एमिटर-युग्मित तर्क: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(12 intermediate revisions by 4 users not shown)
Line 1: Line 1:
[[Image:ECL.svg|350px|thumb|right|1972 का मोटोरोला ईसीएल 10,000 बेसिक गेट परिपथ चित्र।<ref>Original drawing based on William R. Blood Jr. (1972). ''MECL System Design Handbook'' 2nd ed. n.p.: Motorola Semiconductor Products. 1.</ref> ध्यान दें कि कैसे Q5 और Q6 उत्सर्जक आउटपुट के साथ युग्मित होते हैं।]]
[[Image:ECL.svg|350px|thumb|right|1972 का मोटोरोला ईसीएल 10,000 बेसिक गेट परिपथ चित्र।<ref>Original drawing based on William R. Blood Jr. (1972). ''MECL System Design Handbook'' 2nd ed. n.p.: Motorola Semiconductor Products. 1.</ref> ध्यान दें कि कैसे Q5 और Q6 उत्सर्जक आउटपुट के साथ युग्मित होते हैं।]]
इलेक्ट्रॉनिक्स में, एमिटर-युग्मित तर्क (ईसीएल) एक उच्च गति एकीकृत परिपथ, द्विध्रुवी ट्रांजिस्टर [[ तर्क परिवार |तर्क परिवार]] है। ईसीएल [[ द्विध्रुवी जंक्शन ट्रांजिस्टर |द्विध्रुवी जंक्शन ट्रांजिस्टर]] #ऑपरेशन के क्षेत्र (पूरी तरह से) ऑपरेशन के क्षेत्र और इसके धीमे टर्न-ऑफ व्यवहार से बचने के लिए सिंगल-एंडेड इनपुट और सीमित एमिटर करंट के साथ ओवरड्रिवेन बाइपोलर जंक्शन ट्रांजिस्टर (बीजेटी) डिफरेंशियल एम्पलीफायर का उपयोग करता है।<ref name = "unitd04">
इलेक्ट्रॉनिक्स में, एमिटर-युग्मित तर्क (ईसीएल) एक उच्च गति एकीकृत परिपथ, द्विध्रुवी ट्रांजिस्टर [[ तर्क परिवार |तर्क परिवार]] है। ईसीएल के संतृप्ति क्षेत्र (पूरी तरह से कार्यान्वन स्तिथि में) और इसके धीमे टर्न-ऑफ व्यवहार से बचने के लिए सिंगल-एंडेड इनपुट और सीमित एमिटर करंट के साथ ओवरड्रिवेन [[ द्विध्रुवी जंक्शन ट्रांजिस्टर |द्विध्रुवी]] जंक्शन ट्रांजिस्टर (बीजेटी) डिफरेंशियल एम्पलीफायर का उपयोग करता है।<ref name = "unitd04">
{{cite web
{{cite web
  | url = http://www.physics.dcu.ie/~bl/digi/unitd04.pdf
  | url = http://www.physics.dcu.ie/~bl/digi/unitd04.pdf
Line 6: Line 6:
  | author = Brian Lawless
  | author = Brian Lawless
  | title = Unit4: ECL Emitter Coupled Logic
  | title = Unit4: ECL Emitter Coupled Logic
  }}</ref>जैसा कि एमिटर-युग्मित जोड़ी के दो सिरों के बीच विद्युत् चलता है, ईसीएल को कभी-कभी करंट-स्टीयरिंग तर्क (सीएसएल) ,<ref>
  }}</ref>क्यों कि एमिटर-युग्मित जोड़ी के दो सिरों के बीच विद्युत् प्रवाहित होती है, ईसीएल को कभी-कभी करंट-स्टीयरिंग तर्क (सीएसएल) ,<ref>
{{cite book
{{cite book
  | title = Pulse and Digital Circuits
  | title = Pulse and Digital Circuits
Line 15: Line 15:
  | page = 472
  | page = 472
  | url = https://books.google.com/books?id=ECeObhzCiLIC&pg=RA2-PA472
  | url = https://books.google.com/books?id=ECeObhzCiLIC&pg=RA2-PA472
}}</ref>वर्तमान-मोड तर्क (सीएमएल)<ref>
}}</ref>करंट-मोड तर्क (सीएमएल)<ref>
{{cite book
{{cite book
  | title = Digital Logic Techniques: Principles and Practice
  | title = Digital Logic Techniques: Principles and Practice
Line 24: Line 24:
  | page = 173
  | page = 173
  | url = https://books.google.com/books?id=UE6vFEnGP2kC&pg=PA173
  | url = https://books.google.com/books?id=UE6vFEnGP2kC&pg=PA173
}}</ref>या करंट-स्विच एमिटर-फॉलोअर (सीएसईएफ) तर्क कहा जाता है।<ref>
}}</ref>या करंट-स्विच एमिटर-फॉलोअर (सीएसईएफ) तर्क भी कहा जाता है।<ref>
{{cite book
{{cite book
  | title = Fundamentals of Microsystems Packaging
  | title = Fundamentals of Microsystems Packaging
Line 35: Line 35:
  }}</ref>
  }}</ref>


ईसीएल में, ट्रांजिस्टर कभी भी संतृप्ति परिस्तिथ में नहीं होते हैं, इनपुट/आउटपुट वोल्टेज में छोटा स्विंग (0.8 V) होता है, इनपुट प्रतिबाधा अधिक होती है और आउटपुट प्रतिबाधा कम होती है। नतीजतन, ट्रांजिस्टर जल्दी से परिस्थितियां बदलते हैं, गेट में देरी कम होती है, और [[ प्रशंसक बाहर |फैनआउट]] क्षमता अधिक होती है।<ref>
ईसीएल में, ट्रांजिस्टर कभी भी संतृप्ति परिस्तिथ में नहीं जाते हैं, इनपुट/आउटपुट वोल्टेज में छोटा स्विंग (0.8 V) होता है, इनपुट प्रतिबाधा अधिक होती है और आउटपुट प्रतिबाधा कम होती है। नतीजतन, ट्रांजिस्टर जल्दी से परिस्थितियां बदलते हैं, गेट में देरी कम होती है, और [[ प्रशंसक बाहर |फैनआउट]] क्षमता अधिक होती है।<ref>
{{cite book
{{cite book
  | title = The Forrest Mims Circuit Scrapbook
  | title = The Forrest Mims Circuit Scrapbook
Line 46: Line 46:
  | page = 115
  | page = 115
  | url = https://books.google.com/books?id=STzitya5iwgC&pg=PA115
  | url = https://books.google.com/books?id=STzitya5iwgC&pg=PA115
  }}</ref> इसके अलावा, अंतर एम्पलीफायरों का अनिवार्य रूप से निरंतर वर्तमान ड्रॉ आपूर्ति-लाइन अधिष्ठापन और समाई के कारण देरी और गड़बड़ियों को कम करता है, और पूरक आउटपुट इन्वर्टर गिनती को कम करके पूरे परिपथ के प्रसार समय को कम करता है।
  }}</ref> इसके अलावा, डिफरेंशियल एम्पलीफायर का अनिवार्य रूप से निरंतर विद्युत् लेने के कारण, आपूर्ति-लाइन प्रेरक और संधारित्र से आने वाली देरी और गड़बड़ियों को कम करता है, और पूरक आउटपुट इन्वर्टर विद्युत् को कम करके पूरे परिपथ के प्रसार समय को कम करता है।


ईसीएल का प्रमुख नुकसान यह है कि प्रत्येक गेट लगातार विद्युत् खींचता है, जिसका अर्थ है कि इसे अन्य लॉजिक परिवारों की तुलना में काफी अधिक शक्ति की आवश्यकता होती है (और नष्ट हो जाती है), खासकर मौन अवस्था में ।
ईसीएल का प्रमुख नुकसान यह है कि प्रत्येक गेट लगातार विद्युत् लेता है, जिसका अर्थ है कि इसे अन्य तर्क परिवारों की तुलना में काफी अधिक शक्ति की आवश्यकता होती है (और नष्ट हो जाती है), खासकर मौन अवस्था में ।


क्षेत्र-प्रभाव ट्रांजिस्टर से बने उत्सर्जक-युग्मित तर्क के समतुल्य को [[ स्रोत-युग्मित तर्क ]] (एससीएफएल) कहा जाता है।<ref>
क्षेत्र-प्रभाव ट्रांजिस्टर से बने उत्सर्जक-युग्मित तर्क के समतुल्य को [[ स्रोत-युग्मित तर्क ]] (एससीएफएल) कहा जाता है।<ref>
Line 62: Line 62:
  }}</ref>
  }}</ref>


ईसीएल की एक भिन्नता जिसमें सभी सिग्नल पथ और गेट इनपुट भिन्न हैं, अंतर वर्तमान स्विच (डीसीएस) तर्क के रूप में जाना जाता है।<ref>
ईसीएल की एक भिन्नता जिसमें सभी सिग्नल पथ और गेट इनपुट भिन्न हैं जिसे डिफरेंशियल करंट स्विच (डीसीएस) तर्क के रूप में जाना जाता है।<ref>
{{cite journal
{{cite journal
  | author = E. B. Eichelberger and S. E. Bello
  | author = E. B. Eichelberger and S. E. Bello
Line 77: Line 77:


[[Image:CurrentSwitchLogic.svg|350px|thumb|right|योरके का वर्तमान स्विच (लगभग 1955)<ref name="Rymaszewski"/>]]
[[Image:CurrentSwitchLogic.svg|350px|thumb|right|योरके का वर्तमान स्विच (लगभग 1955)<ref name="Rymaszewski"/>]]
ईसीएल का आविष्कार अगस्त 1956 में [[ IBM |आईबीएम]] में हंनों यस. योरके द्वारा किया गया था।<ref>[http://semiconductormuseum.com/Transistors/IBM/OralHistories/Yourke/Yourke_Index.htm Early Transistor History at IBM].</ref><ref>{{Citation |url=http://archive.computerhistory.org/resources/text/IBM/Stretch/pdfs/06-11/102634289.pdf |title=Millimicrosecond non-saturating transistor switching circuits |first=Hannon S. |last=Yourke |id=Stretch Circuit Memo # 3 |date=October 1956 }}. Yourke's circuits used commercial transistors and had an average gate delay of 12&nbsp;ns.</ref> मूल रूप से इसे वर्तमान-स्टीयरिंग तर्क कहा जाता है, इसका उपयोग स्ट्रेच, [[ आईबीएम 7090 |आईबीएम 7090]] और आईबीएम 7090 कंप्यूटरों में किया गया था।<ref name="Rymaszewski">{{cite journal |author=E. J. Rymaszewski |year=1981 |title=Semiconductor Logic Technology in IBM |journal=IBM Journal of Research and Development |volume=25 |issue=5 |pages=607–608 |issn=0018-8646 |url=http://researchweb.watson.ibm.com/journal/rd/255/ibmrd2505W.pdf |access-date=August 27, 2007 |doi=10.1147/rd.255.0603 |display-authors=etal |url-status=dead |archive-url=https://web.archive.org/web/20080705164759/http://researchweb.watson.ibm.com/journal/rd/255/ibmrd2505W.pdf |archive-date=July 5, 2008 }}</ref> तर्क को करंट-मोड परिपथ भी कहा जाता था।<ref>{{cite book |title=High-Speed Switching Transistor Handbook |editor-first=William D. |editor-last=Roehr |editor2-first=Darrell |editor2-last=Thorpe |year=1963 |publisher=Motorola |url=https://archive.org/details/High-speedSwitchingHandbook }}, p. 37.</ref> इसका उपयोग [[ IBM |आईबीएम]] 360/91 में एएसएलटी परिपथ बनाने के लिए भी किया गया था।<ref>{{cite book |title=IBM's 360 and Early 370 Systems |page=108 |date=2003 |isbn=0262517205|last1=Pugh |first1=Emerson W. |last2=Johnson |first2=Lyle R. |last3=Palmer |first3=John H. }}</ref><ref name="ASLT">{{cite journal |year=1967 |title=Design of a High-Speed Transistor for the ASLT Current Switch |journal=IBM Journal of Research and Development |author=J. L. Langdon, E. J. VanDerveer |volume=11 |pages=69–73 |url=http://www.research.ibm.com/journal/rd/111/ibmrd1101G.pdf|doi=10.1147/rd.111.0069 }}</ref><ref name=Blocks>{{cite web|title=Logic Blocks Automated Logic Diagrams SLT, SLD, ASLT, MST|url=http://bitsavers.trailing-edge.com/pdf/ibm/logic/SY22-2798-2_LogicBlocks_AutomatedLogicDiagrams_SLT,SLD,ASLT,MST_TO_Oct71.pdf|publisher=IBM|access-date=11 September 2015|page=1{{hyphen}}10<!--hyphenated-->}}</ref>
ईसीएल का आविष्कार अगस्त 1956 में [[ IBM |आईबीएम]] में हंनों यस. योरके द्वारा किया गया था।<ref>[http://semiconductormuseum.com/Transistors/IBM/OralHistories/Yourke/Yourke_Index.htm Early Transistor History at IBM].</ref><ref>{{Citation |url=http://archive.computerhistory.org/resources/text/IBM/Stretch/pdfs/06-11/102634289.pdf |title=Millimicrosecond non-saturating transistor switching circuits |first=Hannon S. |last=Yourke |id=Stretch Circuit Memo # 3 |date=October 1956 }}. Yourke's circuits used commercial transistors and had an average gate delay of 12&nbsp;ns.</ref> मूल रूप से इसे करंट-स्टीयरिंग तर्क कहा जाता है, इसका उपयोग स्ट्रेच, [[ आईबीएम 7090 |आईबीएम 7090]] और आईबीएम 7094 कंप्यूटरों में किया गया था।<ref name="Rymaszewski">{{cite journal |author=E. J. Rymaszewski |year=1981 |title=Semiconductor Logic Technology in IBM |journal=IBM Journal of Research and Development |volume=25 |issue=5 |pages=607–608 |issn=0018-8646 |url=http://researchweb.watson.ibm.com/journal/rd/255/ibmrd2505W.pdf |access-date=August 27, 2007 |doi=10.1147/rd.255.0603 |display-authors=etal |url-status=dead |archive-url=https://web.archive.org/web/20080705164759/http://researchweb.watson.ibm.com/journal/rd/255/ibmrd2505W.pdf |archive-date=July 5, 2008 }}</ref> तर्क को करंट-मोड परिपथ भी कहा जाता था।<ref>{{cite book |title=High-Speed Switching Transistor Handbook |editor-first=William D. |editor-last=Roehr |editor2-first=Darrell |editor2-last=Thorpe |year=1963 |publisher=Motorola |url=https://archive.org/details/High-speedSwitchingHandbook }}, p. 37.</ref> इसका उपयोग [[ IBM |आईबीएम]] 360/91 में एएसएलटी परिपथ बनाने के लिए भी किया गया था।<ref>{{cite book |title=IBM's 360 and Early 370 Systems |page=108 |date=2003 |isbn=0262517205|last1=Pugh |first1=Emerson W. |last2=Johnson |first2=Lyle R. |last3=Palmer |first3=John H. }}</ref><ref name="ASLT">{{cite journal |year=1967 |title=Design of a High-Speed Transistor for the ASLT Current Switch |journal=IBM Journal of Research and Development |author=J. L. Langdon, E. J. VanDerveer |volume=11 |pages=69–73 |url=http://www.research.ibm.com/journal/rd/111/ibmrd1101G.pdf|doi=10.1147/rd.111.0069 }}</ref><ref name=Blocks>{{cite web|title=Logic Blocks Automated Logic Diagrams SLT, SLD, ASLT, MST|url=http://bitsavers.trailing-edge.com/pdf/ibm/logic/SY22-2798-2_LogicBlocks_AutomatedLogicDiagrams_SLT,SLD,ASLT,MST_TO_Oct71.pdf|publisher=IBM|access-date=11 September 2015|page=1{{hyphen}}10<!--hyphenated-->}}</ref>


योरके का वर्तमान स्विच एक डिफरेंशियल एम्पलीफायर था जिसका इनपुट लॉजिक स्तर आउटपुट लॉजिक स्तरों से भिन्न था। " करंट मोड ऑपरेशन में, हालांकि, आउटपुट सिग्नल में वोल्टेज स्तर होते हैं जो इनपुट संदर्भ स्तर से अलग संदर्भ स्तर के आस पास बदलता है।"<ref>{{Harvnb|Roehr|Thorpe|1963|p=39}}</ref> योरके के डिजाइन में, दो तर्क संदर्भ स्तरों में 3 वोल्ट का अंतर था।<!-- This would keep the collector to base capacitance small and improve switching speed. Roehr page 40 advises keeping a minimum Vcb of at least 2V -- that's a typical design goal to minimize effect of Ccb, but Roehr does not actually state it is for Ccb. --> नतीजतन, दो पूरक संस्करणों का उपयोग किया गया: एक एनपीएन संस्करण और दूसरा पीएनपी संस्करण। एनपीएन आउटपुट पीएनपी इनपुट चला सकता है, और इसके विपरीत भी संभव है। " नुकसान यह है कि कई अलग अलग विद्युत् आपूर्ति वोल्टेज की आवश्यकता होती है, और पीएनपी और एनपीएन दोनों ट्रांजिस्टर की आवश्यकता होती है।<ref name="Rymaszewski" />
योरके का वर्तमान स्विच एक डिफरेंशियल एम्पलीफायर था जिसका इनपुट तर्क स्तर, आउटपुट तर्क स्तरों से भिन्न था। " करंट मोड ऑपरेशन में, हालांकि, आउटपुट सिग्नल में वोल्टेज स्तर होते हैं जो इनपुट संदर्भ स्तर से अलग संदर्भ स्तर के आस पास बदलता है।"<ref>{{Harvnb|Roehr|Thorpe|1963|p=39}}</ref> योरके के डिजाइन में, दो तर्क संदर्भ स्तरों में 3 वोल्ट का अंतर था।<!-- This would keep the collector to base capacitance small and improve switching speed. Roehr page 40 advises keeping a minimum Vcb of at least 2V -- that's a typical design goal to minimize effect of Ccb, but Roehr does not actually state it is for Ccb. --> नतीजतन, दो पूरक संस्करणों का उपयोग किया गया: एक एनपीएन संस्करण और दूसरा पीएनपी संस्करण। एनपीएन आउटपुट पीएनपी इनपुट चला सकता है, और इसके विपरीत भी संभव है। " नुकसान यह है कि कई अलग-अलग विद्युत् आपूर्ति वोल्टेज की आवश्यकता होती है, और पीएनपी और एनपीएन दोनों ट्रांजिस्टर की आवश्यकता होती है।<ref name="Rymaszewski" />


एनपीएन और पीएनपी के अलटरनेट चरणों के बजाय, एक अन्य युग्मन विधि ने [[ ज़ेनर डायोड |ज़ेनर डायोड]] और प्रतिरोधों को आउटपुट लॉजिक स्तरों को इनपुट लॉजिक स्तरों के समान स्थानांतरित करने के लिए नियोजित किया।<ref>{{Harvnb|Roehr|Thorpe|1963|pp=40, 261}}</ref>
एनपीएन और पीएनपी के क्रमानुसार चरणों के बजाय, एक अन्य युग्मन विधि ने [[ ज़ेनर डायोड |ज़ेनर डायोड]] और प्रतिरोधों को आउटपुट तर्क स्तरों को इनपुट तर्क स्तरों के समान स्थानांतरित करने के लिए नियोजित किया।<ref>{{Harvnb|Roehr|Thorpe|1963|pp=40, 261}}</ref>


1960 के दशक की शुरुआत में, ईसीएल परिपथ को [[ अखंड एकीकृत परिपथ |अखंड एकीकृत परिपथ]] पर लागू किया गया था और इसमें लॉजिक करने के लिए एक डिफरेंशियल-एम्पलीफायर इनपुट स्टेज शामिल था और इसके बाद आउटपुट ड्राइव करने और आउटपुट वोल्टेज को शिफ्ट करने के लिए एक एमिटर-फॉलोअर स्टेज था, ताकि वे इनपुट के साथ संगत हो सकें। एमिटर-फॉलोअर आउटपुट चरणों का उपयोग [[ वायर्ड तर्क कनेक्शन |वायर्ड-ओर तर्क]] करने के लिए भी किया जा सकता है।
1960 के दशक की शुरुआत में, ईसीएल परिपथ को [[ अखंड एकीकृत परिपथ |अखंड एकीकृत परिपथ]] पर लागू किया गया था और इसमें तर्क करने के लिए एक डिफरेंशियल-एम्पलीफायर इनपुट स्टेज शामिल था और इसके बाद आउटपुट ड्राइव करने और आउटपुट वोल्टेज को शिफ्ट करने के लिए एक एमिटर-फॉलोअर स्टेज था, ताकि वे इनपुट के साथ संगत हो सकें। एमिटर-फॉलोअर आउटपुट चरणों का उपयोग [[ वायर्ड तर्क कनेक्शन |वायर्ड-ओर तर्क]] करने के लिए भी किया जा सकता है।


{{anchor|MECL}}[[ मोटोरोला | मोटोरोला]] ने 1962 में अपनी पहली डिजिटल मोनोलिथिक इंटीग्रेटेड परिपथ लाइन, एमईसीएल I की शुरुआत की।<ref>{{cite book |author=William R. Blood Jr. |date=1988 |orig-year=1980 |url=http://www.onsemi.com/pub/Collateral/HB205-D.PDF |title=MECL System Design Handbook |edition=4th |publisher=Motorola Semiconductor Products, republished by On Semiconductor|page=vi }}</ref> मोटोरोला ने 1966 में एमईसीएल II, 1968 में एमईसीएल III के साथ 1-नैनोसेकंड गेट प्रसार समय और 300 मेगाहर्ट्ज फ्लिप-फ्लॉप टॉगल दरों और 1971 में 10,000 श्रृंखला (कम बिजली की खपत और नियंत्रित बढ़त गति के साथ) के साथ कई बेहतर श्रृंखला विकसित की।<ref>{{cite book |author=William R. Blood Jr. |title=MECL System Design Handbook |edition=First |date=October 1971 |publisher=Motorola Inc.}}, pp. vi–vii.</ref>एमईसीएल 10H परिवार को 1981 में पेश किया गया था।<ref>
{{anchor|MECL}}  
 
[[ मोटोरोला |मोटोरोला]] ने 1962 में अपनी पहली डिजिटल मोनोलिथिक इंटीग्रेटेड परिपथ लाइन, एमईसीएल I की शुरुआत की।<ref>{{cite book |author=William R. Blood Jr. |date=1988 |orig-year=1980 |url=http://www.onsemi.com/pub/Collateral/HB205-D.PDF |title=MECL System Design Handbook |edition=4th |publisher=Motorola Semiconductor Products, republished by On Semiconductor|page=vi }}</ref> मोटोरोला ने 1966 में एमईसीएल II, 1968 में एमईसीएल III के साथ 1-नैनोसेकंड गेट प्रसार समय और 300 मेगाहर्ट्ज फ्लिप-फ्लॉप टॉगल दरों और 1971 में 10,000 श्रृंखला (कम बिजली की खपत और नियंत्रित बढ़त गति के साथ) के साथ कई बेहतर श्रृंखला विकसित की।<ref>{{cite book |author=William R. Blood Jr. |title=MECL System Design Handbook |edition=First |date=October 1971 |publisher=Motorola Inc.}}, pp. vi–vii.</ref>एमईसीएल 10H परिवार को 1981 में पेश किया गया था।<ref>
[http://www.onsemi.com/pub_link/Collateral/TND309-D.PDF "TND309: General Information for MECL 10H and MECL 10K"].
[http://www.onsemi.com/pub_link/Collateral/TND309-D.PDF "TND309: General Information for MECL 10H and MECL 10K"].
2002.
2002.
Line 97: Line 99:


ईसीएल की उच्च बिजली खपत का मतलब है कि इसका उपयोग मुख्य रूप से तब किया गया है जब उच्च गति महत्वपूर्ण आवश्यकता है। पुराने हाई-एंड मेनफ्रेम कंप्यूटर, जैसे कि [[ IBM |आईबीएम]] एंटरप्राइज  सिस्टम/9000 [[ IBM |आईबीएम]] के ईएसए/390 कंप्यूटर परिवार के सदस्य, ईसीएल का उपयोग करते हैं,<ref name="barish" />[[ क्रे-1 | जैसा कि क्रे-1]] और  [[ Amdahl Corporation |अमदाह्ल  कारपोरेशन]] के पहली पीढ़ी मेनफ्रेम [[ क्रे-1 |ने किया]]<ref name="Russell">{{cite journal |author=R. M. Russell |year=1978 |title=The CRAY1 computer system|journal=Communications of the ACM |volume=21 |issue=1 |pages=63–72 |url=http://www.eecg.toronto.edu/~moshovos/ACA05/read/cray1.pdf
ईसीएल की उच्च बिजली खपत का मतलब है कि इसका उपयोग मुख्य रूप से तब किया गया है जब उच्च गति महत्वपूर्ण आवश्यकता है। पुराने हाई-एंड मेनफ्रेम कंप्यूटर, जैसे कि [[ IBM |आईबीएम]] एंटरप्राइज  सिस्टम/9000 [[ IBM |आईबीएम]] के ईएसए/390 कंप्यूटर परिवार के सदस्य, ईसीएल का उपयोग करते हैं,<ref name="barish" />[[ क्रे-1 | जैसा कि क्रे-1]] और  [[ Amdahl Corporation |अमदाह्ल  कारपोरेशन]] के पहली पीढ़ी मेनफ्रेम [[ क्रे-1 |ने किया]]<ref name="Russell">{{cite journal |author=R. M. Russell |year=1978 |title=The CRAY1 computer system|journal=Communications of the ACM |volume=21 |issue=1 |pages=63–72 |url=http://www.eecg.toronto.edu/~moshovos/ACA05/read/cray1.pdf
|access-date=April 27, 2010 |doi=10.1145/359327.359336|s2cid=28752186 }}</ref>; । (वर्तमान आईबीएम मेनफ्रेम[[ सीएमओएस | सीएमओएस]] का उपयोग करते हैं।<ref>{{cite web|url=http://www.redbooks.ibm.com/redpieces/pdfs/sg248050.pdf |title=IBM zEnterprise System Technical Introduction |date=August 1, 2013 |url-status=dead |archive-url=https://web.archive.org/web/20131103060023/http://www.redbooks.ibm.com/redpieces/pdfs/sg248050.pdf |archive-date=2013-11-03 }}</ref>) 1975 की शुरुआत में, [[ डिजिटल उपकरण निगम | डिजिटल इक्विपमेंट कारपोरेशन]] के उच्चतम प्रदर्शन प्रोसेसर सभी मल्टी-चिप ईसीएल सीपीयू पर आधारित थे - ईसीएल [[ PDP-10 |पीडीपी-10]] से ईसीएल [[ VAX 8000 | वैक्स 8000]] और अंत में [[ VAX 9000 | वैक्स 9000]] तक। 1991 तक, सीएमओएस [[ NVAX | एनवीएक्स]] लॉन्च किया गया था जो [[ VAX 9000 |वैक्स]] 9000 के सामानांतर प्रदर्शन की पेशकश करता था, 25 गुना कम लागत और काफी कम बिजली की खपत के बावजूद।<ref>
|access-date=April 27, 2010 |doi=10.1145/359327.359336|s2cid=28752186 }}</ref>। (वर्तमान आईबीएम मेनफ्रेम[[ सीएमओएस | सीएमओएस]] का उपयोग करते हैं।<ref>{{cite web|url=http://www.redbooks.ibm.com/redpieces/pdfs/sg248050.pdf |title=IBM zEnterprise System Technical Introduction |date=August 1, 2013 |url-status=dead |archive-url=https://web.archive.org/web/20131103060023/http://www.redbooks.ibm.com/redpieces/pdfs/sg248050.pdf |archive-date=2013-11-03 }}</ref>) 1975 की शुरुआत में, [[ डिजिटल उपकरण निगम | डिजिटल इक्विपमेंट कारपोरेशन]] के उच्चतम प्रदर्शन प्रोसेसर सभी मल्टी-चिप ईसीएल सीपीयू पर आधारित थे - ईसीएल [[ PDP-10 |पीडीपी-10]] से ईसीएल [[ VAX 8000 | वैक्स 8000]] और अंत में [[ VAX 9000 | वैक्स 9000]] तक। 1991 तक, सीएमओएस [[ NVAX |एनवीएक्स]] लॉन्च किया गया था जो [[ VAX 9000 |वैक्स]] 9000 के सामानांतर प्रदर्शन की पेशकश करता था, 25 गुना कम लागत और काफी कम बिजली की खपत के बावजूद।<ref>
Bob Supnik.
Bob Supnik.
[http://simh.trailing-edge.com/semi/raven.html "Raven: Introduction: The ECL Conundrum"]
[http://simh.trailing-edge.com/semi/raven.html "Raven: Introduction: The ECL Conundrum"]
Line 103: Line 105:


==कार्यान्वयन ==
==कार्यान्वयन ==
ईसीएल एमिटर-कपल्ड (लॉन्ग-टेल्ड) युग्म पर आधारित है, जो दाईं ओर की आकृति में लाल रंग में छायांकित है। जोड़ी के बाएं आधे हिस्से (छायांकित पीले) में दो समानांतर-जुड़े इनपुट ट्रांजिस्टर T1 और T2 (एक अनुकरणीय दो-इनपुट गेट माना जाता है) होते हैं जो नॉर तर्क को लागू करते हैं। सही ट्रांजिस्टर T3 का आधार वोल्टेज एक संदर्भ वोल्टेज स्रोत, छायांकित हल्के हरे रंग द्वारा तय किया जाता है: डायोड थर्मल मुआवजे (R1, R2, D1 और D2) के साथ वोल्टेज विभक्त और कभी-कभी एक बफरिंग एमिटर अनुयायी (चित्र पर नहीं दिखाया गया है) ); इस प्रकार एमिटर वोल्टेज अपेक्षाकृत स्थिर रखा जाता है। नतीजतन, आम उत्सर्जक रोकनेवाला R<sub>E</sub> लगभग [[ वर्तमान स्रोत |विद्युत् स्रोत]] के रूप में कार्य करता है। कलेक्टर लोड रेसिस्टर्स R<sub>C1</sub> पर आउटपुट वोल्टेज और R<sub>C3</sub> एमिटर फॉलोअर्स T4 और T5 (छायांकित नीला) द्वारा इनवर्टिंग और नॉन-इनवर्टिंग आउटपुट में स्थानांतरित और बफर किए जाते हैं। आउटपुट एमिटर रेसिस्टर्स R<sub>E4</sub> और आर<sub>E5</sub> ईसीएल के सभी संस्करणों में मौजूद नहीं है। कुछ मामलों में इनपुट ट्रांजिस्टर के आधारों के बीच जुड़े 50 Ω लाइन टर्मिनेशन रेसिस्टर्स और −2 V एमिटर रेसिस्टर्स के रूप में कार्य करते हैं।<ref>Blood, W.R. (1972). ''MECL System Design Handbook'' 2nd ed. n.p.: Motorola Semiconductor Products Inc. p. 3.</ref>
ईसीएल एमिटर-कपल्ड (लॉन्ग-टेल्ड) युग्म पर आधारित है, जो दाईं ओर की आकृति में लाल रंग में छायांकित है। जोड़ी के बाएं आधे हिस्से (छायांकित पीले) में दो समानांतर-जुड़े इनपुट ट्रांजिस्टर T1 और T2 (एक अनुकरणीय दो-इनपुट गेट माना जाता है) होते हैं जो नॉर तर्क को लागू करते हैं। दाएं ट्रांजिस्टर T3 का आधार वोल्टेज एक संदर्भ वोल्टेज स्रोत, छायांकित हल्के हरे रंग द्वारा तय किया जाता है: डायोड थर्मल मुआवजे (R1, R2, D1 और D2) के साथ वोल्टेज विभक्त और कभी-कभी एक बफरिंग एमिटर अनुयायी (चित्र पर नहीं दिखाया गया है); इस प्रकार एमिटर वोल्टेज अपेक्षाकृत स्थिर रखा जाता है। नतीजतन, आम उत्सर्जक रोकनेवाला R<sub>E</sub> लगभग [[ वर्तमान स्रोत |विद्युत् स्रोत]] के रूप में कार्य करता है। कलेक्टर लोड रेसिस्टर्स R<sub>C1</sub> पर आउटपुट वोल्टेज और R<sub>C3</sub> एमिटर फॉलोअर्स T4 और T5 (छायांकित नीला) द्वारा इनवर्टिंग और नॉन-इनवर्टिंग आउटपुट में स्थानांतरित और बफर किए जाते हैं। आउटपुट एमिटर रेसिस्टर्स R<sub>E4</sub> और R<sub>E5</sub> ईसीएल के सभी संस्करणों में मौजूद नहीं है। कुछ मामलों में इनपुट ट्रांजिस्टर के आधारों के बीच जुड़े 50 Ω लाइन टर्मिनेशन रेसिस्टर्स और −2 V एमिटर रेसिस्टर्स के रूप में कार्य करते हैं।<ref>Blood, W.R. (1972). ''MECL System Design Handbook'' 2nd ed. n.p.: Motorola Semiconductor Products Inc. p. 3.</ref>
== ऑपरेशन ==
== ऑपरेशन ==


ईसीएल परिपथ ऑपरेशन को इस धारणा के साथ नीचे माना जाता है कि इनपुट वोल्टेज टी 1 बेस पर लागू होता है, जबकि टी 2 इनपुट अप्रयुक्त होता है या लॉजिकल 0 लागू होता है।
ईसीएल परिपथ ऑपरेशन को इस धारणा के साथ नीचे माना जाता है कि इनपुट वोल्टेज T1 बेस पर लागू होता है, जबकि T2 इनपुट अप्रयुक्त होता है या लॉजिकल 0 लागू होता है।


[[:Image:ईसीएल transition 1000.jpg|संक्रमण के दौरान, परिपथ का मूल - एमिटर-युग्मित जोड़ी (T1 और T3) - सिंगल-एंडेड इनपुट के साथ डिफरेंशियल एम्पलीफायर के रूप में कार्य करता है। लॉन्ग-टेल करंट सोर्स (R .)<sub>E</sub>) जोड़ी के दोनों पैरों से बहने वाली कुल धारा को सेट करता है। इनपुट वोल्टेज ट्रांजिस्टर के माध्यम से बहने वाले प्रवाह को दो पैरों के बीच साझा करके नियंत्रित करता है, स्विचिंग पॉइंट के नजदीक न होने पर इसे एक तरफ स्टीयरिंग करता है। लाभ अंतिम राज्यों की तुलना में अधिक है (नीचे देखें) और परिपथ जल्दी से स्विच हो जाता है।
परिवर्तन के दौरान, परिपथ का मूल - एमिटर-युग्मित जोड़ी (T1 और T3) - सिंगल-एंडेड इनपुट के साथ डिफरेंशियल एम्पलीफायर के रूप में कार्य करता है। लॉन्ग-टेल करंट सोर्स (R)<sub>E</sub> जोड़ी के दोनों सिरों से बहने वाली कुल धारा को सेट करता है। इनपुट वोल्टेज ट्रांजिस्टर के माध्यम से बहने वाले प्रवाह को दो सिरों के बीच साझा करके नियंत्रित करता है, स्विचिंग पॉइंट के नजदीक न होने पर इसे एक तरफ स्टीयरिंग करता है। लाभ अंतिम अवस्थाओं की तुलना में अधिक है (नीचे देखें) और परिपथ जल्दी से स्विच हो जाता है।


[[:Image:ईसीएल logical0 1000.jpg|कम इनपुट वोल्टेज पर (logical "0") or [[:Image:ईसीएल logical1 1000.jpg|उच्च इनपुट वोल्टेज (तार्किक 1 ) पर डिफरेंशियल एम्पलीफायर ओवरड्रिवन है। ट्रांजिस्टर (T1 या T3) कटऑफ है और दूसरा (T3 या T1) सक्रिय रेखीय क्षेत्र में है जो एक सामान्य उत्सर्जक के रूप में कार्य कर रहा है # एमिटर डिजनरेशन | एमिटर डिजनरेशन के साथ कॉमन-एमिटर चरण जो अन्य कटऑफ ट्रांजिस्टर को भूखा रखते हुए सभी करंट लेता है। <br>सक्रिय ट्रांजिस्टर अपेक्षाकृत उच्च उत्सर्जक प्रतिरोध R . से भरा हुआ है<sub>E</sub> जो एक महत्वपूर्ण ऋणात्मक प्रतिक्रिया (उत्सर्जक अध: पतन) का परिचय देता है। सक्रिय ट्रांजिस्टर की संतृप्ति को रोकने के लिए ताकि संतृप्ति से पुनर्प्राप्ति को धीमा करने वाला प्रसार समय तर्क विलंब में शामिल न हो,<ref name = "unitd04" />एमिटर और कलेक्टर प्रतिरोधों को इस तरह चुना जाता है कि अधिकतम इनपुट वोल्टेज पर ट्रांजिस्टर के पार कुछ वोल्टेज बचा हो। अवशिष्ट लाभ कम है (K = R<sub>C</sub>/आर<sub>E</sub>< 1)। परिपथ इनपुट वोल्टेज भिन्नताओं के प्रति असंवेदनशील है और ट्रांजिस्टर सक्रिय रैखिक क्षेत्र में मजबूती से रहता है। श्रृंखला ऋणात्मक प्रतिक्रिया के कारण इनपुट प्रतिरोध अधिक है।<br> कटऑफ ट्रांजिस्टर अपने इनपुट और आउटपुट के बीच संबंध को तोड़ देता है। नतीजतन, इसका इनपुट वोल्टेज आउटपुट वोल्टेज को प्रभावित नहीं करता है। बेस-एमिटर जंक्शन कटऑफ होने के बाद से इनपुट प्रतिरोध फिर से अधिक है।
कम इनपुट वोल्टेज (लॉजिकल "0") या उच्च इनपुट वोल्टेज (लॉजिकल "1" ) पर डिफरेंशियल एम्पलीफायर ओवरड्रिवन हो जाता है। ट्रांजिस्टर (T1 या T3) कटऑफ है और दूसरा (T3 या T1) सक्रिय रेखीय क्षेत्र में है जो एमिटर डिजनरेशन के साथ सामान्य उत्सर्जक के रूप में कार्य कर रहा है जो सभी करंट लेता है, अन्य कटऑफ ट्रांजिस्टर को न देते हुए। <br>सक्रिय ट्रांजिस्टर अपेक्षाकृत उच्च उत्सर्जक प्रतिरोध R<sub>E</sub> से बना हुआ है जो एक महत्वपूर्ण ऋणात्मक प्रतिक्रिया (एमिटर डिजनरेशन) का परिचय देता है। सक्रिय ट्रांजिस्टर की संतृप्ति को रोकने के लिए ताकि संतृप्ति से पुनर्प्राप्ति को धीमा करने वाला प्रसार समय तर्क विलंब में शामिल न हो,<ref name="unitd04" />एमिटर और कलेक्टर प्रतिरोधों को इस तरह चुना जाता है कि अधिकतम इनपुट वोल्टेज पर ट्रांजिस्टर पर कुछ वोल्टेज बचा हो। अवशिष्ट लाभ कम है (K = R<sub>C</sub>/R<sub>E</sub>< 1)। परिपथ इनपुट वोल्टेज भिन्नताओं के प्रति असंवेदनशील है और ट्रांजिस्टर सक्रिय रैखिक क्षेत्र में मजबूती से रहता है। श्रृंखला ऋणात्मक प्रतिक्रिया के कारण इनपुट प्रतिरोध अधिक है।<br> कटऑफ ट्रांजिस्टर अपने इनपुट और आउटपुट के बीच संबंध को तोड़ देता है। नतीजतन, इसका इनपुट वोल्टेज आउटपुट वोल्टेज को प्रभावित नहीं करता है। बेस-एमिटर जंक्शन कटऑफ होने के बाद से इनपुट प्रतिरोध फिर से अधिक होता है।


== लक्षण ==
== लक्षण ==


ईसीएल परिवार की अन्य उल्लेखनीय विशेषताओं में यह तथ्य शामिल है कि बड़ी विद्युत् आवश्यकता लगभग स्थिर है, और परिपथ की अवस्था पर अधिक रूप से निर्भर नहीं है। इसका मतलब यह है कि ईसीएल परिपथ अन्य तर्क प्रकारों के विपरीत अपेक्षाकृत कम बिजली का शोर उत्पन्न करते हैं, जो कि मौन की तुलना में स्विच करते समय अधिक विद्युत् खींचते हैं। क्रिप्टोग्राफिक अनुप्रयोगों में, ईसीएल परिपथ भी साइड चैनल अटैक्स जैसे कि [[ अंतर शक्ति विश्लेषण |अंतर शक्ति विश्लेषण]] के लिए कम संवेदनशील होते हैं।{{cn|date=December 2018}}
ईसीएल परिवार की अन्य उल्लेखनीय विशेषताओं में यह तथ्य शामिल है कि बड़ी विद्युत् आवश्यकता लगभग स्थिर है, और परिपथ की अवस्था पर अधिक रूप से निर्भर नहीं है। इसका मतलब यह है कि ईसीएल परिपथ अन्य तर्क प्रकारों के विपरीत अपेक्षाकृत कम बिजली का शोर उत्पन्न करते हैं, जो कि मौन की तुलना में स्विच करते समय अधिक विद्युत् खींचते हैं। क्रिप्टोग्राफिक अनुप्रयोगों में, ईसीएल परिपथ भी साइड चैनल अटैक्स जैसे कि [[ अंतर शक्ति विश्लेषण |अंतर शक्ति विश्लेषण]] के लिए कम संवेदनशील होते हैं।


इस व्यवस्था के लिए प्रसार विलंब एक नैनोसेकंड से कम हो सकता है, जिसमें आईसी पैकेज के चालू और बंद होने वाले सिग्नल की देरी भी शामिल है। कुछ प्रकार के ईसीएल हमेशा सबसे तेज तर्क परिवार रहे हैं।<ref> John F. Wakerly. Supplement to Digital Design Principles and Practices. Section [http://www.ddpp.com/DDPP4student/Supplementary_sections/ECL.pdf "ECL: Emitter-Coupled Logic"].
इस व्यवस्था के लिए प्रसार विलंब एक नैनोसेकंड से कम हो सकता है, जिसमें आईसी पैकेज के चालू और बंद होने वाले सिग्नल की देरी भी शामिल है। कुछ प्रकार के ईसीएल हमेशा सबसे तेज तर्क परिवार रहे हैं।<ref> John F. Wakerly. Supplement to Digital Design Principles and Practices. Section [http://www.ddpp.com/DDPP4student/Supplementary_sections/ECL.pdf "ECL: Emitter-Coupled Logic"].
Line 124: Line 126:
== ऊर्जा स्रोत और तर्क स्तर ==
== ऊर्जा स्रोत और तर्क स्तर ==


ईसीएल परिपथ आमतौर पर ऋणात्मक ऊर्जा स्रोत के साथ काम करते हैं (आपूर्ति का घनात्मक अंत ग्राउंड से जुड़ा होता है)। अन्य तर्क परिवार ऊर्जा स्रोत के ऋणात्मक सिरे को ग्राउंड बनाते हैं। यह मुख्य रूप से तर्क स्तरों पर ऊर्जा स्रोत भिन्नताओं के प्रभाव को कम करने के लिए किया जाता है। ईसीएल V<sub>CC</sub> पर शोर के प्रति अधिक संवेदनशील है और V<sub>EE</sub> पर शोर के प्रति अपेक्षाकृत प्रतिरक्षित है|<ref>[https://books.google.com/books?id=c2YxCCaM9RIC&pg=PA163&lpg=PA163 Electronic Materials Handbook: Packaging (page 163)] by Merrill L. Minges, ASM International. Handbook Committee</ref> चूंकि प्रणाली में ग्राउंड सबसे स्थिर वोल्टेज होना चाहिए, इसलिए ईसीएल को घनात्मक ग्राउंड के साथ निर्दिष्ट किया जाता है। इस संबंध में, जब आपूर्ति वोल्टेज बदलता है, तो कलेक्टर प्रतिरोधों में वोल्टेज थोड़ा बदल जाता है (एमिटर निरंतर चालू स्रोत के मामले में, वे बिल्कुल भी नहीं बदलते हैं)। चूंकि संग्राहक प्रतिरोधक ग्राउंड से मजबूती से बंधे होते हैं, आउटपुट वोल्टेज थोड़ा (या बिल्कुल नहीं) ही बदलता है। यदि ऊर्जा स्रोत के ऋणात्मक छोर को ग्राउंड पर रखा गया था, तो कलेक्टर प्रतिरोधों को घनात्मक सिरे से जोड़ा जाएगा। जैसे ही कलेक्टर प्रतिरोधों में निरंतर वोल्टेज गिरता है, थोड़ा (या बिल्कुल नहीं) बदलता है, आउटपुट वोल्टेज आपूर्ति वोल्टेज भिन्नताओं का पालन करते हैं और दो परिपथ भाग निरंतर वर्तमान स्तर शिफ्टर्स के रूप में कार्य करते हैं। इस मामले में, वोल्टेज विभक्त R1-R2 कुछ हद तक वोल्टेज भिन्नता की भरपाई करता है। घनात्मक ऊर्जा स्रोत का एक और नुकसान है - उच्च निरंतर वोल्टेज (+3.9 V) की पृष्ठभूमि के खिलाफ आउटपुट वोल्टेज थोड़ा (± 0.4 V) भिन्न होगा। ऋणात्मक ऊर्जा स्रोत का उपयोग करने का एक अन्य कारण आउटपुट ट्रांजिस्टर को आउटपुट और ग्राउंड के बीच विकसित होने वाले आकस्मिक शॉर्ट परिपथ से सुरक्षा है<ref>[https://books.google.com/books?id=dnq3HmDN1ZAC&pg=RA1-PA110&lpg=RA1-PA110 Modern digital electronics By R P Jain] (page 111)</ref> (लेकिन आउटपुट ऋणात्मक रेल के साथ शॉर्ट परिपथ से सुरक्षित नहीं हैं)।
ईसीएल परिपथ आमतौर पर ऋणात्मक ऊर्जा स्रोत के साथ काम करते हैं (आपूर्ति का घनात्मक अंत ग्राउंड से जुड़ा होता है)। अन्य तर्क परिवार ऊर्जा स्रोत के ऋणात्मक सिरे को ग्राउंड बनाते हैं। यह मुख्य रूप से तर्क स्तरों पर ऊर्जा स्रोत भिन्नताओं के प्रभाव को कम करने के लिए किया जाता है। ईसीएल V<sub>CC</sub> पर शोर के प्रति अधिक संवेदनशील है और V<sub>EE</sub> पर शोर के प्रति अपेक्षाकृत प्रतिरक्षित है|<ref>[https://books.google.com/books?id=c2YxCCaM9RIC&pg=PA163&lpg=PA163 Electronic Materials Handbook: Packaging (page 163)] by Merrill L. Minges, ASM International. Handbook Committee</ref> चूंकि प्रणाली में ग्राउंड सबसे स्थिर वोल्टेज होना चाहिए, इसलिए ईसीएल को घनात्मक ग्राउंड के साथ निर्दिष्ट किया जाता है। इस संबंध में, जब आपूर्ति वोल्टेज बदलता है, तो कलेक्टर प्रतिरोधों में वोल्टेज थोड़ा बदल जाता है (एमिटर निरंतर चालू स्रोत के मामले में, वे बिल्कुल भी नहीं बदलते हैं)। चूंकि संग्राहक प्रतिरोधक ग्राउंड से मजबूती से बंधे होते हैं, आउटपुट वोल्टेज थोड़ा (या बिल्कुल नहीं) ही बदलता है। यदि ऊर्जा स्रोत के ऋणात्मक छोर को ग्राउंड पर रखा गया, तो कलेक्टर प्रतिरोधों को घनात्मक सिरे से जोड़ा जाएगा। जैसे ही कलेक्टर प्रतिरोधों में निरंतर वोल्टेज गिरता है, थोड़ा (या बिल्कुल नहीं) बदलता है, आउटपुट वोल्टेज आपूर्ति वोल्टेज भिन्नताओं का पालन करते हैं और दो परिपथ भाग निरंतर वर्तमान स्तर शिफ्टर्स के रूप में कार्य करते हैं। इस मामले में, वोल्टेज विभक्त R1-R2 कुछ हद तक वोल्टेज भिन्नता की भरपाई करता है। घनात्मक ऊर्जा स्रोत का एक और नुकसान है - उच्च निरंतर वोल्टेज (+3.9 V) की पृष्ठभूमि के खिलाफ आउटपुट वोल्टेज थोड़ा (± 0.4 V) भिन्न होगा। ऋणात्मक ऊर्जा स्रोत का उपयोग करने का एक अन्य कारण आउटपुट ट्रांजिस्टर को आउटपुट और ग्राउंड के बीच विकसित होने वाले आकस्मिक शॉर्ट परिपथ से सुरक्षा है<ref>[https://books.google.com/books?id=dnq3HmDN1ZAC&pg=RA1-PA110&lpg=RA1-PA110 Modern digital electronics By R P Jain] (page 111)</ref> (लेकिन आउटपुट ऋणात्मक रेल के साथ शॉर्ट परिपथ से सुरक्षित नहीं हैं)।


आपूर्ति वोल्टेज का मान ऐसा चुना जाता है ताकि क्षतिपूर्ति डायोड डी1 और डी2 के माध्यम से पर्याप्त धारा प्रवाहित हो और कॉमन एमिटर रेसिस्टर R<sub>E</sub> में वोल्टेज पर्याप्त मात्रा में गिर जाए है।
आपूर्ति वोल्टेज का मान ऐसा चुना जाता है ताकि क्षतिपूर्ति डायोड डी1 और डी2 के माध्यम से पर्याप्त धारा प्रवाहित हो और कॉमन एमिटर रेसिस्टर R<sub>E</sub> में वोल्टेज पर्याप्त मात्रा में गिर जाए है।
Line 133: Line 135:
</ref>
</ref>
=== पीईसीएल ===
=== पीईसीएल ===
घनात्मक एमिटर-युग्मित तर्क, जिसे छद्म-ईसीएल भी कहा जाता है, (पीईसीएल) ऋणात्मक 5.2 V आपूर्ति के बजाय घनात्मक 5 V आपूर्ति का उपयोग करके ईसीएल का एक और विकास है।<ref>{{cite web |work=EE Times |author=John Goldie |url=http://www.eetimes.com/document.asp?doc_id=1225744 |title=LVDS, CML, ECL – differential interfaces with odd voltages |date=21 January 2003}}</ref> लो-वोल्टेज घनात्मक एमिटर-कपल्ड लॉजिक (एलवीपीईसीएल) पीईसीएल का पावर-ऑप्टिमाइज़्ड वर्जन है, जो 5 V सप्लाई के बजाय घनात्मक 3.3 V का उपयोग करता है। पीईसीएल और एलवीपीईसीएल डिफरेंशियल-सिग्नलिंग सिस्टम हैं और मुख्य रूप से हाई-स्पीड और क्लॉक-डिस्ट्रीब्यूशन परिपथ में उपयोग किए जाते हैं।
घनात्मक एमिटर-युग्मित तर्क, जिसे छद्म-ईसीएल भी कहा जाता है, (पीईसीएल) ऋणात्मक 5.2 V आपूर्ति के बजाय घनात्मक 5 V आपूर्ति का उपयोग करता है जो ईसीएल का एक और विकास है।<ref>{{cite web |work=EE Times |author=John Goldie |url=http://www.eetimes.com/document.asp?doc_id=1225744 |title=LVDS, CML, ECL – differential interfaces with odd voltages |date=21 January 2003}}</ref> लो-वोल्टेज घनात्मक एमिटर-कपल्ड तर्क (एलवीपीईसीएल) पीईसीएल का पावर-ऑप्टिमाइज़्ड वर्जन है, जो 5 V सप्लाई के बजाय घनात्मक 3.3 V का उपयोग करता है। पीईसीएल और एलवीपीईसीएल डिफरेंशियल-सिग्नलिंग व्यवस्था हैं और मुख्य रूप से हाई-स्पीड और क्लॉक-डिस्ट्रीब्यूशन परिपथ में उपयोग किए जाते हैं।


एक आम गलत धारणा यह है कि पीईसीएल डिवाइस ईसीएल डिवाइस से थोड़े अलग होते हैं। वास्तव में, प्रत्येक ईसीएल डिवाइस भी एक पीईसीएल डिवाइस है।<ref>
एक आम गलत धारणा यह है कि पीईसीएल उपकरण ईसीएल उपकरण से थोड़े अलग होते हैं। वास्तव में, प्रत्येक ईसीएल उपकरण भी एक पीईसीएल उपकरण है।<ref>
Cleon Petty; Todd Pearson.
Cleon Petty; Todd Pearson.
[https://www.onsemi.com/pub/Collateral/AN1406-D.PDF "Designing with PECL (ECL at +5.0 V)"].
[https://www.onsemi.com/pub/Collateral/AN1406-D.PDF "Designing with PECL (ECL at +5.0 V)"].
Line 164: Line 166:
| 2.0 V
| 2.0 V
|}
|}
: नोट: {{math|''V''<sub>cm</sub>}} सामान्य मोड वोल्टेज रेंज है।
: नोट: {{math|''V''<sub>cm</sub>}} सामान्य मोड वोल्टेज सीमा है।


==यह भी देखें==
==यह भी देखें==
Line 171: Line 173:
==संदर्भ==
==संदर्भ==
{{Reflist}}
{{Reflist}}
==इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची==
*एकीकृत परिपथ
*अवरोध
*आम emitter
*आभासी मैदान
*सतत प्रवाह
*इंस्ट्रूमेंटेशन एम्पलीफायर
*ऋणात्मक प्रतिपुष्टि
*बिजली का टूटना
*ढाल (कलन)
*आयनीकरण
*चीनी मिट्टी
*विद्युतीय इन्सुलेशन
*टूटने की संभावना
*आकाशीय बिजली
*खालीपन
*बिजली का करंट
*वर्गमूल औसत का वर्ग
*गेट देरी
*फील्ड इफ़ेक्ट ट्रांजिस्टर
*गेट सरणी
*साइड चैनल अटैक
*प्रचार देरी
==अग्रिम पठन==
==अग्रिम पठन==
* {{cite web |title=What Computers Are Made From |author-first=John J. G. |author-last=Savard |date=2018 |orig-year=2005 |work=quadibloc |url=http://www.quadibloc.com/comp/cp01.htm |access-date=2018-07-16 |url-status=live |archive-url=https://web.archive.org/web/20180702235616/http://www.quadibloc.com/comp/cp01.htm |archive-date=2018-07-02}}
* {{cite web |title=What Computers Are Made From |author-first=John J. G. |author-last=Savard |date=2018 |orig-year=2005 |work=quadibloc |url=http://www.quadibloc.com/comp/cp01.htm |access-date=2018-07-16 |url-status=live |archive-url=https://web.archive.org/web/20180702235616/http://www.quadibloc.com/comp/cp01.htm |archive-date=2018-07-02}}
Line 203: Line 178:
* {{Cite journal |first=Hannon S. |last=Yourke |title=Millimicrosecond Transistor Current Switching Circuits |journal=IRE Transactions on Circuit Theory |issn=0096-2007 |volume=4 |issue=3 |pages=236&ndash;240 |date=September 1957 |doi=10.1109/TCT.1957.1086377 }}
* {{Cite journal |first=Hannon S. |last=Yourke |title=Millimicrosecond Transistor Current Switching Circuits |journal=IRE Transactions on Circuit Theory |issn=0096-2007 |volume=4 |issue=3 |pages=236&ndash;240 |date=September 1957 |doi=10.1109/TCT.1957.1086377 }}
* {{cite web |title=DECL test run - Differential emitter-coupled logic |author-first=Dieter |author-last=Mueller |date=2008 |orig-year=2006 |url=http://www.6502.org/users/dieter/decl/decl1.htm |access-date=2018-07-18 |url-status=live |archive-url=https://web.archive.org/web/20180718215508/http://www.6502.org/users/dieter/decl/decl1.htm |archive-date=2018-07-18}}
* {{cite web |title=DECL test run - Differential emitter-coupled logic |author-first=Dieter |author-last=Mueller |date=2008 |orig-year=2006 |url=http://www.6502.org/users/dieter/decl/decl1.htm |access-date=2018-07-18 |url-status=live |archive-url=https://web.archive.org/web/20180718215508/http://www.6502.org/users/dieter/decl/decl1.htm |archive-date=2018-07-18}}
==बाहरी संबंध==
==बाहरी संबंध==
*[http://www.worldpowersystems.com/archives/solid-state-datasheets/Motorola/MECL/index.html Motorola Mईसीएल logic family datasheets, 1963]
*[http://www.worldpowersystems.com/archives/solid-state-datasheets/Motorola/MECL/index.html Motorola Mईसीएल logic family datasheets, 1963]
*[http://www.onsemi.com/pub_link/Collateral/TND309-D.PDF General Information for Mईसीएल 10H and Mईसीएल 10K]
*[http://www.onsemi.com/pub_link/Collateral/TND309-D.PDF General Information for Mईसीएल 10H and Mईसीएल 10K]
{{Logic Families}}
{{Digital electronics}}
{{Digital electronics}}


{{DEFAULTSORT:Emitter-Coupled Logic}}[[Category:तर्क परिवार]]
{{DEFAULTSORT:Emitter-Coupled Logic}}
 


[[Category: Machine Translated Page]]
[[Category:All articles with unsourced statements|Emitter-Coupled Logic]]
[[Category:Created On 03/09/2022]]
[[Category:All articles with vague or ambiguous time|Emitter-Coupled Logic]]
[[Category:Articles with invalid date parameter in template|Emitter-Coupled Logic]]
[[Category:Articles with unsourced statements from December 2018|Emitter-Coupled Logic]]
[[Category:CS1 errors]]
[[Category:Collapse templates|Emitter-Coupled Logic]]
[[Category:Created On 03/09/2022|Emitter-Coupled Logic]]
[[Category:Machine Translated Page|Emitter-Coupled Logic]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Emitter-Coupled Logic]]
[[Category:Pages with script errors|Emitter-Coupled Logic]]
[[Category:Sidebars with styles needing conversion|Emitter-Coupled Logic]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates generating microformats|Emitter-Coupled Logic]]
[[Category:Templates that are not mobile friendly|Emitter-Coupled Logic]]
[[Category:Templates using TemplateData|Emitter-Coupled Logic]]
[[Category:Vague or ambiguous time from August 2016|Emitter-Coupled Logic]]
[[Category:Wikipedia metatemplates|Emitter-Coupled Logic]]
[[Category:तर्क परिवार|Emitter-Coupled Logic]]

Latest revision as of 17:21, 11 September 2023

1972 का मोटोरोला ईसीएल 10,000 बेसिक गेट परिपथ चित्र।[1] ध्यान दें कि कैसे Q5 और Q6 उत्सर्जक आउटपुट के साथ युग्मित होते हैं।

इलेक्ट्रॉनिक्स में, एमिटर-युग्मित तर्क (ईसीएल) एक उच्च गति एकीकृत परिपथ, द्विध्रुवी ट्रांजिस्टर तर्क परिवार है। ईसीएल के संतृप्ति क्षेत्र (पूरी तरह से कार्यान्वन स्तिथि में) और इसके धीमे टर्न-ऑफ व्यवहार से बचने के लिए सिंगल-एंडेड इनपुट और सीमित एमिटर करंट के साथ ओवरड्रिवेन द्विध्रुवी जंक्शन ट्रांजिस्टर (बीजेटी) डिफरेंशियल एम्पलीफायर का उपयोग करता है।[2]क्यों कि एमिटर-युग्मित जोड़ी के दो सिरों के बीच विद्युत् प्रवाहित होती है, ईसीएल को कभी-कभी करंट-स्टीयरिंग तर्क (सीएसएल) ,[3]करंट-मोड तर्क (सीएमएल)[4]या करंट-स्विच एमिटर-फॉलोअर (सीएसईएफ) तर्क भी कहा जाता है।[5]

ईसीएल में, ट्रांजिस्टर कभी भी संतृप्ति परिस्तिथ में नहीं जाते हैं, इनपुट/आउटपुट वोल्टेज में छोटा स्विंग (0.8 V) होता है, इनपुट प्रतिबाधा अधिक होती है और आउटपुट प्रतिबाधा कम होती है। नतीजतन, ट्रांजिस्टर जल्दी से परिस्थितियां बदलते हैं, गेट में देरी कम होती है, और फैनआउट क्षमता अधिक होती है।[6] इसके अलावा, डिफरेंशियल एम्पलीफायर का अनिवार्य रूप से निरंतर विद्युत् लेने के कारण, आपूर्ति-लाइन प्रेरक और संधारित्र से आने वाली देरी और गड़बड़ियों को कम करता है, और पूरक आउटपुट इन्वर्टर विद्युत् को कम करके पूरे परिपथ के प्रसार समय को कम करता है।

ईसीएल का प्रमुख नुकसान यह है कि प्रत्येक गेट लगातार विद्युत् लेता है, जिसका अर्थ है कि इसे अन्य तर्क परिवारों की तुलना में काफी अधिक शक्ति की आवश्यकता होती है (और नष्ट हो जाती है), खासकर मौन अवस्था में ।

क्षेत्र-प्रभाव ट्रांजिस्टर से बने उत्सर्जक-युग्मित तर्क के समतुल्य को स्रोत-युग्मित तर्क (एससीएफएल) कहा जाता है।[7]

ईसीएल की एक भिन्नता जिसमें सभी सिग्नल पथ और गेट इनपुट भिन्न हैं जिसे डिफरेंशियल करंट स्विच (डीसीएस) तर्क के रूप में जाना जाता है।[8]

इतिहास

योरके का वर्तमान स्विच (लगभग 1955)[9]

ईसीएल का आविष्कार अगस्त 1956 में आईबीएम में हंनों यस. योरके द्वारा किया गया था।[10][11] मूल रूप से इसे करंट-स्टीयरिंग तर्क कहा जाता है, इसका उपयोग स्ट्रेच, आईबीएम 7090 और आईबीएम 7094 कंप्यूटरों में किया गया था।[9] तर्क को करंट-मोड परिपथ भी कहा जाता था।[12] इसका उपयोग आईबीएम 360/91 में एएसएलटी परिपथ बनाने के लिए भी किया गया था।[13][14][15]

योरके का वर्तमान स्विच एक डिफरेंशियल एम्पलीफायर था जिसका इनपुट तर्क स्तर, आउटपुट तर्क स्तरों से भिन्न था। " करंट मोड ऑपरेशन में, हालांकि, आउटपुट सिग्नल में वोल्टेज स्तर होते हैं जो इनपुट संदर्भ स्तर से अलग संदर्भ स्तर के आस पास बदलता है।"[16] योरके के डिजाइन में, दो तर्क संदर्भ स्तरों में 3 वोल्ट का अंतर था। नतीजतन, दो पूरक संस्करणों का उपयोग किया गया: एक एनपीएन संस्करण और दूसरा पीएनपी संस्करण। एनपीएन आउटपुट पीएनपी इनपुट चला सकता है, और इसके विपरीत भी संभव है। " नुकसान यह है कि कई अलग-अलग विद्युत् आपूर्ति वोल्टेज की आवश्यकता होती है, और पीएनपी और एनपीएन दोनों ट्रांजिस्टर की आवश्यकता होती है।[9]

एनपीएन और पीएनपी के क्रमानुसार चरणों के बजाय, एक अन्य युग्मन विधि ने ज़ेनर डायोड और प्रतिरोधों को आउटपुट तर्क स्तरों को इनपुट तर्क स्तरों के समान स्थानांतरित करने के लिए नियोजित किया।[17]

1960 के दशक की शुरुआत में, ईसीएल परिपथ को अखंड एकीकृत परिपथ पर लागू किया गया था और इसमें तर्क करने के लिए एक डिफरेंशियल-एम्पलीफायर इनपुट स्टेज शामिल था और इसके बाद आउटपुट ड्राइव करने और आउटपुट वोल्टेज को शिफ्ट करने के लिए एक एमिटर-फॉलोअर स्टेज था, ताकि वे इनपुट के साथ संगत हो सकें। एमिटर-फॉलोअर आउटपुट चरणों का उपयोग वायर्ड-ओर तर्क करने के लिए भी किया जा सकता है।

मोटोरोला ने 1962 में अपनी पहली डिजिटल मोनोलिथिक इंटीग्रेटेड परिपथ लाइन, एमईसीएल I की शुरुआत की।[18] मोटोरोला ने 1966 में एमईसीएल II, 1968 में एमईसीएल III के साथ 1-नैनोसेकंड गेट प्रसार समय और 300 मेगाहर्ट्ज फ्लिप-फ्लॉप टॉगल दरों और 1971 में 10,000 श्रृंखला (कम बिजली की खपत और नियंत्रित बढ़त गति के साथ) के साथ कई बेहतर श्रृंखला विकसित की।[19]एमईसीएल 10H परिवार को 1981 में पेश किया गया था।[20]फेयरचाइल्ड ने F100K परिवार की शुरुआत की।[when?]

ईसीएलinपीएस (पिकोसेकंड में ईसीएल) परिवार को 1987 में पेश किया गया था।[21] ईसीएलinपीएस में 500 पीएस सिंगल-गेट विलंब और 1.1 गीगाहर्ट्ज़ फ्लिप-फ्लॉप टॉगल आवृत्ति है।[22] ईसीएलinपीएस परिवार के हिस्से कई स्रोतों से उपलब्ध हैं, जिनमें एरिज़ोना माइक्रोटेक, माइक्रोल, नेशनल सेमीकंडक्टर और ऑन सेमीकंडक्टर शामिल हैं।[23]

ईसीएल की उच्च बिजली खपत का मतलब है कि इसका उपयोग मुख्य रूप से तब किया गया है जब उच्च गति महत्वपूर्ण आवश्यकता है। पुराने हाई-एंड मेनफ्रेम कंप्यूटर, जैसे कि आईबीएम एंटरप्राइज  सिस्टम/9000 आईबीएम के ईएसए/390 कंप्यूटर परिवार के सदस्य, ईसीएल का उपयोग करते हैं,[24] जैसा कि क्रे-1 और अमदाह्ल  कारपोरेशन के पहली पीढ़ी मेनफ्रेम ने किया[25]। (वर्तमान आईबीएम मेनफ्रेम सीएमओएस का उपयोग करते हैं।[26]) 1975 की शुरुआत में, डिजिटल इक्विपमेंट कारपोरेशन के उच्चतम प्रदर्शन प्रोसेसर सभी मल्टी-चिप ईसीएल सीपीयू पर आधारित थे - ईसीएल पीडीपी-10 से ईसीएल वैक्स 8000 और अंत में वैक्स 9000 तक। 1991 तक, सीएमओएस एनवीएक्स लॉन्च किया गया था जो वैक्स 9000 के सामानांतर प्रदर्शन की पेशकश करता था, 25 गुना कम लागत और काफी कम बिजली की खपत के बावजूद।[27] एमआईपीएस आर6000 कंप्यूटर भी ईसीएल का उपयोग करते थे। इनमें से कुछ कंप्यूटर डिज़ाइनों में ईसीएल गेट एरेज़ का उपयोग किया गया था।

कार्यान्वयन

ईसीएल एमिटर-कपल्ड (लॉन्ग-टेल्ड) युग्म पर आधारित है, जो दाईं ओर की आकृति में लाल रंग में छायांकित है। जोड़ी के बाएं आधे हिस्से (छायांकित पीले) में दो समानांतर-जुड़े इनपुट ट्रांजिस्टर T1 और T2 (एक अनुकरणीय दो-इनपुट गेट माना जाता है) होते हैं जो नॉर तर्क को लागू करते हैं। दाएं ट्रांजिस्टर T3 का आधार वोल्टेज एक संदर्भ वोल्टेज स्रोत, छायांकित हल्के हरे रंग द्वारा तय किया जाता है: डायोड थर्मल मुआवजे (R1, R2, D1 और D2) के साथ वोल्टेज विभक्त और कभी-कभी एक बफरिंग एमिटर अनुयायी (चित्र पर नहीं दिखाया गया है); इस प्रकार एमिटर वोल्टेज अपेक्षाकृत स्थिर रखा जाता है। नतीजतन, आम उत्सर्जक रोकनेवाला RE लगभग विद्युत् स्रोत के रूप में कार्य करता है। कलेक्टर लोड रेसिस्टर्स RC1 पर आउटपुट वोल्टेज और RC3 एमिटर फॉलोअर्स T4 और T5 (छायांकित नीला) द्वारा इनवर्टिंग और नॉन-इनवर्टिंग आउटपुट में स्थानांतरित और बफर किए जाते हैं। आउटपुट एमिटर रेसिस्टर्स RE4 और RE5 ईसीएल के सभी संस्करणों में मौजूद नहीं है। कुछ मामलों में इनपुट ट्रांजिस्टर के आधारों के बीच जुड़े 50 Ω लाइन टर्मिनेशन रेसिस्टर्स और −2 V एमिटर रेसिस्टर्स के रूप में कार्य करते हैं।[28]

ऑपरेशन

ईसीएल परिपथ ऑपरेशन को इस धारणा के साथ नीचे माना जाता है कि इनपुट वोल्टेज T1 बेस पर लागू होता है, जबकि T2 इनपुट अप्रयुक्त होता है या लॉजिकल 0 लागू होता है।

परिवर्तन के दौरान, परिपथ का मूल - एमिटर-युग्मित जोड़ी (T1 और T3) - सिंगल-एंडेड इनपुट के साथ डिफरेंशियल एम्पलीफायर के रूप में कार्य करता है। लॉन्ग-टेल करंट सोर्स (R)E जोड़ी के दोनों सिरों से बहने वाली कुल धारा को सेट करता है। इनपुट वोल्टेज ट्रांजिस्टर के माध्यम से बहने वाले प्रवाह को दो सिरों के बीच साझा करके नियंत्रित करता है, स्विचिंग पॉइंट के नजदीक न होने पर इसे एक तरफ स्टीयरिंग करता है। लाभ अंतिम अवस्थाओं की तुलना में अधिक है (नीचे देखें) और परिपथ जल्दी से स्विच हो जाता है।

कम इनपुट वोल्टेज (लॉजिकल "0") या उच्च इनपुट वोल्टेज (लॉजिकल "1" ) पर डिफरेंशियल एम्पलीफायर ओवरड्रिवन हो जाता है। ट्रांजिस्टर (T1 या T3) कटऑफ है और दूसरा (T3 या T1) सक्रिय रेखीय क्षेत्र में है जो एमिटर डिजनरेशन के साथ सामान्य उत्सर्जक के रूप में कार्य कर रहा है जो सभी करंट लेता है, अन्य कटऑफ ट्रांजिस्टर को न देते हुए।
सक्रिय ट्रांजिस्टर अपेक्षाकृत उच्च उत्सर्जक प्रतिरोध RE से बना हुआ है जो एक महत्वपूर्ण ऋणात्मक प्रतिक्रिया (एमिटर डिजनरेशन) का परिचय देता है। सक्रिय ट्रांजिस्टर की संतृप्ति को रोकने के लिए ताकि संतृप्ति से पुनर्प्राप्ति को धीमा करने वाला प्रसार समय तर्क विलंब में शामिल न हो,[2]एमिटर और कलेक्टर प्रतिरोधों को इस तरह चुना जाता है कि अधिकतम इनपुट वोल्टेज पर ट्रांजिस्टर पर कुछ वोल्टेज बचा हो। अवशिष्ट लाभ कम है (K = RC/RE< 1)। परिपथ इनपुट वोल्टेज भिन्नताओं के प्रति असंवेदनशील है और ट्रांजिस्टर सक्रिय रैखिक क्षेत्र में मजबूती से रहता है। श्रृंखला ऋणात्मक प्रतिक्रिया के कारण इनपुट प्रतिरोध अधिक है।
कटऑफ ट्रांजिस्टर अपने इनपुट और आउटपुट के बीच संबंध को तोड़ देता है। नतीजतन, इसका इनपुट वोल्टेज आउटपुट वोल्टेज को प्रभावित नहीं करता है। बेस-एमिटर जंक्शन कटऑफ होने के बाद से इनपुट प्रतिरोध फिर से अधिक होता है।

लक्षण

ईसीएल परिवार की अन्य उल्लेखनीय विशेषताओं में यह तथ्य शामिल है कि बड़ी विद्युत् आवश्यकता लगभग स्थिर है, और परिपथ की अवस्था पर अधिक रूप से निर्भर नहीं है। इसका मतलब यह है कि ईसीएल परिपथ अन्य तर्क प्रकारों के विपरीत अपेक्षाकृत कम बिजली का शोर उत्पन्न करते हैं, जो कि मौन की तुलना में स्विच करते समय अधिक विद्युत् खींचते हैं। क्रिप्टोग्राफिक अनुप्रयोगों में, ईसीएल परिपथ भी साइड चैनल अटैक्स जैसे कि अंतर शक्ति विश्लेषण के लिए कम संवेदनशील होते हैं।

इस व्यवस्था के लिए प्रसार विलंब एक नैनोसेकंड से कम हो सकता है, जिसमें आईसी पैकेज के चालू और बंद होने वाले सिग्नल की देरी भी शामिल है। कुछ प्रकार के ईसीएल हमेशा सबसे तेज तर्क परिवार रहे हैं।[29][30]

रेडिएशन हार्डनिंग : जबकि सामान्य वाणिज्यिक-ग्रेड चिप्स 100 ग्रे (10 केरेड) का सामना कर सकते हैं, कई ईसीएल डिवाइस 100,000 ग्रे (10 एमरेड) के बाद चालू होते हैं।[31]

ऊर्जा स्रोत और तर्क स्तर

ईसीएल परिपथ आमतौर पर ऋणात्मक ऊर्जा स्रोत के साथ काम करते हैं (आपूर्ति का घनात्मक अंत ग्राउंड से जुड़ा होता है)। अन्य तर्क परिवार ऊर्जा स्रोत के ऋणात्मक सिरे को ग्राउंड बनाते हैं। यह मुख्य रूप से तर्क स्तरों पर ऊर्जा स्रोत भिन्नताओं के प्रभाव को कम करने के लिए किया जाता है। ईसीएल VCC पर शोर के प्रति अधिक संवेदनशील है और VEE पर शोर के प्रति अपेक्षाकृत प्रतिरक्षित है|[32] चूंकि प्रणाली में ग्राउंड सबसे स्थिर वोल्टेज होना चाहिए, इसलिए ईसीएल को घनात्मक ग्राउंड के साथ निर्दिष्ट किया जाता है। इस संबंध में, जब आपूर्ति वोल्टेज बदलता है, तो कलेक्टर प्रतिरोधों में वोल्टेज थोड़ा बदल जाता है (एमिटर निरंतर चालू स्रोत के मामले में, वे बिल्कुल भी नहीं बदलते हैं)। चूंकि संग्राहक प्रतिरोधक ग्राउंड से मजबूती से बंधे होते हैं, आउटपुट वोल्टेज थोड़ा (या बिल्कुल नहीं) ही बदलता है। यदि ऊर्जा स्रोत के ऋणात्मक छोर को ग्राउंड पर रखा गया, तो कलेक्टर प्रतिरोधों को घनात्मक सिरे से जोड़ा जाएगा। जैसे ही कलेक्टर प्रतिरोधों में निरंतर वोल्टेज गिरता है, थोड़ा (या बिल्कुल नहीं) बदलता है, आउटपुट वोल्टेज आपूर्ति वोल्टेज भिन्नताओं का पालन करते हैं और दो परिपथ भाग निरंतर वर्तमान स्तर शिफ्टर्स के रूप में कार्य करते हैं। इस मामले में, वोल्टेज विभक्त R1-R2 कुछ हद तक वोल्टेज भिन्नता की भरपाई करता है। घनात्मक ऊर्जा स्रोत का एक और नुकसान है - उच्च निरंतर वोल्टेज (+3.9 V) की पृष्ठभूमि के खिलाफ आउटपुट वोल्टेज थोड़ा (± 0.4 V) भिन्न होगा। ऋणात्मक ऊर्जा स्रोत का उपयोग करने का एक अन्य कारण आउटपुट ट्रांजिस्टर को आउटपुट और ग्राउंड के बीच विकसित होने वाले आकस्मिक शॉर्ट परिपथ से सुरक्षा है[33] (लेकिन आउटपुट ऋणात्मक रेल के साथ शॉर्ट परिपथ से सुरक्षित नहीं हैं)।

आपूर्ति वोल्टेज का मान ऐसा चुना जाता है ताकि क्षतिपूर्ति डायोड डी1 और डी2 के माध्यम से पर्याप्त धारा प्रवाहित हो और कॉमन एमिटर रेसिस्टर RE में वोल्टेज पर्याप्त मात्रा में गिर जाए है।

खुले बाजार में उपलब्ध ईसीएल परिपथ आमतौर पर अन्य परिवारों के साथ असंगत तर्क स्तरों के साथ संचालित होते हैं। इसका मतलब था कि ईसीएल और अन्य तर्क परिवारों के बीच अंतःक्रिया, जैसे कि लोकप्रिय ट्रांजिस्टर-ट्रांजिस्टर तर्क परिवार, को अतिरिक्त इंटरफ़ेस परिपथ की आवश्यकता होती है। तथ्य यह है कि उच्च और निम्न तर्क स्तर अपेक्षाकृत करीब हैं, इसका मतलब है कि ईसीएल छोटे शोर मार्जिन से ग्रस्त है, जो परेशानी का कारण हो सकता है।

कम से कम एक निर्माता, आईबीएम ने निर्माता के अपने उत्पादों में उपयोग के लिए ईसीएल परिपथ बनाए। ऊर्जा स्रोत खुले बाजार में इस्तेमाल होने वाली ऊर्जा स्रोत से काफी अलग थी।[24]

पीईसीएल

घनात्मक एमिटर-युग्मित तर्क, जिसे छद्म-ईसीएल भी कहा जाता है, (पीईसीएल) ऋणात्मक 5.2 V आपूर्ति के बजाय घनात्मक 5 V आपूर्ति का उपयोग करता है जो ईसीएल का एक और विकास है।[34] लो-वोल्टेज घनात्मक एमिटर-कपल्ड तर्क (एलवीपीईसीएल) पीईसीएल का पावर-ऑप्टिमाइज़्ड वर्जन है, जो 5 V सप्लाई के बजाय घनात्मक 3.3 V का उपयोग करता है। पीईसीएल और एलवीपीईसीएल डिफरेंशियल-सिग्नलिंग व्यवस्था हैं और मुख्य रूप से हाई-स्पीड और क्लॉक-डिस्ट्रीब्यूशन परिपथ में उपयोग किए जाते हैं।

एक आम गलत धारणा यह है कि पीईसीएल उपकरण ईसीएल उपकरण से थोड़े अलग होते हैं। वास्तव में, प्रत्येक ईसीएल उपकरण भी एक पीईसीएल उपकरण है।[35]

तर्क स्तर:[36]

प्रकार Vee Vlow Vhigh Vcc Vcm
पीईसीएल ग्राउंड 3.4 V 4.2 V 5.0 V
एलवीपीईसीएल ग्राउंड 1.6 V 2.4 V 3.3 V 2.0 V
नोट: Vcm सामान्य मोड वोल्टेज सीमा है।

यह भी देखें

संदर्भ

  1. Original drawing based on William R. Blood Jr. (1972). MECL System Design Handbook 2nd ed. n.p.: Motorola Semiconductor Products. 1.
  2. 2.0 2.1 Brian Lawless. "Unit4: ECL Emitter Coupled Logic" (PDF). Fundamental Digital Electronics.
  3. Anand Kumar (2008). Pulse and Digital Circuits. PHI Learning Pvt. Ltd. p. 472. ISBN 978-81-203-3356-7.
  4. T. J. Stonham (1996). Digital Logic Techniques: Principles and Practice. Taylor & Francis US. p. 173. ISBN 978-0-412-54970-0.
  5. Rao R. Tummala (2001). Fundamentals of Microsystems Packaging. McGraw-Hill Professional. p. 930. ISBN 978-0-07-137169-8.
  6. Forrest M. Mims (2000). The Forrest Mims Circuit Scrapbook. Vol. 2. Newnes. p. 115. ISBN 978-1-878707-48-2.
  7. Dennis Fisher and I. J. Bahl (1995). Gallium Arsenide IC Applications Handbook. Vol. 1. Elsevier. p. 61. ISBN 978-0-12-257735-2.
  8. E. B. Eichelberger and S. E. Bello (May 1991). "Differential Current Switch – High performance at low power". IBM Journal of Research and Development. 35 (3): 313–320. doi:10.1147/rd.353.0313.
  9. 9.0 9.1 9.2 E. J. Rymaszewski; et al. (1981). "Semiconductor Logic Technology in IBM" (PDF). IBM Journal of Research and Development. 25 (5): 607–608. doi:10.1147/rd.255.0603. ISSN 0018-8646. Archived from the original (PDF) on July 5, 2008. Retrieved August 27, 2007.
  10. Early Transistor History at IBM.
  11. Yourke, Hannon S. (October 1956), Millimicrosecond non-saturating transistor switching circuits (PDF), Stretch Circuit Memo # 3. Yourke's circuits used commercial transistors and had an average gate delay of 12 ns.
  12. Roehr, William D.; Thorpe, Darrell, eds. (1963). High-Speed Switching Transistor Handbook. Motorola., p. 37.
  13. Pugh, Emerson W.; Johnson, Lyle R.; Palmer, John H. (2003). IBM's 360 and Early 370 Systems. p. 108. ISBN 0262517205.
  14. J. L. Langdon, E. J. VanDerveer (1967). "Design of a High-Speed Transistor for the ASLT Current Switch" (PDF). IBM Journal of Research and Development. 11: 69–73. doi:10.1147/rd.111.0069.
  15. "Logic Blocks Automated Logic Diagrams SLT, SLD, ASLT, MST" (PDF). IBM. p. 1-10. Retrieved 11 September 2015.
  16. Roehr & Thorpe 1963, p. 39
  17. Roehr & Thorpe 1963, pp. 40, 261
  18. William R. Blood Jr. (1988) [1980]. MECL System Design Handbook (PDF) (4th ed.). Motorola Semiconductor Products, republished by On Semiconductor. p. vi.
  19. William R. Blood Jr. (October 1971). MECL System Design Handbook (First ed.). Motorola Inc., pp. vi–vii.
  20. "TND309: General Information for MECL 10H and MECL 10K". 2002. p. 2.
  21. Anil K. Maini. "Digital Electronics: Principles, Devices and Applications". 2007. p. 148.
  22. "High Performance ECL Data: ECLinPS and ECLinPS Lite". 1996. p. iii.
  23. ECL Logic Manufacturers – "Emitter Coupled Logic".
  24. 24.0 24.1 A. E. Barish; et al. (1992). "Improved performance of IBM Enterprise System/9000 bipolar logic chips". IBM Journal of Research and Development. 36 (5): 829–834. doi:10.1147/rd.365.0829.
  25. R. M. Russell (1978). "The CRAY1 computer system" (PDF). Communications of the ACM. 21 (1): 63–72. doi:10.1145/359327.359336. S2CID 28752186. Retrieved April 27, 2010.
  26. "IBM zEnterprise System Technical Introduction" (PDF). August 1, 2013. Archived from the original (PDF) on 2013-11-03.
  27. Bob Supnik. "Raven: Introduction: The ECL Conundrum"
  28. Blood, W.R. (1972). MECL System Design Handbook 2nd ed. n.p.: Motorola Semiconductor Products Inc. p. 3.
  29. John F. Wakerly. Supplement to Digital Design Principles and Practices. Section "ECL: Emitter-Coupled Logic".
  30. Sedra; Smith. "Microelectronic Circuits". 2015. Section "Emitter-Coupled Logic (ECL)". p. 47.
  31. Leppälä, Kari; Verkasalo, Raimo (1989). "Protection of Instrument Control Computers against Soft and Hard Errors and Cosmic Ray Effects". CiteSeerX 10.1.1.48.1291. {{cite journal}}: Cite journal requires |journal= (help)
  32. Electronic Materials Handbook: Packaging (page 163) by Merrill L. Minges, ASM International. Handbook Committee
  33. Modern digital electronics By R P Jain (page 111)
  34. John Goldie (21 January 2003). "LVDS, CML, ECL – differential interfaces with odd voltages". EE Times.
  35. Cleon Petty; Todd Pearson. "Designing with PECL (ECL at +5.0 V)". p. 3.
  36. Interfacing Between LVPECL, VML, CML and LVDS Levels.

अग्रिम पठन

बाहरी संबंध