R(u,v)w=\nabla_u\nabla_v w - \nabla_v \nabla_u w  </math>
:<math>R(u,v)w=\nabla_u\nabla_v w - \nabla_v \nabla_u w  </math>
अर्थात वक्रता टेंसर सहसंयोजक व्युत्पन्न की गैर-अनुक्रमणात्मकता को मापता है।
अर्थात वक्रता टेंसर सहसंयोजक व्युत्पन्न की गैर-अनुक्रमणात्मकता को मापता है।


रैखिक परिवर्तन <math>w\mapsto R(u,v)w</math> इसे वक्रता परिवर्तन या एंडोमोर्फिज्म भी कहा जाता है।
रैखिक परिवर्तन <math>w\mapsto R(u,v)w</math> इसे वक्रता परिवर्तन या एंडोमोर्फिज्म भी कहा जाता है।
Line 19: Line 17:
'''NB'''. ऐसी कुछ किताबें हैं जहां वक्रता टेंसर को विपरीत चिह्न से परिभाषित किया गया है।
'''NB'''. ऐसी कुछ किताबें हैं जहां वक्रता टेंसर को विपरीत चिह्न से परिभाषित किया गया है।


====समरूपताएं और पहचान                                 ====
====समरूपताएं और पहचान                                   ====


वक्रता टेंसर में निम्नलिखित समरूपताएँ हैं:
वक्रता टेंसर में निम्नलिखित समरूपताएँ हैं:                                      


:<math>R(u,v)=-R(v,u)^{}_{}</math>
:<math>R(u,v)=-R(v,u)^{}_{}</math>
:<math>\langle R(u,v)w,z \rangle=-\langle R(u,v)z,w \rangle^{}_{}</math>
:<math>\langle R(u,v)w,z \rangle=-\langle R(u,v)z,w \rangle^{}_{}</math>
:<math>R(u,v)w+R(v,w)u+R(w,u)v=0 ^{}_{}</math>
:<math>R(u,v)w+R(v,w)u+R(w,u)v=0 ^{}_{}</math>
अंतिम पहचान [[ग्रेगोरियो रिक्की-कर्बस्ट्रो]] द्वारा खोजी गई थी, लेकिन प्रायः इसे पहली बियांची पहचान कहा जाता है, सिर्फ इसलिए कि यह नीचे दी गई बियांची पहचान के समान दिखती है। पहले दो को क्रमशः एंटीसिममेट्री और ली बीजगणित संपत्ति के रूप में संबोधित किया जाना चाहिए, क्योंकि दूसरे का अर्थ है, कि सभी u, v के लिए {{nowrap|''R''(''u'', ''v'')}} छद्म-ऑर्थोगोनल ली बीजगणित के अवयव हैं। इन तीनों को मिलाकर छद्म-ऑर्थोगोनल वक्रता संरचना का नाम दिया जाना चाहिए। वे केवल टेंसर बीजगणित की वस्तुओं के साथ पहचान करके टेंसर को जन्म देते हैं - लेकिन इसी तरह क्लिफोर्ड-बीजगणित में अवधारणाओं के साथ भी पहचान होती है। आइए ध्यान दें, वक्रता संरचना के ये तीन सिद्धांत अच्छी तरह से विकसित संरचना सिद्धांत को जन्म देते हैं, जो प्रोजेक्टर के संदर्भ में तैयार किया जाता है (एक वेइल प्रोजेक्टर, जो वेइल वक्रता को जन्म देता है और आइंस्टीन प्रोजेक्टर, जो आइंस्टीनियन गुरुत्वाकर्षण समीकरणों की स्थापना के लिए आवश्यक है)। यह संरचना सिद्धांत छद्म-ऑर्थोगोनल समूहों और Dilation_(metric_space)s की क्रिया के साथ संगत है। इसका ली समूह और बीजगणित, ली ट्रिपल्स और जॉर्डन बीजगणित के सिद्धांत के साथ मजबूत संबंध है। चर्चा में दिए गए संदर्भ देखें.
इस प्रकार यह अंतिम पहचान [[ग्रेगोरियो रिक्की-कर्बस्ट्रो]] द्वारा खोजी की गई थी, किन्तु प्रायः इसे पहली बियांची पहचान कहा जाता है, सिर्फ इसलिए कि यह नीचे दी गई बियांची पहचान के समान दिखती है। पहले दो को क्रमशः एंटीसिममेट्री और ली बीजगणित संपत्ति के रूप में संबोधित किया जाना चाहिए, क्योंकि दूसरे का अर्थ है, कि सभी u, v के लिए {{nowrap|''R''(''u'', ''v'')}} छद्म-ऑर्थोगोनल ली बीजगणित के अवयव हैं। इन तीनों को मिलाकर छद्म-ऑर्थोगोनल वक्रता संरचना का नाम दिया जाना चाहिए। वे केवल टेंसर बीजगणित की वस्तुओं के साथ पहचान करके टेंसर को जन्म देते हैं - किन्तु इसी तरह क्लिफोर्ड-बीजगणित में अवधारणाओं के साथ भी पहचान होती है। आइए ध्यान दें, वक्रता संरचना के ये तीन सिद्धांत अच्छी तरह से विकसित संरचना सिद्धांत को जन्म देते हैं, जो प्रोजेक्टर के संदर्भ में तैयार किया जाता है (एक वेइल प्रोजेक्टर, जो वेइल वक्रता को जन्म देता है और आइंस्टीन प्रोजेक्टर, जो आइंस्टीनियन गुरुत्वाकर्षण समीकरणों की स्थापना के लिए आवश्यक है)। यह संरचना सिद्धांत छद्म-ऑर्थोगोनल समूहों और फैलाव_(मीट्रिक_स्पेस)एस की क्रिया के साथ संगत है। इसका ली समूह और बीजगणित, ली ट्रिपल्स और जॉर्डन बीजगणित के सिद्धांत के साथ मजबूत संबंध है। चर्चा में दिए गए संदर्भ देखें.


तीन पहचानें वक्रता टेंसर की समरूपताओं की पूरी सूची बनाती हैं, अर्थात कोई भी टेंसर दिया गया हो जो उपरोक्त पहचानों को संतुष्ट करता हो, किसी बिंदु पर ऐसे वक्रता टेंसर के साथ रीमैनियन मैनिफोल्ड पाया जा सकता है। सरल गणना से पता चलता है कि ऐसा टेंसर <math>n^2(n^2-1)/12</math> स्वतंत्र घटक होते है. इन तीनों से और उपयोगी पहचान मिलती है:
तीन पहचानें वक्रता टेंसर की समरूपताओं की पूरी सूची बनाती हैं, अर्थात कोई भी टेंसर दिया गया हो जो उपरोक्त पहचानों को संतुष्ट करता हो, किसी बिंदु पर ऐसे वक्रता टेंसर के साथ रीमैनियन मैनिफोल्ड पाया जा सकता है। तथा सरल गणना से पता चलता है कि ऐसा टेंसर <math>n^2(n^2-1)/12</math> स्वतंत्र घटक होते है. इन तीनों से और उपयोगी पहचान मिलती है:


:<math>\langle R(u,v)w,z \rangle=\langle R(w,z)u,v \rangle^{}_{}</math>                                    
:<math>\langle R(u,v)w,z \rangle=\langle R(w,z)u,v \rangle^{}_{}</math>  
बियांची पहचान (प्रायः दूसरी बियांची पहचान) सहसंयोजक व्युत्पन्न सम्मिलित हैं:
बियांची पहचान (प्रायः दूसरी बियांची पहचान) सहसंयोजक व्युत्पन्न सम्मिलित हैं:


:<math>\nabla_uR(v,w)+\nabla_vR(w,u)+\nabla_w R(u,v)=0                                                                                                                </math>
:<math>\nabla_uR(v,w)+\nabla_vR(w,u)+\nabla_w R(u,v)=0                                                                                                                </math>




===अनुभागीय वक्रता                                   ===
===अनुभागीय वक्रता                     ===
{{Main|अनुभागीय वक्रता                                                                }}
{{Main|अनुभागीय वक्रता                                                                }}
अनुभागीय वक्रता रीमैनियन मैनिफोल्ड्स की वक्रता का आगे, समतुल्य लेकिन अधिक ज्यामितीय वर्णन है। यह फलन <math>K(\sigma)</math> है जो खंड <math>\sigma</math> (अर्थात स्पर्शरेखा स्थानों में 2-तल) पर निर्भर करता है। यह p पर <math>\sigma </math> की वक्रता है - अनुभाग; जहाँ <math>\sigma </math>-सेक्शन सतह का स्थानीय रूप से परिभाषित टुकड़ा है जिसमें p पर स्पर्शरेखा विमान के रूप में <math>\sigma </math> समतल होता है, जो जियोडेसिक्स से प्राप्त होता है जो p पर घातीय मानचित्र (रीमैनियन ज्यामिति) के तहत <math>\sigma </math> की छवि की दिशाओं में p से प्रारंभ होता है।
अनुभागीय वक्रता रीमैनियन मैनिफोल्ड्स की वक्रता का आगे, समतुल्य किन्तु अधिक ज्यामितीय वर्णन है। यह फलन <math>K(\sigma)</math> है जो खंड <math>\sigma</math> (अर्थात स्पर्शरेखा स्थानों में 2-तल) पर निर्भर करता है। यह p पर <math>\sigma </math> की वक्रता है - अनुभाग; जहाँ <math>\sigma </math>-खंड सतह का स्थानीय रूप से परिभाषित टुकड़ा है जिसमें p पर स्पर्शरेखा विमान के रूप में <math>\sigma </math> समतल होता है, जो जियोडेसिक्स से प्राप्त होता है जो p पर घातीय मानचित्र (रीमैनियन ज्यामिति) के तहत <math>\sigma </math> की छवि की दिशाओं में p से प्रारंभ होता है।


अगर <math>v,u</math> <math>\sigma</math> में दो रैखिक रूप से स्वतंत्र सदिश हैं तब
अगर <math>v,u</math> <math>\sigma</math> में दो रैखिक रूप से स्वतंत्र सदिश हैं तब
Line 48: Line 46:
:<math>[K(u+z,v+w)-K(u+z,v)-K(u+z,w)-K(u,v+w)-K(z,v+w)+K(u,w)+K(v,z)]-^{}_{}                                                                                        </math>
:<math>[K(u+z,v+w)-K(u+z,v)-K(u+z,w)-K(u,v+w)-K(z,v+w)+K(u,w)+K(v,z)]-^{}_{}                                                                                        </math>
:<math>[K(u+w,v+z)-K(u+w,v)-K(u+w,z)-K(u,v+z)-K(w,v+z)+K(v,w)+K(u,z)].^{}_{}                                                                                      </math>
:<math>[K(u+w,v+z)-K(u+w,v)-K(u+w,z)-K(u,v+z)-K(w,v+z)+K(v,w)+K(u,z)].^{}_{}                                                                                      </math>
या सरल सूत्र में:
या सरल सूत्र में:                          


<math display="block">\langle R(u,v)w,z\rangle=\frac 16 \left.\frac{\partial^2}{\partial s\partial t}
<math display="block">\langle R(u,v)w,z\rangle=\frac 16 \left.\frac{\partial^2}{\partial s\partial t}
\left(K(u+sz,v+tw)-K(u+sw,v+tz)\right)\right|_{(s,t)=(0,0)}</math><br />
\left(K(u+sz,v+tw)-K(u+sw,v+tz)\right)\right|_{(s,t)=(0,0)}</math>
===वक्रता रूप                                                       ===
===वक्रता रूप                   ===
{{Main|वक्रता रूप }}
{{Main|वक्रता रूप }}
[[ कनेक्शन प्रपत्र | कनेक्शन प्रपत्र]] वक्रता का वर्णन करने का वैकल्पिक विधि को देता है। इसका उपयोग सामान्य [[वेक्टर बंडल|सदिश बंडलों]] और [[प्रमुख बंडल|प्रमुख बंडलों]] के लिए अधिक किया जाता है, लेकिन यह लेवी-सिविटा कनेक्शन के साथ स्पर्शरेखा बंडल के लिए भी उतना ही अच्छा काम करता है। जितना एन-डायमेंशनल रीमैनियन मैनिफोल्ड की वक्रता 2-रूपों का [[एंटीसिमेट्रिक मैट्रिक्स|एंटीसिमेट्रिक आव्युह]] n×n आव्युह <math>\Omega^{}_{}=\Omega^i_{\ j}</math> द्वारा दी गई है (या <math>\operatorname{so}(n)</math> समकक्ष मानों वाला 2-रूप, ओर्थोगोनल समूह <math>\operatorname{O}(n)</math> का [[झूठ बीजगणित|ली बीजगणित]] , जो रीमैनियन मैनिफोल्ड के स्पर्शरेखा बंडल का [[संरचना समूह]] है)।   
[[ कनेक्शन प्रपत्र | कनेक्शन प्रपत्र]] वक्रता का वर्णन करने का वैकल्पिक विधि को देता है। इसका उपयोग सामान्य [[वेक्टर बंडल|सदिश बंडलों]] और [[प्रमुख बंडल|प्रमुख बंडलों]] के लिए अधिक किया जाता है, किन्तु यह लेवी-सिविटा कनेक्शन के साथ स्पर्शरेखा बंडल के लिए भी उतना ही अच्छा काम करता है। जितना एन-डायमेंशनल रीमैनियन मैनिफोल्ड की वक्रता 2-रूपों का [[एंटीसिमेट्रिक मैट्रिक्स|एंटीसिमेट्रिक आव्युह]] n×n आव्युह <math>\Omega^{}_{}=\Omega^i_{\ j}</math> द्वारा दी गई है (या <math>\operatorname{so}(n)</math> समकक्ष मानों वाला 2-रूप, ओर्थोगोनल समूह <math>\operatorname{O}(n)</math> का [[झूठ बीजगणित|ली बीजगणित]] , जो रीमैनियन मैनिफोल्ड के स्पर्शरेखा बंडल का [[संरचना समूह]] है)।   


मान लीजिये <math>e_i</math> ऑर्थोनॉर्मल आधारों का स्थानीय खंड बनें है। फिर कोई कनेक्शन रूप को परिभाषित कर सकता है, 1-रूप <math>\omega=\omega^i_{\ j}</math> का एंटीसिमेट्रिक आव्युह जो निम्नलिखित पहचान से संतुष्ट हैं  
मान लीजिये <math>e_i</math> ऑर्थोनॉर्मल आधारों का स्थानीय खंड बनें है। फिर कोई कनेक्शन रूप को परिभाषित कर सकता है, 1-रूप <math>\omega=\omega^i_{\ j}</math> का एंटीसिमेट्रिक आव्युह जो निम्नलिखित पहचान से संतुष्ट हैं  


:<math>\omega^k_{\ j}(e_i)=\langle \nabla_{e_i}e_j,e_k\rangle                                                      </math>
:<math>\omega^k_{\ j}(e_i)=\langle \nabla_{e_i}e_j,e_k\rangle                                                      </math>
फिर वक्रता रूप <math>\Omega=\Omega^i_{\ j}</math> द्वारा परिभाषित किया गया है
फिर वक्रता रूप <math>\Omega=\Omega^i_{\ j}</math> द्वारा परिभाषित किया गया है


:<math>\Omega=d\omega +\omega\wedge\omega</math>.
:<math>\Omega=d\omega +\omega\wedge\omega</math>.      


ध्यान दें कि अभिव्यक्ति "<math>\omega\wedge\omega</math>", <math> \omega^i_{\ j}\wedge\omega^j_{\ k}</math>के लिए आशुलिपि है और इसलिए जरूरी नहीं कि विलुप्त हो जाए। निम्नलिखित वक्रता रूप और वक्रता टेंसर के बीच संबंध का वर्णन करता है:
ध्यान दें कि अभिव्यक्ति "<math>\omega\wedge\omega</math>", <math> \omega^i_{\ j}\wedge\omega^j_{\ k}</math>के लिए आशुलिपि है और इसलिए जरूरी नहीं कि विलुप्त हो जाए। निम्नलिखित वक्रता रूप और वक्रता टेंसर के बीच संबंध का वर्णन करता है:


:<math>R(u,v)w=\Omega(u\wedge v)w. </math>
:<math>R(u,v)w=\Omega(u\wedge v)w. </math>        
यह दृष्टिकोण पहली बियांची पहचान को छोड़कर वक्रता टेंसर की सभी समरूपताओं में निर्मित होता है, जो रूप लेता है
यह दृष्टिकोण पहली बियांची पहचान को छोड़कर वक्रता टेंसर की सभी समरूपताओं में निर्मित होता है, जो रूप लेता है


:<math>\Omega\wedge\theta=0</math>
:<math>\Omega\wedge\theta=0</math>        
जहाँ <math>\theta=\theta^i</math>, <math>\theta^i(v)=\langle e_i,v\rangle</math> द्वारा परिभाषित 1-रूपों का n-सदिश है. दूसरी बियांची पहचान बनती है
जहाँ <math>\theta=\theta^i</math>, <math>\theta^i(v)=\langle e_i,v\rangle</math> द्वारा परिभाषित 1-रूपों का n-सदिश है. दूसरी बियांची पहचान बनती है


:<math>D\Omega=0</math>
:<math>D\Omega=0</math>          
D बाहरी सहसंयोजक व्युत्पन्न को दर्शाता है  
D बाहरी सहसंयोजक व्युत्पन्न को दर्शाता है            


===वक्रता संचालिका                                                                                                                                                                                ===
===वक्रता संचालिका                                                                                                                                                                                ===


कभी-कभी वक्रता के बारे में संचालक (गणित) के रूप में सोचना सुविधाजनक होता है <math>Q</math> स्पर्शरेखा [[बाहरी उत्पाद|बाहरी उत्पादों]] पर (के अवयव ) <math>\Lambda^2(T)</math>), जिसे निम्नलिखित पहचान द्वारा विशिष्ट रूप से परिभाषित किया गया है:
कभी-कभी <math>\Lambda^2(T)</math> पर संचालक(गणित) <math>Q</math> के रूप में वक्रता के बारे में सोचना सुविधाजनक होता है जहाँ स्पर्शरेखा [[बाहरी उत्पाद|बाहरी उत्पादों]] पर (के अवयव ) ), है  जिसे निम्नलिखित पहचान द्वारा विशिष्ट रूप से परिभाषित किया गया है:
:<math>\langle Q (u\wedge v),w\wedge z\rangle=\langle R(u,v)z,w \rangle.</math>
:<math>\langle Q (u\wedge v),w\wedge z\rangle=\langle R(u,v)z,w \rangle.                                                                                                   </math>
वक्रता टेंसर की समरूपता (अर्थात् सूचकांकों के पहले और अंतिम जोड़े में एंटीसिमेट्री, और उन जोड़ियों की ब्लॉक-समरूपता) के कारण ऐसा करना संभव है।
वक्रता टेंसर की समरूपता (अर्थात् सूचकांकों के पहले और अंतिम जोड़े में एंटीसिमेट्री, और उन जोड़ियों की ब्लॉक-समरूपता) के कारण ऐसा करना संभव है।


==आगे की वक्रता टेंसर==
==आगे की वक्रता टेंसर                     ==


सामान्य तौर पर निम्नलिखित टेंसर और फलन वक्रता टेंसर का पूरी तरह से वर्णन नहीं करते हैं,
सामान्यतः निम्नलिखित टेंसर और फलन वक्रता टेंसर का पूरी तरह से वर्णन नहीं करते हैं, चूँकि वह महत्वपूर्ण भूमिका निभाते हैं।          
हालाँकि वे महत्वपूर्ण भूमिका निभाते हैं।


=== अदिश वक्रता ===
=== अदिश वक्रता             ===
{{Main|अदिश वक्रता                                                }}
{{Main|अदिश वक्रता                                                }}
स्केलर वक्रता किसी भी रीमैनियन मैनिफोल्ड पर फलन है, जिसे विभिन्न प्रकार से दर्शाया जाता है <math>S, R</math> या <math>\text{Sc}</math>.
स्केलर वक्रता किसी भी रीमैनियन मैनिफोल्ड पर फलन का कार्य करते है, जिसे विभिन्न प्रकार से <math>S, R</math> या <math>\text{Sc}</math> दर्शाया जाता है यह वक्रता टेंसर का पूर्ण [[ट्रेस (रैखिक बीजगणित)]] है; तथा जहाँ बिंदु पर स्पर्शरेखा स्थान में लम्बवत आधार <math>\{e_i\}</math> दिया गया है                   
यह वक्रता टेंसर का पूर्ण [[ट्रेस (रैखिक बीजगणित)]] है; लम्बवत आधार दिया गया
<math>\{e_i\}</math> बिंदु पर स्पर्शरेखा स्थान में
 
अपने पास
अपने पास


:<math>S =\sum_{i,j}\langle R(e_i,e_j)e_j,e_i\rangle=\sum_{i}\langle \text{Ric}(e_i),e_i\rangle, </math>
:<math>S =\sum_{i,j}\langle R(e_i,e_j)e_j,e_i\rangle=\sum_{i}\langle \text{Ric}(e_i),e_i\rangle,                                                                           </math>
जहाँ <math>\text{Ric}</math> [[रिक्की टेंसर]] को दर्शाता है। परिणाम ऑर्थोनॉर्मल आधार की पसंद पर निर्भर नहीं करता है। आयाम 3 से प्रारंभ करके, अदिश वक्रता वक्रता टेंसर का पूरी तरह से वर्णन नहीं करती है।
जहाँ <math>\text{Ric}</math> [[रिक्की टेंसर]] को दर्शाता है। परिणाम ऑर्थोनॉर्मल आधार की पसंद पर निर्भर नहीं करता है। आयाम 3 से प्रारंभ करके, अदिश वक्रता वक्रता टेंसर का पूरी तरह से वर्णन नहीं करती है।


===घुंघराले वक्र===
===घुंघराले वक्र                                                                                               ===
{{Main|रिक्की वक्रता                                                                    }}
{{Main|रिक्की वक्रता                                                                    }}


रिक्की वक्रता बिंदु पर स्पर्शरेखा स्थान पर रैखिक ऑपरेटर है, जिसे सामान्यतः द्वारा दर्शाया जाता है<math>\text{Ric}</math>.
रिक्की वक्रता बिंदु पर स्पर्शरेखा स्थान पर रैखिक संचालक  है, जिसे सामान्यतः <math>\text{Ric}</math> द्वारा दर्शाया जाता है. हमारे पास p पर स्पर्शरेखा स्थान में n ऑर्थोनॉर्मल आधार <math>\{e_i\}</math> दिया गया है
एन ऑर्थोनॉर्मल आधार दिया गया है
<math>\{e_i\}</math> पी पर स्पर्शरेखा स्थान में हमारे पास है


:<math>\text{Ric}(u)=\sum_{i} R(u,e_i)e_i.^{}_{} </math>
:<math>\text{Ric}(u)=\sum_{i} R(u,e_i)e_i.^{}_{} </math>
परिणाम ऑर्थोनॉर्मल आधार की पसंद पर निर्भर नहीं करता है।
परिणाम ऑर्थोनॉर्मल आधार की पसंद पर निर्भर नहीं करता है। चार या अधिक आयामों के साथ, रिक्की वक्रता वक्रता टेंसर का पूरी तरह से वर्णन नहीं करती है।
चार या अधिक आयामों के साथ, रिक्की वक्रता वक्रता टेंसर का पूरी तरह से वर्णन नहीं करती है।


लेवी-सिविटा कनेक्शन के संदर्भ में रिक्की टेंसर के लिए स्पष्ट अभिव्यक्तियाँ क्रिस्टोफ़ेल प्रतीकों पर लेख में दी गई हैं।
लेवी-सिविटा कनेक्शन के संदर्भ में रिक्की टेंसर के लिए स्पष्ट अभिव्यक्तियाँ क्रिस्टोफ़ेल प्रतीकों पर लेख में दी गई हैं।
Line 111: Line 104:
===वेइल वक्रता टेंसर===
===वेइल वक्रता टेंसर===
{{Main|वेइल टेंसर                                                                              }}
{{Main|वेइल टेंसर                                                                              }}
वेइल वक्रता टेंसर में रीमैन वक्रता टेंसर के समान समरूपता है, लेकिन अतिरिक्त बाधा के साथ: इसका निशान (जैसा कि रिक्की वक्रता को परिभाषित करने के लिए उपयोग किया जाता है) विलुप्त हो जाना चाहिए।
वेइल वक्रता टेंसर में रीमैन वक्रता टेंसर के समान समरूपता है, किन्तु अतिरिक्त रुकावट  के साथ: इसका निशान (जैसा कि रिक्की वक्रता को परिभाषित करने के लिए उपयोग किया जाता है) विलुप्त हो जाना चाहिए।


वेइल टेंसर मीट्रिक के [[अनुरूप मानचित्र]] परिवर्तन के संबंध में अपरिवर्तनीय है: यदि दो मीट्रिक इस प्रकार संबंधित हैं <math>\tilde{g} = f g</math> कुछ सकारात्मक अदिश फलन के लिए <math>f</math>, तब <math>\tilde{W} = W</math>.
वेइल टेंसर मीट्रिक के [[अनुरूप मानचित्र]] के परिवर्तन के संबंध में अपरिवर्तनीय है: यदि दो मीट्रिक कुछ सकारात्मक अदिश फलन <math>f</math> के लिए <math>\tilde{g} = f g</math> के रूप में इस प्रकार संबंधित हैं , तब <math>\tilde{W} = W</math> होगा .


आयाम 2 और 3 में वेइल टेंसर विलुप्त हो जाता है, लेकिन 4 या अधिक आयामों में वेइल टेंसर गैर-शून्य हो सकता है। [[निरंतर वक्रता]] के कई गुना के लिए, वेइल टेंसर शून्य है। इसके अतिरिक्त, <math>W = 0</math> यदि और केवल यदि मीट्रिक स्थानीय रूप से [[यूक्लिडियन मीट्रिक]] के अनुरूप है।
आयाम 2 और 3 में वेइल टेंसर विलुप्त हो जाता है, किन्तु 4 या अधिक आयामों में वेइल टेंसर गैर-शून्य हो सकता है। [[निरंतर वक्रता]] के कई गुना के लिए, वेइल टेंसर शून्य है। इसके अतिरिक्त, <math>W = 0</math> यदि और केवल यदि मीट्रिक स्थानीय रूप से [[यूक्लिडियन मीट्रिक]] के अनुरूप है।


===रिक्की अपघटन===
===रिक्की अपघटन                                                                               ===
{{main|रिक्की अपघटन                                                                      }}
{{main|रिक्की अपघटन                                                                      }}
हालांकि व्यक्तिगत रूप से, वेइल टेंसर और रिक्की टेंसर सामान्य तौर पर पूर्ण वक्रता टेंसर का निर्धारण नहीं करते हैं, रीमैन वक्रता टेंसर को वेइल भाग और रिक्की भाग में विघटित किया जा सकता है। इस अपघटन को रिक्की अपघटन के रूप में जाना जाता है, और रीमैनियन मैनिफोल्ड्स की [[अनुरूप ज्यामिति]] में महत्वपूर्ण भूमिका निभाता है। विशेष रूप से, इसका उपयोग यह दिखाने के लिए किया जा सकता है कि यदि मीट्रिक को अनुरूप कारक द्वारा पुनर्स्केल किया जाता है <math>e^{2f}</math>, फिर रीमैन वक्रता टेंसर बदल जाता है ((0, 4)-टेंसर के रूप में देखा जाता है):
चूंकि व्यक्तिगत रूप से, वेइल टेंसर और रिक्की टेंसर सामान्यतः पूर्ण वक्रता टेंसर का निर्धारण नहीं करते हैं, रीमैन वक्रता टेंसर को वेइल भाग और रिक्की भाग में विघटित किया जा सकता है। इस अपघटन को रिक्की अपघटन के रूप में जाना जाता है, और रीमैनियन मैनिफोल्ड्स की [[अनुरूप ज्यामिति]] में महत्वपूर्ण भूमिका निभाता है। विशेष रूप से, इसका उपयोग यह दिखाने के लिए किया जा सकता है कि यदि मीट्रिक को <math>e^{2f}</math> अनुरूप कारक द्वारा पुनर्स्केल किया जाता है, फिर रीमैन वक्रता टेंसर बदल जाता है ((0, 4)-टेंसर के रूप में देखा जाता है):


:<math>e^{2f}\left(R+\left(\text{Hess}(f)-df\otimes df+\frac{1}{2}\|\text{grad}(f)\|^2 g\right) {~\wedge\!\!\!\!\!\!\!\!\;\bigcirc~} g\right)</math>
:<math>e^{2f}\left(R+\left(\text{Hess}(f)-df\otimes df+\frac{1}{2}\|\text{grad}(f)\|^2 g\right) {~\wedge\!\!\!\!\!\!\!\!\;\bigcirc~} g\right)                           </math>
जहाँ <math>{~\wedge\!\!\!\!\!\!\!\!\;\bigcirc~}</math> कुलकर्णी-नोमिज़ु उत्पाद को दर्शाता है और हेस हेसियन है।
जहाँ <math>{~\wedge\!\!\!\!\!\!\!\!\;\bigcirc~}</math> कुलकर्णी-नोमिज़ु उत्पाद को दर्शाता है और हेस हेसियन है।


==वक्रता की गणना==
==वक्रता की गणना==
Line 131: Line 124:
*निर्देशांक में रीमैनियन ज्यामिति या [[सहसंयोजक व्युत्पन्न]] में सूत्रों की सूची देखें,
*निर्देशांक में रीमैनियन ज्यामिति या [[सहसंयोजक व्युत्पन्न]] में सूत्रों की सूची देखें,
* फ़्रेम को घुमाकर [[कार्टन कनेक्शन]] और वक्रता प्रपत्र देखें।
* फ़्रेम को घुमाकर [[कार्टन कनेक्शन]] और वक्रता प्रपत्र देखें।
*यदि कोई जियोडेसिक#रीमैनियन और स्यूडो-रीमैनियन मैनिफोल्ड्स के व्यवहार के बारे में कुछ जानता है तो [[जैकोबी समीकरण]] मदद कर सकता है।
*यदि कोई जियोडेसिक या रीमैनियन और स्यूडो-रीमैनियन मैनिफोल्ड्स के व्यवहार के बारे में कुछ जानता है तो [[जैकोबी समीकरण]] सहायता कर सकता है।


==संदर्भ==
==संदर्भ==
Line 140: Line 133:
== टिप्पणियाँ ==
== टिप्पणियाँ ==
<references/>
<references/>
    [Category:Riemannian manifol


{{Riemannian geometry}}
[[Category:Articles with hatnote templates targeting a nonexistent page]]
{{curvature}}
[[Category:Collapse templates]]
[[Category: वक्रता (गणित)]] [[Category: विभेदक ज्यामिति]] [[Category: रीमैनियन ज्यामिति]] [[Category: रीमैनियन मैनिफोल्ड]] [[Category: रीमैनियन मैनिफोल्ड]] [Category:Riemannian manifol
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 21/07/2023]]
[[Category:Created On 21/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:रीमैनियन ज्यामिति]]
[[Category:रीमैनियन मैनिफोल्ड]]
[[Category:वक्रता (गणित)]]
[[Category:विभेदक ज्यामिति]]

Latest revision as of 13:49, 8 September 2023

बाएं से दाएं: नकारात्मक गाऊसी वक्रता (hyperboloid) की सतह, शून्य गाऊसी वक्रता की सतह (सिलेंडर (ज्यामिति)), और सकारात्मक गाऊसी वक्रता (गोलाकार) की सतह। उच्च आयामों में, कई गुना में अलग-अलग दिशाओं में अलग-अलग वक्रताएं हो सकती हैं, जो रीमैन वक्रता टेंसर द्वारा वर्णित है।

गणित में, विशेष रूप से अवकल ज्यामिति, 2 से अधिक आयाम वाले रीमैनियन मैनिफोल्ड्स की अतिसूक्ष्म ज्यामिति इतनी सम्मिश्र है कि किसी दिए गए बिंदु पर एकल संख्या द्वारा वर्णित नहीं किया जा सकता है। रीमैन ने इन मैनिफोल्ड्स के लिए वक्रता को परिभाषित करने के लिए अमूर्त और कठोर विधि को प्रस्तुत किया जाता है, जिसे अब रीमैन वक्रता टेंसर के रूप में जाना जाता है। इसी तरह की धारणाओं को सतहों और अन्य वस्तुओं की अवकल ज्यामिति में हर जगह अनुप्रयोग मिला है। छद्म-रीमैनियन मैनिफोल्ड की वक्रता को केवल थोड़े से संशोधनों के साथ उसी तरह व्यक्त किया जा सकता है।

रीमैनियन मैनिफोल्ड की वक्रता को व्यक्त करने के विधियाँ

रीमैन वक्रता टेंसर

रीमैनियन मैनिफोल्ड की वक्रता को विभिन्न विधियों से वर्णित किया जा सकता है; सबसे मानक वक्रता टेंसर है, जो निम्नलिखित सूत्र द्वारा लेवी-सिविटा कनेक्शन (या सहसंयोजक विभेदन) और ली ब्रैकेट के संदर्भ में दिया गया है।:

जहाँ मैनिफोल्ड के स्पर्शरेखा स्थान का रैखिक परिवर्तन है; यह प्रत्येक तर्क में रैखिक है। अगर और तब समन्वित सदिश फ़ील्ड हैं तो और इसलिए सूत्र सरल हो जाता है

अर्थात वक्रता टेंसर सहसंयोजक व्युत्पन्न की गैर-अनुक्रमणात्मकता को मापता है।

रैखिक परिवर्तन इसे वक्रता परिवर्तन या एंडोमोर्फिज्म भी कहा जाता है।

NB. ऐसी कुछ किताबें हैं जहां वक्रता टेंसर को विपरीत चिह्न से परिभाषित किया गया है।

समरूपताएं और पहचान

वक्रता टेंसर में निम्नलिखित समरूपताएँ हैं:

इस प्रकार यह अंतिम पहचान ग्रेगोरियो रिक्की-कर्बस्ट्रो द्वारा खोजी की गई थी, किन्तु प्रायः इसे पहली बियांची पहचान कहा जाता है, सिर्फ इसलिए कि यह नीचे दी गई बियांची पहचान के समान दिखती है। पहले दो को क्रमशः एंटीसिममेट्री और ली बीजगणित संपत्ति के रूप में संबोधित किया जाना चाहिए, क्योंकि दूसरे का अर्थ है, कि सभी u, v के लिए R(u, v) छद्म-ऑर्थोगोनल ली बीजगणित के अवयव हैं। इन तीनों को मिलाकर छद्म-ऑर्थोगोनल वक्रता संरचना का नाम दिया जाना चाहिए। वे केवल टेंसर बीजगणित की वस्तुओं के साथ पहचान करके टेंसर को जन्म देते हैं - किन्तु इसी तरह क्लिफोर्ड-बीजगणित में अवधारणाओं के साथ भी पहचान होती है। आइए ध्यान दें, वक्रता संरचना के ये तीन सिद्धांत अच्छी तरह से विकसित संरचना सिद्धांत को जन्म देते हैं, जो प्रोजेक्टर के संदर्भ में तैयार किया जाता है (एक वेइल प्रोजेक्टर, जो वेइल वक्रता को जन्म देता है और आइंस्टीन प्रोजेक्टर, जो आइंस्टीनियन गुरुत्वाकर्षण समीकरणों की स्थापना के लिए आवश्यक है)। यह संरचना सिद्धांत छद्म-ऑर्थोगोनल समूहों और फैलाव_(मीट्रिक_स्पेस)एस की क्रिया के साथ संगत है। इसका ली समूह और बीजगणित, ली ट्रिपल्स और जॉर्डन बीजगणित के सिद्धांत के साथ मजबूत संबंध है। चर्चा में दिए गए संदर्भ देखें.

तीन पहचानें वक्रता टेंसर की समरूपताओं की पूरी सूची बनाती हैं, अर्थात कोई भी टेंसर दिया गया हो जो उपरोक्त पहचानों को संतुष्ट करता हो, किसी बिंदु पर ऐसे वक्रता टेंसर के साथ रीमैनियन मैनिफोल्ड पाया जा सकता है। तथा सरल गणना से पता चलता है कि ऐसा टेंसर स्वतंत्र घटक होते है. इन तीनों से और उपयोगी पहचान मिलती है:

बियांची पहचान (प्रायः दूसरी बियांची पहचान) सहसंयोजक व्युत्पन्न सम्मिलित हैं:


अनुभागीय वक्रता

अनुभागीय वक्रता रीमैनियन मैनिफोल्ड्स की वक्रता का आगे, समतुल्य किन्तु अधिक ज्यामितीय वर्णन है। यह फलन है जो खंड (अर्थात स्पर्शरेखा स्थानों में 2-तल) पर निर्भर करता है। यह p पर की वक्रता है - अनुभाग; जहाँ -खंड सतह का स्थानीय रूप से परिभाषित टुकड़ा है जिसमें p पर स्पर्शरेखा विमान के रूप में समतल होता है, जो जियोडेसिक्स से प्राप्त होता है जो p पर घातीय मानचित्र (रीमैनियन ज्यामिति) के तहत की छवि की दिशाओं में p से प्रारंभ होता है।

अगर में दो रैखिक रूप से स्वतंत्र सदिश हैं तब

निम्नलिखित सूत्र सांकेतिक करता है कि वक्रता टेंसर का पूरी तरह से वर्णन करती है उसे अनुभागीय वक्रता कहते है :

या सरल सूत्र में:

वक्रता रूप

कनेक्शन प्रपत्र वक्रता का वर्णन करने का वैकल्पिक विधि को देता है। इसका उपयोग सामान्य सदिश बंडलों और प्रमुख बंडलों के लिए अधिक किया जाता है, किन्तु यह लेवी-सिविटा कनेक्शन के साथ स्पर्शरेखा बंडल के लिए भी उतना ही अच्छा काम करता है। जितना एन-डायमेंशनल रीमैनियन मैनिफोल्ड की वक्रता 2-रूपों का एंटीसिमेट्रिक आव्युह n×n आव्युह द्वारा दी गई है (या समकक्ष मानों वाला 2-रूप, ओर्थोगोनल समूह का ली बीजगणित , जो रीमैनियन मैनिफोल्ड के स्पर्शरेखा बंडल का संरचना समूह है)।

मान लीजिये ऑर्थोनॉर्मल आधारों का स्थानीय खंड बनें है। फिर कोई कनेक्शन रूप को परिभाषित कर सकता है, 1-रूप का एंटीसिमेट्रिक आव्युह जो निम्नलिखित पहचान से संतुष्ट हैं

फिर वक्रता रूप द्वारा परिभाषित किया गया है

.

ध्यान दें कि अभिव्यक्ति "", के लिए आशुलिपि है और इसलिए जरूरी नहीं कि विलुप्त हो जाए। निम्नलिखित वक्रता रूप और वक्रता टेंसर के बीच संबंध का वर्णन करता है:

यह दृष्टिकोण पहली बियांची पहचान को छोड़कर वक्रता टेंसर की सभी समरूपताओं में निर्मित होता है, जो रूप लेता है

जहाँ , द्वारा परिभाषित 1-रूपों का n-सदिश है. दूसरी बियांची पहचान बनती है

D बाहरी सहसंयोजक व्युत्पन्न को दर्शाता है

वक्रता संचालिका

कभी-कभी पर संचालक(गणित) के रूप में वक्रता के बारे में सोचना सुविधाजनक होता है जहाँ स्पर्शरेखा बाहरी उत्पादों पर (के अवयव ) ), है जिसे निम्नलिखित पहचान द्वारा विशिष्ट रूप से परिभाषित किया गया है:

वक्रता टेंसर की समरूपता (अर्थात् सूचकांकों के पहले और अंतिम जोड़े में एंटीसिमेट्री, और उन जोड़ियों की ब्लॉक-समरूपता) के कारण ऐसा करना संभव है।

आगे की वक्रता टेंसर

सामान्यतः निम्नलिखित टेंसर और फलन वक्रता टेंसर का पूरी तरह से वर्णन नहीं करते हैं, चूँकि वह महत्वपूर्ण भूमिका निभाते हैं।

अदिश वक्रता

स्केलर वक्रता किसी भी रीमैनियन मैनिफोल्ड पर फलन का कार्य करते है, जिसे विभिन्न प्रकार से या दर्शाया जाता है यह वक्रता टेंसर का पूर्ण ट्रेस (रैखिक बीजगणित) है; तथा जहाँ बिंदु पर स्पर्शरेखा स्थान में लम्बवत आधार दिया गया है

अपने पास

जहाँ रिक्की टेंसर को दर्शाता है। परिणाम ऑर्थोनॉर्मल आधार की पसंद पर निर्भर नहीं करता है। आयाम 3 से प्रारंभ करके, अदिश वक्रता वक्रता टेंसर का पूरी तरह से वर्णन नहीं करती है।

घुंघराले वक्र

रिक्की वक्रता बिंदु पर स्पर्शरेखा स्थान पर रैखिक संचालक है, जिसे सामान्यतः द्वारा दर्शाया जाता है. हमारे पास p पर स्पर्शरेखा स्थान में n ऑर्थोनॉर्मल आधार दिया गया है


परिणाम ऑर्थोनॉर्मल आधार की पसंद पर निर्भर नहीं करता है। चार या अधिक आयामों के साथ, रिक्की वक्रता वक्रता टेंसर का पूरी तरह से वर्णन नहीं करती है।

लेवी-सिविटा कनेक्शन के संदर्भ में रिक्की टेंसर के लिए स्पष्ट अभिव्यक्तियाँ क्रिस्टोफ़ेल प्रतीकों पर लेख में दी गई हैं।

वेइल वक्रता टेंसर

वेइल वक्रता टेंसर में रीमैन वक्रता टेंसर के समान समरूपता है, किन्तु अतिरिक्त रुकावट के साथ: इसका निशान (जैसा कि रिक्की वक्रता को परिभाषित करने के लिए उपयोग किया जाता है) विलुप्त हो जाना चाहिए।

वेइल टेंसर मीट्रिक के अनुरूप मानचित्र के परिवर्तन के संबंध में अपरिवर्तनीय है: यदि दो मीट्रिक कुछ सकारात्मक अदिश फलन के लिए के रूप में इस प्रकार संबंधित हैं , तब होगा .

आयाम 2 और 3 में वेइल टेंसर विलुप्त हो जाता है, किन्तु 4 या अधिक आयामों में वेइल टेंसर गैर-शून्य हो सकता है। निरंतर वक्रता के कई गुना के लिए, वेइल टेंसर शून्य है। इसके अतिरिक्त, यदि और केवल यदि मीट्रिक स्थानीय रूप से यूक्लिडियन मीट्रिक के अनुरूप है।

रिक्की अपघटन

चूंकि व्यक्तिगत रूप से, वेइल टेंसर और रिक्की टेंसर सामान्यतः पूर्ण वक्रता टेंसर का निर्धारण नहीं करते हैं, रीमैन वक्रता टेंसर को वेइल भाग और रिक्की भाग में विघटित किया जा सकता है। इस अपघटन को रिक्की अपघटन के रूप में जाना जाता है, और रीमैनियन मैनिफोल्ड्स की अनुरूप ज्यामिति में महत्वपूर्ण भूमिका निभाता है। विशेष रूप से, इसका उपयोग यह दिखाने के लिए किया जा सकता है कि यदि मीट्रिक को अनुरूप कारक द्वारा पुनर्स्केल किया जाता है, फिर रीमैन वक्रता टेंसर बदल जाता है ((0, 4)-टेंसर के रूप में देखा जाता है):

जहाँ कुलकर्णी-नोमिज़ु उत्पाद को दर्शाता है और हेस हेसियन है।

वक्रता की गणना

वक्रता की गणना के लिए

  • हाइपरसर्फेस और सबमैनिफोल्ड्स का दूसरा मौलिक रूप देखें,
  • निर्देशांक में रीमैनियन ज्यामिति या सहसंयोजक व्युत्पन्न में सूत्रों की सूची देखें,
  • फ़्रेम को घुमाकर कार्टन कनेक्शन और वक्रता प्रपत्र देखें।
  • यदि कोई जियोडेसिक या रीमैनियन और स्यूडो-रीमैनियन मैनिफोल्ड्स के व्यवहार के बारे में कुछ जानता है तो जैकोबी समीकरण सहायता कर सकता है।

संदर्भ

  • Kobayashi, Shoshichi; Nomizu, Katsumi (1996). Foundations of Differential Geometry, Vol. 1 (New ed.). Wiley-Interscience. ISBN 0-471-15733-3.
  • Woods, F. S. (1901). "Space of constant curvature". The Annals of Mathematics. 3 (1/4): 71–112. doi:10.2307/1967636. JSTOR 1967636.


टिप्पणियाँ

    [Category:Riemannian manifol