माइक्रो इलेक्ट्रो मैकेनिकल प्रणाली दोलक: Difference between revisions

From Vigyanwiki
mNo edit summary
No edit summary
 
(18 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{Advert|date=December 2011}}
'''माइक्रोइलेक्ट्रोमैकेनिकल प्रणाली दोलक (माइक्रोइलेक्ट्रोमैकेनिकल सिस्टम ऑसिलेटर्स)''' ऐसे उपकरण हैं जो समय को मापने के लिए अत्यधिक स्थिर संदर्भ [[Index.php?title=आवृत्ति|आवृत्ति]] (इलेक्ट्रॉनिक प्रणाली को अनुक्रमित करने, [[डेटा स्थानांतरण]] का प्रबंधन करने, [[ आकाशवाणी आवृति |आकाशवाणी आवृति]] को परिभाषित करने और गत समय मापने के लिए उपयोग किया जाता है) उत्पन्न करते हैं। एमईएमएस दोलक में उपयोग की जाने वाली मुख्य प्रौद्योगिकियां 1960 के दशक के मध्य से विकास में हैं, लेकिन 2006 से केवल व्यावसायिक अनुप्रयोगों के लिए पर्याप्त रूप से उन्नत हैं।<ref>{{Cite web |url=http://scme-nm.org/files/History%20of%20MEMS_Presentation.pdf |title=संग्रहीत प्रति|access-date=2016-05-07 |archive-date=2017-02-02 |archive-url=https://web.archive.org/web/20170202002100/http://scme-nm.org/files/History%20of%20MEMS_Presentation.pdf |url-status=dead }}</ref> एमईएमएस दोलक में एमईएमएस अनुनादक यंत्र सम्मिलित होते हैं, जो माइक्रोइलेक्ट्रोमैकेनिकल संरचनाएं हैं और स्थिर आवृत्तियों को परिभाषित करती हैं। एमईएमएस घड़ी जनरेटर एमईएमएस समय उपकरण हैं जो प्रणाली के लिए कई आउटपुट होते हैं जिन्हें एक से अधिक संदर्भ आवृत्ति की आवश्यकता होती है। एमईएमएस दोलक पुराने, अधिक स्थापित क्वार्ट्ज [[क्रिस्टल ऑसिलेटर्स|क्रिस्टल दोलक]] के लिए एक वैध विकल्प हैं, जो कंपन और यांत्रिक झटके के विरुद्ध उन्नत लचीलापन प्रदान करते हैं, और तापमान भिन्नता के संबंध में विश्वसनीयता प्रदान करते हैं।
माइक्रोइलेक्ट्रोमैकेनिकल सिस्टम ऑसिलेटर्स (एमईएमएस ऑसिलेटर्स) ऐसे उपकरण हैं जो समय को मापने के लिए अत्यधिक स्थिर संदर्भ [[Index.php?title=आवृत्ति|आवृत्ति]] (इलेक्ट्रॉनिक प्रणाली को अनुक्रमित करने, [[डेटा स्थानांतरण]] का प्रबंधन करने, [[ आकाशवाणी आवृति ]] को परिभाषित करने और भूतकाल मापने के लिए उपयोग किया जाता है) उत्पन्न करते हैं। एमईएमएस ऑसिलेटर्स में उपयोग की जाने वाली मुख्य प्रौद्योगिकियां 1960 के दशक के मध्य से विकास में हैं, लेकिन 2006 से केवल व्यावसायिक अनुप्रयोगों के लिए पर्याप्त रूप से उन्नत हैं।<ref>{{Cite web |url=http://scme-nm.org/files/History%20of%20MEMS_Presentation.pdf |title=संग्रहीत प्रति|access-date=2016-05-07 |archive-date=2017-02-02 |archive-url=https://web.archive.org/web/20170202002100/http://scme-nm.org/files/History%20of%20MEMS_Presentation.pdf |url-status=dead }}</ref> एमईएमएस ऑसिलेटर्स में एमईएमएस [[ गुंजयमान यंत्र ]] सम्मिलित होते हैं, जो माइक्रोइलेक्ट्रोमैकेनिकल संरचनाएं हैं जो स्थिर आवृत्तियों को परिभाषित करती हैं। एमईएमएस घड़ी जनरेटर एमईएमएस समय उपकरणों हैं जिनके प्रणाली के लिए कई आउटपुट होते हैं जिन्हें एक से अधिक संदर्भ आवृत्ति की आवश्यकता होती है। एमईएमएस ऑसिलेटर्स पुराने, अधिक स्थापित क्वार्ट्ज [[क्रिस्टल ऑसिलेटर्स]] के लिए एक वैध विकल्प हैं, जो कंपन और यांत्रिक झटके के विरुद्ध उन्नत लचीलापन प्रदान करते हैं, और तापमान भिन्नता के संबंध में विश्वसनीयता प्रदान करते हैं।


== एमईएमएस टाइमिंग डिवाइस ==
== एमईएमएस टाइमिंग डिवाइस ==


=== गुंजयमान यंत्र ===
=== अनुनादक यंत्र ===
<!--Drawing showing MEMS resonator-->
<!--Drawing showing MEMS resonator-->
माइक्रोइलेक्ट्रोमैकेनिकल सिस्टम ऑसिलेटर लघु विद्युत यांत्रिक संरचनाएं हैं जो उच्च आवृत्तियों पर कंपन करते हैं। उनका उपयोग समय के संदर्भ, सिग्नल फ़िल्टरिंग, मास सेंसिंग, बायोलॉजिकल सेंसिंग, मोशन सेंसिंग और अन्य विविध अनुप्रयोगों के लिए किया जाता है। यह आलेख आवृत्ति और समय संदर्भों में उनके आवेदन से संबंधित है।
माइक्रोइलेक्ट्रोमैकेनिकल प्रणाली ऑसिलेटर लघु विद्युत यांत्रिक संरचनाएं हैं जो उच्च आवृत्तियों पर कंपन करते हैं। उनका उपयोग समय के संदर्भ, सिग्नल फ़िल्टरिंग, मास सेंसिंग, बायोलॉजिकल सेंसिंग, मोशन सेंसिंग और अन्य विविध अनुप्रयोगों के लिए किया जाता है। यह आलेख आवृत्ति और समय संदर्भों में उनके आवेदन से संबंधित है।


आवृत्ति और समय संदर्भों के लिए, एमईएमएस गुंजयमान यंत्र इलेक्ट्रॉनिक सर्किट से जुड़े होते हैं, जिन्हें प्रायः एम्पलीफायरों को बनाए रखने के लिए कहा जाता है, ताकि उन्हें निरंतर गति में चलाया जा सके। ज्यादातर मामलों में ये सर्किट रेज़ोनेटर के पास और उसी भौतिक पैकेज में स्थित होते हैं। गुंजयमान यंत्रों को चलाने के अलावा, ये सर्किट डाउनस्ट्रीम इलेक्ट्रॉनिक्स के लिए आउटपुट सिग्नल उत्पन्न करते हैं।
आवृत्ति और समय संदर्भों के लिए, एमईएमएस अनुनादक यंत्र इलेक्ट्रॉनिक सर्किट से जुड़े होते हैं, जिन्हें प्रायः एम्पलीफायरों को बनाए रखने के लिए कहा जाता है, ताकि उन्हें निरंतर गति में चलाया जा सके। ज्यादातर मामलों में ये सर्किट रेज़ोनेटर के पास और उसी भौतिक पैकेज में स्थित होते हैं। अनुनादक यंत्रों को चलाने के अलावा, ये सर्किट डाउनस्ट्रीम इलेक्ट्रॉनिक्स के लिए आउटपुट सिग्नल उत्पन्न करते हैं।


=== ऑसिलेटर्स ===
=== दोलक ===
{{unreferenced section|date=November 2011}}
<!--Drawing showing oscillator-->
<!--Drawing showing oscillator-->
अधिवेशन के अनुसार, ऑसिलेटर्स शब्द सामान्यत: एकीकृत सर्किट (आईसी) को दर्शाता है जो एकल आउटपुट आवृत्तियों की आपूर्ति करता है। एमईएमएस ऑसिलेटर्स में एमईएमएस अनुनादक, अनुरक्षण एम्प्स और अतिरिक्त इलेक्ट्रॉनिक्स सम्मिलित हैं जो उनके आउटपुट आवृत्तियों को सेट या समायोजित करते हैं। इन सर्किटों में प्रायः फेज़ लॉक्ड लूप (PLL) सम्मिलित होते हैं जो अपस्ट्रीम MEMS संदर्भ आवृत्तियों से चयन योग्य या प्रोग्राम करने योग्य आउटपुट आवृत्तियाँ उत्पन्न करते हैं।<ref>https://www.ittc.ku.edu/~jstiles/622/handouts/Oscillators%20A%20Brief%20History.pdf {{Bare URL PDF|date=March 2022}}</ref>
अधिवेशन के अनुसार, दोलक शब्द सामान्यत: एकीकृत सर्किट (आईसी) को दर्शाता है जो एकल आउटपुट आवृत्तियों की आपूर्ति करता है। एमईएमएस दोलक में एमईएमएस अनुनादक, अनुरक्षण एम्प्स और अतिरिक्त इलेक्ट्रॉनिक्स सम्मिलित हैं जो उनके आउटपुट आवृत्तियों को सेट या समायोजित करते हैं। इन सर्किटों में प्रायः फेज़ लॉक्ड लूप (PLL) सम्मिलित होते हैं जो अपस्ट्रीम एमईएमएस संदर्भ आवृत्तियों से चयन योग्य या प्रोग्राम करने योग्य आउटपुट आवृत्तियाँ उत्पन्न करते हैं।<ref>https://www.ittc.ku.edu/~jstiles/622/handouts/Oscillators%20A%20Brief%20History.pdf {{Bare URL PDF|date=March 2022}}</ref>


MEMS ऑसिलेटर सामान्यत: 4- या 6-पिन IC के रूप में उपलब्ध होते हैं जो [[ मुद्रित सर्किट बोर्ड | प्रिंटेड सर्किट बोर्ड]] (PCB) सोल्डर फुटप्रिंट्स के अनुरूप होते हैं जो पहले क्वार्ट्ज क्रिस्टल ऑसिलेटर्स के लिए मानकीकृत होते थे।
एमईएमएस ऑसिलेटर सामान्यत: 4- या 6- पिन IC के रूप में उपलब्ध होते हैं जो [[ मुद्रित सर्किट बोर्ड | प्रिंटेड सर्किट बोर्ड]] (PCB) सोल्डर फुटप्रिंट्स के अनुरूप होते हैं जो पहले क्वार्ट्ज क्रिस्टल दोलक के लिए मानकीकृत होते थे।


=== [[घड़ी]] जनरेटर ===
=== [[घड़ी]] जनरेटर ===
टर्म क्लॉक जनरेटर सामान्यत: कई आउटपुट के साथ एक समय आईसी को दर्शाता है। इस नियम के बाद, एमईएमएस [[घड़ी जनरेटर]] बहु-आउटपुट एमईएमएस टाइमिंग डिवाइस हैं। इनका उपयोग जटिल इलेक्ट्रॉनिक प्रणालियों में समय के संकेतों की आपूर्ति के लिए किया जाता है जिनके लिए कई आवृत्तियों या घड़ी चरणों की आवश्यकता होती है। उदाहरण के लिए, अधिकांश [[कंप्यूटर]] को प्रोसेसर टाइमिंग, डिस्क I/O, सीरियल I/O, वीडियो जेनरेशन, ईथरनेट I/O, ऑडियो रूपांतरण और अन्य कार्यों के लिए स्वतंत्र घड़ियों की आवश्यकता होती है।<ref>https://www.ece.cmu.edu/~ee100/docs/Chapter8.pdf {{Bare URL PDF|date=March 2022}}</ref>
टर्म क्लॉक जनरेटर सामान्यत: कई आउटपुट के साथ एक समय आईसी को दर्शाता है। इस नियम के बाद, एमईएमएस [[घड़ी जनरेटर]] बहु-आउटपुट एमईएमएस टाइमिंग डिवाइस हैं। इनका उपयोग जटिल इलेक्ट्रॉनिक प्रणालियों में समय के संकेतों की आपूर्ति के लिए किया जाता है जिनके लिए कई आवृत्तियों या घड़ी फेजों की आवश्यकता होती है। उदाहरण के लिए, अधिकांश [[कंप्यूटर]] को प्रोसेसर टाइमिंग, डिस्क I/O, सीरियल I/O, वीडियो जेनरेशन, ईथरनेट I/O, ऑडियो रूपांतरण और अन्य कार्यों के लिए स्वतंत्र घड़ियों की आवश्यकता होती है।<ref>https://www.ece.cmu.edu/~ee100/docs/Chapter8.pdf {{Bare URL PDF|date=March 2022}}</ref>


घड़ी जनरेटर सामान्यत: उन अनुप्रयोगों के लिए विशिष्ट होते हैं, जिसमें आवृत्तियों की संख्या और चयन, विभिन्न सहायक विशेषताएं और पैकेज कॉन्फ़िगरेशन सम्मिलित हैं। वे प्रायः कई आउटपुट आवृत्तियों या चरणों को उत्पन्न करने के लिए कई PLL सम्मिलित करते हैं।
घड़ी जनरेटर सामान्यत: उन अनुप्रयोगों के लिए विशिष्ट होते हैं, जिसमें आवृत्तियों की संख्या और चयन, विभिन्न सहायक विशेषताएं और पैकेज कॉन्फ़िगरेशन सम्मिलित हैं। वे प्रायः कई आउटपुट आवृत्तियों या फेजों को उत्पन्न करने के लिए कई PLL सम्मिलित करते हैं।


=== वास्तविक समय की घड़ियां ===
=== वास्तविक समय की घड़ियां ===
एमईएमएस [[वास्तविक समय की घड़ियाँ]] (आरटीसी) आईसी हैं जो दिन और दिनांक के समय को ट्रैक करते हैं। इनमें एमईएमएस गुंजयमान यंत्र, स्थायी एम्प्स और रजिस्टर सम्मिलित हैं जो समय के साथ बढ़ते हैं, उदाहरण के लिए दिन, घंटे, मिनट और सेकंड की गिनती। इनमें अलार्म आउटपुट और [[बैटरी (बिजली)|बैटरी]] प्रबंधन जैसे सहायक कार्य भी सम्मिलित हैं।
एमईएमएस [[वास्तविक समय की घड़ियाँ]] (आरटीसी) आईसी हैं जो दिन और दिनांक के समय को ट्रैक करते हैं। इनमें एमईएमएस अनुनादक यंत्र, स्थायी एम्प्स और रजिस्टर सम्मिलित हैं जो समय के साथ बढ़ते हैं, उदाहरण के लिए दिन, घंटे, मिनट और सेकंड की गिनती। इनमें अलार्म आउटपुट और [[बैटरी (बिजली)|बैटरी]] प्रबंधन जैसे सहायक कार्य भी सम्मिलित हैं।


भूतकाल का ट्रैक रखने के लिए आरटीसी को लगातार चलना चाहिए। ऐसा करने के लिए उन्हें कभी-कभी छोटी बैटरी से चलना चाहिए और बहुत कम बिजली के स्तर पर भी काम करना चाहिए। वे सामान्यतः पर मध्यम आकार के आईसी होते हैं जिनमें बिजली, बैटरी बैकअप, डिजिटल इंटरफ़ेस और कई अन्य कार्यों के लिए 20 पिन तक होते हैं।
गत समय का ट्रैक रखने के लिए आरटीसी को लगातार संचलन होना चाहिए। ऐसा करने के लिए आरटीसी को कभी-कभी लघुबैटरी द्वारा संचलन होना चाहिए और बहुत कम बिजली के स्तर पर भी आरटीसी का संचलन होना चाहिए। वे सामान्यतः मध्यम आकार के आईसी होते हैं जिनमें बिजली, बैटरी बैकअप, डिजिटल इंटरफ़ेस और कई अन्य कार्यों के लिए 20 पिन तक होते हैं।


== एमईएमएस टाइमिंग उपकरणों का इतिहास ==
== एमईएमएस टाइमिंग उपकरणों का इतिहास ==


=== पहला प्रदर्शन ===
=== पहला प्रदर्शन ===
[[क्वार्ट्ज]] क्रिस्टल ऑसिलेटर्स की कमियों से प्रेरित होकर, शोधकर्ता 1965 से एमईएमएस संरचनाओं के अनुनाद गुणों का विकास कर रहे हैं।<ref name="nathanson1965" /><ref name="nathanson1967" />हालांकि, हाल ही में सीलिंग, पैकेजिंग और गुंजयमान तत्वों को समायोजित करने से संबंधित विभिन्न सटीकता, स्थिरता और विनिर्माण क्षमता के मुद्दों ने लागत प्रभावी वाणिज्यिक निर्माण को रोका और पांच तकनीकी चुनौतियों को दूर करना पड़ा:
[[क्वार्ट्ज]] क्रिस्टल दोलक की कमियों से प्रेरित होकर, शोधकर्ता 1965 से एमईएमएस संरचनाओं के अनुनाद गुणों का विकास कर रहे हैं।<ref name="nathanson1965" /><ref name="nathanson1967" />हालांकि, हाल ही में सीलिंग, पैकेजिंग और अनुनादक तत्वों को समायोजित करने से संबंधित विभिन्न सटीकता, स्थिरता और विनिर्माण क्षमता के मुद्दों ने लागत प्रभावी वाणिज्यिक निर्माण में अवरोध उत्पन्न किया है,पांच तकनीकी चुनौतियों को दूर करना पड़ा:
* पहला प्रदर्शन
* पहला प्रदर्शन
* स्थिर और पूर्वानुमेय गुंजयमान सामग्री ढूँढना,
* स्थिर और पूर्वानुमेय अनुनादक सामग्री ढूँढना,
* पर्याप्त स्वच्छ भली भांति बंद पैकेजिंग प्रौद्योगिकियों का विकास करना,
* पर्याप्त स्वच्छ भली भांति बंद पैकेजिंग प्रौद्योगिकियों का विकास करना,
* उत्पादन आवृत्तियों को ट्रिम करना और क्षतिपूर्ति करना, अनुनादक तत्वों के गुणवत्ता कारक को बढ़ाना, और
* उत्पादन आवृत्तियों को ट्रिम करना और क्षतिपूर्ति करना, अनुनादक तत्वों के गुणवत्ता कारक को बढ़ाना, और
* विभिन्न एप्लिकेशन आवश्यकताओं को पूरा करने के लिए सिग्नल अखंडता में सुधार।
* विभिन्न एप्लिकेशन आवश्यकताओं को पूरा करने के लिए सिग्नल अखंडता में सुधार।


पहले एमईएमएस गुंजयमान यंत्र धात्विक गुंजयमान तत्वों के साथ बनाए गए थे।<ref name="nathanson1965" />इन गुंजयमान यंत्रों की कल्पना [[ऑडियो फिल्टर]] के रूप में की गई थी और इनमें 500 के मध्यम गुणवत्ता कारक (Qs) और 1 kHz से 100 kHz की आवृत्तियां थीं। फ़िल्टरिंग अनुप्रयोग, अब [[उच्च आवृत्ति]] रेडियो के लिए, अभी भी महत्वपूर्ण हैं और एमईएमएस अनुसंधान और [[पूंजीवाद]] के लिए एक सक्रिय क्षेत्र हैं।
पहले एमईएमएस अनुनादक यंत्र धात्विक अनुनादक तत्वों के साथ बनाए गए थे।<ref name="nathanson1965" /> इन अनुनादक यंत्रों की कल्पना [[ऑडियो फिल्टर]] के रूप में की गई थी और इनमें 500 के मध्यम गुणवत्ता कारक (Qs) और 1 kHz से 100 kHz की आवृत्तियां थीं।[[उच्च आवृत्ति]] रेडियो के लिए, फ़िल्टरिंग अनुप्रयोग,अभी भी महत्वपूर्ण हैं और एमईएमएस अनुसंधान और [[पूंजीवाद]] के लिए एक सक्रिय क्षेत्र हैं।


हालांकि, शुरुआती एमईएमएस गुंजयमान यंत्रों में समय संदर्भ या घड़ी पीढ़ी के लिए उपयोग की जाने वाली पर्याप्त स्थिर आवृत्तियां नहीं थीं। धात्विक गुंजयमान तत्व समय के साथ (वे वृद्ध) और उपयोग के साथ (वे थके हुए) आवृत्ति में बदलाव करते थे। तापमान भिन्नता के तहत वे बड़ी और पूरी तरह से अनुमानित आवृत्ति बदलाव नहीं करते थे (उनके पास बड़ी तापमान संवेदनशीलता थी) और जब वे तापमान चक्रित होते थे तो वे अलग-अलग आवृत्तियों पर लौटने के लिए प्रवृत्त होते थे (वे हिस्टेरेटिक थे)।
हालांकि, शुरुआती एमईएमएस अनुनादक यंत्रों में समय संदर्भ या घड़ी पीढ़ी के लिए उपयोग की जाने वाली पर्याप्त स्थिर आवृत्तियां नहीं थीं। धात्विक अनुनादक तत्व समय के साथ (जीर्ण थे) और उपयोग के साथ (श्रांत थे) आवृत्ति में बदलाव करते थे। तापमान भिन्नता के तहत वे दीर्घ और पूरी तरह से अनुमानित आवृत्ति बदलाव नहीं करते थे (उनके पास दीर्घ तापमान संवेदनशीलता था) और जब तापमान चक्रित होते थे तो वे भिन्न भिन्न आवृत्तियों पर लौटने के लिए प्रवृत्त होते थे (वे हिस्टेरेटिक थे)।


=== भौतिक विकास ===
=== भौतिक विकास ===
1970 के दशक<ref name="petersen1978" /><ref name="petersen1982" /><ref name="Fan, Tai, Muller1988" />से 1990 के दशक में काम के द्वारा<ref name="Nguyen, Howe1999" />पर्याप्त रूप से स्थिर गुंजयमान सामग्री और संबंधित निर्माण तकनीकों की पहचान किया गया। विशेष रूप से, एकल और पॉलीक्रिस्टलाइन सिलिकॉन प्रभावी रूप से जीरो एजिंग, श्रान्ति और हिस्टैरिसीस और मध्यम तापमान संवेदनशीलता के साथ आवृत्ति संदर्भों के लिए उपयुक्त पाया गया।<ref name="Koskenvuori, Mattila, Haara, Kiihamaki, Tittonen, Oja, Seppa2004" /><ref name="Wang, Xie, Nguyen2005" />
1970 के दशक<ref name="petersen1978" /><ref name="petersen1982" /><ref name="Fan, Tai, Muller1988" />से 1990 के दशक में काम के द्वारा<ref name="Nguyen, Howe1999" /> पर्याप्त रूप से स्थिर अनुनादक सामग्री और संबंधित निर्माण तकनीकों की पहचान किया गया। विशेष रूप से, एकल और पॉलीक्रिस्टलाइन सिलिकॉन प्रभावी रूप से जीरो एजिंग, श्रान्ति और हिस्टैरिसीस और मध्यम तापमान संवेदनशीलता के साथ आवृत्ति संदर्भों के लिए उपयुक्त पाया गया।<ref name="Koskenvuori, Mattila, Haara, Kiihamaki, Tittonen, Oja, Seppa2004" /><ref name="Wang, Xie, Nguyen2005" />
 
एमईएमएस गुंजयमान अनुसंधान में सामग्री का विकास अभी भी जारी है। इसके निम्न तापमान संविरचन के लिए के लिए सिलिकॉन-जर्मेनियम (SiGe) और इसके पीजोइलेक्ट्रिक ट्रांसडक्शन के लिए के लिए सिलिकॉन-जर्मेनियम (SiGe) और इसके पीजोइलेक्ट्रिक ट्रांसडक्शन के लिए [[Index.php?title=एल्यूमीनियम नाइट्राइड|एल्यूमीनियम नाइट्राइड]] (AlN)<ref name="Piazza, Stephanou, Porter, Wijesundara, Pisano2005" /> में महत्वपूर्ण प्रयास किए गए हैं।<ref name="Franke, Heck, King, Howe2003" />।माइक्रोमाचिन्ड क्वार्ट्ज पर काम जारी है,<ref name="Stratton, Chang, Kirby, Joyce, Hsu, Kubena, Yong2004" />जबकि पॉलीक्रिस्टलाइन हीरे का उपयोग इसकी असाधारण कठोरता-से-द्रव्यमान अनुपात के लिए उच्च आवृत्ति गुंजयमान यंत्रों के लिए किया गया है।<ref name="Wang, Butler, Feygelson, Nguyen2004" />
 


एमईएमएस अनुनादक अनुसंधान में सामग्री का विकास अभी भी जारी है। इसके निम्न तापमान संविरचन के लिए के लिए सिलिकॉन-जर्मेनियम (SiGe) और इसके पीजोइलेक्ट्रिक ट्रांसडक्शन के लिए [[Index.php?title=एल्यूमीनियम नाइट्राइड|एल्यूमीनियम नाइट्राइड]] (AlN)<ref name="Piazza, Stephanou, Porter, Wijesundara, Pisano2005" /> में महत्वपूर्ण प्रयास किए गए हैं।<ref name="Franke, Heck, King, Howe2003" />माइक्रोमाचिन्ड क्वार्ट्ज पर काम जारी है,<ref name="Stratton, Chang, Kirby, Joyce, Hsu, Kubena, Yong2004" />जबकि पॉलीक्रिस्टलाइन हीरे का उपयोग इसकी असाधारण कठोरता-से-द्रव्यमान अनुपात के लिए उच्च आवृत्ति अनुनादक यंत्रों के लिए किया गया है।<ref name="Wang, Butler, Feygelson, Nguyen2004" />
=== पैकेजिंग विकास ===
=== पैकेजिंग विकास ===
एमईएमएस गुंजयमान यंत्रों को गुहाओं की आवश्यकता होती है जिसमें वे स्वतंत्र रूप से स्थानांतरित हो सकते हैं, और आवृत्ति संदर्भों के लिए इन गुहाओं को खाली किया जाना चाहिए। प्रारंभिक गुंजयमान यंत्र सिलिकॉन वेफर्स के शीर्ष पर बनाए गए थे और निर्वात कक्षों में परीक्षण किए गए थे,<ref name="Nguyen, Howe1999" />लेकिन अलग-अलग गुंजयमान यंत्र इनकैप्सुलेशन की स्पष्ट रूप से आवश्यकता थी।
एमईएमएस अनुनादक यंत्रों को गुहाओं की आवश्यकता होती है जिसमें वे स्वतंत्र रूप से स्थानांतरित हो सकते हैं,और आवृत्ति संदर्भों के लिए इन गुहाओं को रिक्त किया जाना चाहिए। प्रारंभिक अनुनादक यंत्र सिलिकॉन वेफर्स के शीर्ष पर बनाए गए थे और निर्वात कक्षों में परीक्षण किए गए थे,<ref name="Nguyen, Howe1999" /> लेकिन भिन्न भिन्न अनुनादक यंत्र को इनकैप्सुलेशन की स्पष्ट रूप से आवश्यकता थी।


एमईएमएस समुदाय ने अन्य एमईएमएस घटकों, उदाहरण के लिए [[दबाव सेंसर]], [[ accelerometers ]], और [[जाइरोस्कोप]] को संलग्न करने के लिए बंधुआ कवर तकनीकों को नियोजित किया था और इन तकनीकों को अनुनादकों के लिए अनुकूलित किया गया था।<ref name="Esashi, Sugiyama, Ikeda, Wang, Miyashita1998" /><ref name="Lutz, Gerstenmeier, Maihofer, Mahler, Munzel, Bischof1997" />इस दृष्टिकोण में, कवर वेफर्स को छोटे गुहाओं के साथ माइक्रोमशीन किया गया था और गुंजयमान यंत्र वेफर्स से बंधे थे, छोटे खाली गुहाओं में गुंजयमान यंत्रों को घेरते थे। प्रारंभ में इन वेफर्स को कम पिघलने वाले तापमान वाले ग्लास से जोड़ा जाता था, जिसे [[ग्लास फ्रिट बॉन्डिंग]] कहा जाता है,<ref name="Sparks, Massoud-Ansari, Najafi2005" />लेकिन हाल ही में धात्विक संपीड़न और धात्विक अमलगम सहित अन्य संबंध तकनीकों ने ग्लास फ्रिट को बदल दिया है।<ref name="Cheng, Lin, Najafi1999" /><ref name="Tsau, Spearing, Schmidt2002" />
एमईएमएस समूह ने अन्य एमईएमएस घटकों, उदाहरण के लिए दाबानुकूलित संवेदक, अक्सेसेलोरेमेटेर, और जाइरोस्कोप को संलग्न करने के लिए बंधा हुआ कवर तकनीकों को नियोजित किया और इन तकनीकों को अनुनादकों के लिए अनुकूलित किया गया था।<ref name="Esashi, Sugiyama, Ikeda, Wang, Miyashita1998" /><ref name="Lutz, Gerstenmeier, Maihofer, Mahler, Munzel, Bischof1997" /> इस दृष्टिकोण में, वेफर्स कवर को छोटे गुहाओं के साथ माइक्रो मशीन किया गया था और अनुनादक यंत्र वेफर्स से बंधे थे, छोटे खाली गुहाओं में अनुनादक यंत्रों को घेरते थे। प्रारंभ में इन वेफर्स को कम पिघलने वाले तापमान वाले ग्लास से जोड़ा जाता था, जिसे ग्लास फ्रिट बॉन्डिंग कहा जाता है,<ref name="Sparks, Massoud-Ansari, Najafi2005" />लेकिन हाल ही में धात्विक संपीड़न और धात्विक अमलगम सहित अन्य संबंध तकनीकों ने ग्लास फ्रिट को बदल दिया है।<ref name="Cheng, Lin, Najafi1999" /><ref name="Tsau, Spearing, Schmidt2002" />


रेज़ोनेटर पर बॉन्डिंग कवर के बजाय निर्माण प्रक्रिया में रेज़ोनेटर पर सीधे कवर बनाकर संलग्न गुहाओं को बनाने के लिए पतली फिल्म एनकैप्सुलेशन तकनीक विकसित की गई थी।<ref name="Mastrangelo, Muller1989" /><ref name="Lebouitz, Mazaheri, Howe, Pisano1999" /><ref name="Partridge, Rice, Kenny, Lutz2001" /><ref name="Partridge2003" /><ref name="Park, Candler, Kronmueller, Lutz, Partridge, Yama, Kenny2003" /><ref name="Stark, Najafi2004" />इन तकनीकों का यह फायदा था कि वे सीलिंग संरचना के लिए ज्यादा मरने वाले क्षेत्र का उपयोग नहीं करते थे, उन्हें कवर बनाने के लिए दूसरे वेफर्स की तैयारी की आवश्यकता नहीं थी, और परिणामी डिवाइस वेफर्स पतले थे।
रेज़ोनेटर पर बॉन्डिंग कवर के बजाय निर्माण प्रक्रिया में रेज़ोनेटर पर सीधे कवर बनाकर संलग्न गुहाओं को बनाने के लिए पतली फिल्म एनकैप्सुलेशन तकनीक विकसित की गई थी।<ref name="Mastrangelo, Muller1989" /><ref name="Lebouitz, Mazaheri, Howe, Pisano1999" /><ref name="Partridge, Rice, Kenny, Lutz2001" /><ref name="Partridge2003" /><ref name="Park, Candler, Kronmueller, Lutz, Partridge, Yama, Kenny2003" /><ref name="Stark, Najafi2004" />इन तकनीकों का यह फायदा था कि वे सीलिंग संरचना के लिए ज्यादा मरने वाले क्षेत्र का उपयोग नहीं करते थे, उन्हें कवर बनाने के लिए दूसरे वेफर्स की तैयारी की आवश्यकता नहीं थी, और परिणामी डिवाइस वेफर्स पतले थे।


आवृत्ति संदर्भों में सामान्यत: पर 100 भागों प्रति मिलियन (पीपीएम) या उन्नत की आवृत्ति स्थिरता की आवश्यकता होती है। हालांकि, शुरुआती आवरण और एनकैप्सुलेशन तकनीकों ने गुहाओं में महत्वपूर्ण मात्रा में संदूषण छोड़ा। क्योंकि एमईएमएस गुंजयमान यंत्र छोटे होते हैं, और विशेष रूप से क्योंकि उनका आयतन-से-सतह क्षेत्र छोटा होता है, वे विशेष रूप से बड़े पैमाने पर लोडिंग के प्रति संवेदनशील होते हैं। यहां तक ​​कि पानी या हाइड्रोकार्बन जैसे प्रदूषकों की एकल-परमाणु परतें गुंजयमान यंत्र की आवृत्तियों को विनिर्देश से बाहर कर सकती हैं।<ref name="autogenerated1" /><ref name="Kim1999" />
आवृत्ति संदर्भों में सामान्यत: 100 भाग प्रति मिलियन (पीपीएम) या उन्नत की आवृत्ति स्थिरता की आवश्यकता होती है। हालांकि, शुरुआती आवरण और एनकैप्सुलेशन तकनीकों ने गुहाओं में महत्वपूर्ण मात्रा में दूषित पदार्थ छोड़ा। क्योंकि एमईएमएस अनुनादक यंत्र छोटे होते हैं, और विशेष रूप से उनका आयतन-सतह क्षेत्र से छोटा होता है, वे विशेष रूप से बड़े पैमाने पर लोडिंग के प्रति संवेदनशील होते हैं। यहां तक ​​कि पानी या हाइड्रोकार्बन जैसे प्रदूषकों की एकल-परमाणु परतें अनुनादक यंत्र की आवृत्तियों को विनिर्देश से बाहर कर सकती हैं।<ref name="autogenerated1" /><ref name="Kim1999" />
 
जब गुंजयमान यंत्र वृद्ध या तापमान चक्रित होते हैं, तो संदूषक कक्षों में स्थानांतरित हो सकते हैं, और गुंजयमान यंत्रों पर या उसके बाहर स्थानांतरित हो सकते हैं।<ref name="Koskenvuori, Mattila, Haara, Kiihamaki, Tittonen, Oja, Seppa2004" /><ref name="Kaajakari, Kiihamaki, Oja, Seppa, Pietikainen, Kokkala, Kuisma2005" />गुंजयमान यंत्रों पर द्रव्यमान में परिवर्तन हजारों पीपीएम के हिस्टैरिसीस का उत्पादन कर सकता है, जो वस्तुतः सभी आवृत्ति संदर्भ अनुप्रयोगों के लिए अस्वीकार्य है।


ग्लास फ्रिट सील के साथ शुरुआती कवर किए गए गुंजयमान यंत्र अस्थिर थे क्योंकि सीलिंग सामग्री से दूषित पदार्थ बाहर निकल गए थे। इसे दूर करने के लिए गुहाओं में [[ प्राप्त करनेवाला ]]्स बनाए गए थे। गेटर्स ऐसी सामग्रियां हैं जो गुहाओं को सील करने के बाद गैस और दूषित पदार्थों को अवशोषित कर सकती हैं। हालांकि, गेटर्स संदूषक भी छोड़ सकते हैं और महंगा हो सकता है, इसलिए क्लीनर कवर बॉन्डिंग प्रक्रियाओं के पक्ष में इस एप्लिकेशन में उनका उपयोग बंद किया जा रहा है।
जब अनुनादक यंत्र वृद्ध या तापमान चक्रित होते हैं, तो दूषित पदार्थ कक्षों में स्थानांतरित हो सकते हैं, और अनुनादक यंत्रों पर या उसके बाहर स्थानांतरित हो सकते हैं।<ref name="Koskenvuori, Mattila, Haara, Kiihamaki, Tittonen, Oja, Seppa2004" /><ref name="Kaajakari, Kiihamaki, Oja, Seppa, Pietikainen, Kokkala, Kuisma2005" />अनुनादक यंत्रों पर द्रव्यमान में परिवर्तन हजारों पीपीएम के हिस्टैरिसीस का उत्पादन कर सकता है, जो वस्तुतः सभी आवृत्ति संदर्भ अनुप्रयोगों के लिए अस्वीकार्य है।
 
इसी तरह, पतली फिल्म एनकैप्सुलेशन गुहाओं में फैब्रिकेशन बायप्रोडक्ट्स को फंसा सकती है। इसे खत्म करने के लिए एपिटैक्सियल सिलिकॉन जमाव पर आधारित एक उच्च तापमान पतली फिल्म एनकैप्सुलेशन विकसित की गई थी। यह एपिटैक्सियल सीलिंग (एपिसील) प्रक्रिया<ref name="Partridge, Lutz, Kronmueller2003" />असाधारण रूप से स्वच्छ पाया गया है और उच्चतम स्थिरता अनुनादक उत्पन्न करता है।<ref name="Partridge, Lutz, Kim, Hopcroft, Candler, Kenny, Peteresen, Esashi2005" /><ref name="Candler, Park, Hopcroft, Kim, Kenny2005" /><ref name="Candler, Hopcroft, Kim, Park, Melamud, Agarwal, Yama, Partridge, Lutz, Kenny2006" /><ref name="Kim, Candler, Hopcroft, Agarwal, Park, Kenny2007" /><ref name="Kim, Melamud, Candler, Hopcroft, Jha, Chandorkar, Kenny2010" />


ग्लास फ्रिट सील के साथ शुरुआती कवर किए गए अनुनादक यंत्र अस्थिर थे क्योंकि सीलिंग सामग्री से दूषित पदार्थ बाहर निकल गए थे। इसे दूर करने के लिए गुहाओं में  [[Index.php?title= गेटर्स|गेटर्स]] बनाए गए थे। गेटर्स ऐसी सामग्रियां हैं जो गुहाओं को सील करने के बाद गैस और दूषित पदार्थों को अवशोषित कर सकती हैं। हालांकि, गेटर्स दूषित पदार्थ भी छोड़ सकते हैं और महंगा हो सकता है, इसलिए क्लीनर कवर बॉन्डिंग प्रक्रियाओं के पक्ष में इस एप्लिकेशन में उनका उपयोग बंद किया जा रहा है।


इसी तरह, पतली फिल्म एनकैप्सुलेशन गुहाओं में फैब्रिकेशन बायप्रोडक्ट्स को फंसा सकती है। इसे खत्म करने के लिए एपिटैक्सियल सिलिकॉन जमाव पर आधारित एक उच्च तापमान पतली फिल्म एनकैप्सुलेशन विकसित की गई थी। यह एपिटैक्सियल सीलिंग (एपिसील) प्रक्रिया<ref name="Partridge, Lutz, Kronmueller2003" />असाधारण रूप से स्वच्छ पाया गया और उच्चतम स्थिरता अनुनादक उत्पन्न करता है।<ref name="Partridge, Lutz, Kim, Hopcroft, Candler, Kenny, Peteresen, Esashi2005" /><ref name="Candler, Park, Hopcroft, Kim, Kenny2005" /><ref name="Candler, Hopcroft, Kim, Park, Melamud, Agarwal, Yama, Partridge, Lutz, Kenny2006" /><ref name="Kim, Candler, Hopcroft, Agarwal, Park, Kenny2007" /><ref name="Kim, Melamud, Candler, Hopcroft, Jha, Chandorkar, Kenny2010" />
===इलेक्ट्रॉनिक आवृत्ति चयन और ट्रिमिंग ===
===इलेक्ट्रॉनिक आवृत्ति चयन और ट्रिमिंग ===
प्रारंभिक एमईएमएस गुंजयमान यंत्र विकास में, शोधकर्ताओं ने लक्षित अनुप्रयोग आवृत्तियों पर गुंजयमान यंत्र बनाने और तापमान पर उन आवृत्तियों को बनाए रखने की कोशिश की। इस समस्या को हल करने के दृष्टिकोण में एमईएमएस गुंजयमान यंत्रों को क्वार्ट्ज क्रिस्टल के लिए उपयोग किए जाने वाले तरीकों के अनुरूप ट्रिमिंग और तापमान सम्मिलित थे।<ref name="Abdelmoneum, Demirci, Lin, Nguyen2004" /><ref name="Huang, MacDonald, Hsu2004" /><ref name="Hsu, Nguyen,2002" />
प्रारंभिक एमईएमएस अनुनादक यंत्र विकास में, शोधकर्ताओं ने लक्षित अनुप्रयोग आवृत्तियों पर अनुनादक यंत्र बनाने और तापमान पर उन आवृत्तियों को बनाए रखने की कोशिश की। इस समस्या को हल करने के दृष्टिकोण में एमईएमएस अनुनादक यंत्रों को क्वार्ट्ज क्रिस्टल के लिए उपयोग किए जाने वाले तरीकों के अनुरूप ट्रिमिंग और तापमान सम्मिलित थे।<ref name="Abdelmoneum, Demirci, Lin, Nguyen2004" /><ref name="Huang, MacDonald, Hsu2004" /><ref name="Hsu, Nguyen,2002" />


हालाँकि, ये तकनीकें तकनीकी रूप से सीमित और महंगी पाई गईं। एक अधिक प्रभावी समाधान इलेक्ट्रॉनिक रूप से गुंजयमान यंत्रों की आवृत्तियों को ऑसिलेटर्स की आउटपुट आवृत्तियों में स्थानांतरित करना था।<ref name="Partridge, Lutz2004" /><ref name="Hsu, Brown, Cioffi2006" />इसका यह फायदा था कि गुंजयमान यंत्रों को व्यक्तिगत रूप से छंटनी करने की आवश्यकता नहीं थी; इसके बजाय उनकी आवृत्तियों को मापा जा सकता है और ऑसीलेटर आईसी में उचित स्केलिंग गुणांक दर्ज किए जा सकते हैं। इसके अलावा, गुंजयमान यंत्रों के तापमान को इलेक्ट्रॉनिक रूप से मापा जा सकता है, और तापमान पर गुंजयमान यंत्रों की आवृत्ति भिन्नता की भरपाई के लिए आवृत्ति स्केलिंग को समायोजित किया जा सकता है।
हालाँकि, ये तकनीकें तकनीकी रूप से सीमित और महंगी पाई गईं। एक अधिक प्रभावी समाधान इलेक्ट्रॉनिक रूप से अनुनादक यंत्रों की आवृत्तियों को दोलक की आउटपुट आवृत्तियों में स्थानांतरित करना था।<ref name="Partridge, Lutz2004" /><ref name="Hsu, Brown, Cioffi2006" />इसका यह फायदा था कि अनुनादक यंत्रों को व्यक्तिगत रूप से छंटनी करने की आवश्यकता नहीं थी; इसके बजाय उनकी आवृत्तियों को मापा जा सकता है और ऑसीलेटर आईसी में उचित स्केलिंग गुणांक दर्ज किए जा सकते हैं। इसके अलावा, अनुनादक यंत्रों के तापमान को इलेक्ट्रॉनिक रूप से मापा जा सकता है, और तापमान पर अनुनादक यंत्रों की आवृत्ति भिन्नता की भरपाई के लिए आवृत्ति स्केलिंग को समायोजित किया जा सकता है।


=== सिग्नल अखंडता में सुधार ===
=== सिग्नल अखंडता में सुधार ===
विभिन्न अनुप्रयोगों के लिए पूर्वनिर्धारित सिग्नल और प्रदर्शन विशिष्टताओं वाली घड़ियों की आवश्यकता होती है। इनमें से, प्रमुख विनिर्देश चरण शोर और आवृत्ति स्थिरता हैं।
विभिन्न अनुप्रयोगों के लिए पूर्व निर्धारित सिग्नल और प्रदर्शन विशिष्टताओं वाली घड़ियों की आवश्यकता होती है। इनमें से, प्रमुख विनिर्देश फेज शोर और आवृत्ति स्थिरता हैं।


गुंजयमान यंत्र की प्राकृतिक आवृत्तियों (एफ) और गुणवत्ता कारकों (क्यू) को बढ़ाकर चरण शोर को अनुकूलित किया गया है। क्यू निर्दिष्ट करता है कि ड्राइव बंद होने के बाद अनुनादक कितनी देर तक बजते रहते हैं, या समकक्ष रूप से फ़िल्टर के रूप में देखे जाने पर उनके पास-बैंड कितने संकीर्ण होते हैं। विशेष रूप से, क्यू गुना एफ, या क्यूएफ उत्पाद, निकट-वाहक चरण शोर को निर्धारित करता है।<ref name="Leeson1966" />प्रारंभिक एमईएमएस गुंजयमान यंत्रों ने संदर्भ के लिए अस्वीकार्य रूप से कम क्यूएफ उत्पाद दिखाए। महत्वपूर्ण सैद्धांतिक कार्य ने अंतर्निहित भौतिकी को स्पष्ट किया<ref name="Duwel, Candler, Kenny, Varhese20061989" /><ref name="Candler, Duwel, Varghese, Chandorkar, Hopcroft, Park, Kim, Yama, Partridge, Lutz, Kenny2006" />जबकि प्रायोगिक कार्य ने उच्च Qf गुंजयमान यंत्र विकसित किए।<ref name="Wang, Ren, Nguyen2004" />वर्तमान में उपलब्ध एमईएमएस क्यूएफ प्रदर्शन वस्तुतः सभी अनुप्रयोगों के लिए उपयुक्त है।
अनुनादक यंत्र की प्राकृतिक आवृत्तियों (F) और गुणवत्ता कारकों (Q) को बढ़ाकर फेज शोर को अनुकूलित किया गया है। Q निर्दिष्ट करता है कि ड्राइव बंद होने के बाद अनुनादक कितनी देर तक बजते रहते हैं, या समकक्ष रूप से फ़िल्टर के रूप में देखे जाने पर उनके पास-बैंड कितने संकीर्ण होते हैं। विशेष रूप से, Q गुना F, या Q F उत्पाद, निकट-वाहक फेज शोर को निर्धारित करता है।<ref name="Leeson1966" />प्रारंभिक एमईएमएस अनुनादक यंत्रों ने संदर्भ के लिए अस्वीकार्य रूप से कम QF उत्पाद दिखाए। महत्वपूर्ण सैद्धांतिक कार्य ने अंतर्निहित भौतिकी को स्पष्ट किया<ref name="Duwel, Candler, Kenny, Varhese20061989" /><ref name="Candler, Duwel, Varghese, Chandorkar, Hopcroft, Park, Kim, Yama, Partridge, Lutz, Kenny2006" />जबकि प्रायोगिक कार्य ने उच्च Qf अनुनादक यंत्र विकसित किए।<ref name="Wang, Ren, Nguyen2004" />वर्तमान में उपलब्ध एमईएमएस QF प्रदर्शन वस्तुतः सभी अनुप्रयोगों के लिए उपयुक्त है।


गुंजयमान यंत्र संरचनात्मक डिजाइन, विशेष रूप से मोड नियंत्रण में,<ref name="Brennen, Pisano, Tang1990" />एंकरिंग के तरीके,<ref name="Wang, Butler, Feygelson, Nguyen2004" /><ref name="Tang, Nguyen, Howe1989" />संकीर्ण अंतर ट्रांसड्यूसर,<ref name="Pourkamali, Hao, Ayazi2004" />रैखिकता,<ref name="Kaajakari, Koskinen, Mattila2005" />और सरणी संरचनाएं<ref name="Lee, Nguyen2004" />महत्वपूर्ण शोध प्रयासों का उपभोग किया।
अनुनादक यंत्र संरचनात्मक डिजाइन, विशेष रूप से मोड नियंत्रण में,<ref name="Brennen, Pisano, Tang1990" />एंकरिंग के तरीके,<ref name="Wang, Butler, Feygelson, Nguyen2004" /><ref name="Tang, Nguyen, Howe1989" />संकीर्ण अंतर ट्रांसड्यूसर,<ref name="Pourkamali, Hao, Ayazi2004" />रैखिकता,<ref name="Kaajakari, Koskinen, Mattila2005" />और सरणी संरचनाएं<ref name="Lee, Nguyen2004" />महत्वपूर्ण शोध प्रयासों का उपभोग किया।


आवश्यक आवृत्ति सटीकता प्रोसेसर क्लॉकिंग के लिए अपेक्षाकृत ढीली होती है, सामान्यत: पर 50 से 100 पीपीएम, उच्च गति डेटा क्लॉकिंग के लिए सटीक होती है, प्रायः 2.5 पीपीएम और नीचे। अनुसंधान ने प्रदर्शित किया कि एमईएमएस गुंजयमान यंत्र और ऑसिलेटर इन स्तरों के भीतर अच्छी तरह से बनाए जा सकते हैं।<ref name="Melamud, Chandorkar, Kim, Lee, Salvia, Bahl2009" /><ref name="Savalia, Melamud, Chandorkar, lord, Kenny2010" />वाणिज्यिक उत्पाद अब 0.5 पीपीएम पर उपलब्ध हैं,<ref>{{cite web|url=http://www.sitime.com/news/press-releases/299-sitime-introduces-industrys-first-mems-vctcxo-with-p05-ppm-stability |title=SiTime Introduces Industry's First MEMS VCTCXO with ±0.5 PPM Stability |publisher=Sitime.com |date=2011-07-11 |accessdate=2011-11-10}}</ref> जो अधिकांश आवेदन आवश्यकताओं को कवर करता है।
सामान्यत: 50 से 100 पीपीएम पर आवश्यक आवृत्ति सटीकता प्रोसेसर क्लॉकिंग के लिए अपेक्षाकृत ढीली होती है, प्रायः 2.5 पीपीएम और नीचे पर उच्च गति डेटा क्लॉकिंग के लिए सटीक होती है। अनुसंधान ने प्रदर्शित किया कि एमईएमएस अनुनादक यंत्र और ऑसिलेटर इन स्तरों के भीतर अच्छी तरह से बनाए जा सकते हैं।<ref name="Melamud, Chandorkar, Kim, Lee, Salvia, Bahl2009" /><ref name="Savalia, Melamud, Chandorkar, lord, Kenny2010" />वाणिज्यिक उत्पाद अब 0.5 पीपीएम पर उपलब्ध हैं,<ref>{{cite web|url=http://www.sitime.com/news/press-releases/299-sitime-introduces-industrys-first-mems-vctcxo-with-p05-ppm-stability |title=SiTime Introduces Industry's First MEMS VCTCXO with ±0.5 PPM Stability |publisher=Sitime.com |date=2011-07-11 |accessdate=2011-11-10}}</ref> जो अधिकांश आवेदन आवश्यकताओं को कवर करता है।


अंत में, आवृत्ति नियंत्रण इलेक्ट्रॉनिक्स और संबंधित समर्थन सर्किट्री को विकसित और अनुकूलित करने की आवश्यकता है। प्रमुख क्षेत्र तापमान सेंसर में थे<ref name="Pertijs, Makinwa, Huijsing2005" />और पीएलएल डिजाइन।<ref name="Perrott, Pamarti, Hoffman, Lee, Mukherjee, Lee, Tainker, Perumal, Soto, Arumugam, Garlepp2010" />हाल के सर्किट विकास ने उच्च गति सीरियल अनुप्रयोगों के लिए उपयुक्त एमईएमएस ऑसिलेटर्स का उत्पादन किया है<ref name="Tabatabaeo, Partridge2010" />सब-पिकोसेकंड इंटीग्रेटेड जिटर के साथ।<ref name="Lee, Salvia, Lee, Mukherjee, Melamud, Arumugam, Pamarti, Arft, Gupta, Tabatabaei, Garlepp, Lee, Partridge, Perrott, Assaderaghi2011" />
अंत में, आवृत्ति नियंत्रण इलेक्ट्रॉनिक्स और संबंधित समर्थन सर्किट्री को विकसित और अनुकूलित करने की आवश्यकता है। प्रमुख क्षेत्र तापमान संवेदक में थे<ref name="Pertijs, Makinwa, Huijsing2005" />और पीएलएल डिजाइन।<ref name="Perrott, Pamarti, Hoffman, Lee, Mukherjee, Lee, Tainker, Perumal, Soto, Arumugam, Garlepp2010" />हाल के सर्किट विकास ने उच्च गति सीरियल अनुप्रयोगों के लिए सब-पिकोसेकंड इंटीग्रेटेड जिटर के साथ उपयुक्त एमईएमएस दोलक का उत्पादन किया है<ref name="Tabatabaeo, Partridge2010" /><ref name="Lee, Salvia, Lee, Mukherjee, Melamud, Arumugam, Pamarti, Arft, Gupta, Tabatabaei, Garlepp, Lee, Partridge, Perrott, Assaderaghi2011" />




=== व्यावसायीकरण ===
=== व्यावसायीकरण ===
यूएस डिफेंस एडवांस्ड रिसर्च प्रोजेक्ट्स एजेंसी (डीएआरपीए) ने एमईएमएस अनुसंधान की एक विस्तृत श्रृंखला को वित्तपोषित किया जो ऊपर वर्णित विकास के लिए आधार प्रौद्योगिकियां प्रदान करता है। 2001 और 2002 में [[DARPA]] ने विशेष रूप से MEMS उच्च स्थिरता गुंजयमान यंत्र और पैकेजिंग प्रौद्योगिकियों को विकसित करने के लिए नैनो मैकेनिकल एरे सिग्नल प्रोसेसर (NMASP) और कठोर पर्यावरण रोबस्ट माइक्रोमैकेनिकल टेक्नोलॉजी (HERMIT) प्रोग्राम लॉन्च किए। यह कार्य फलदायी था और प्रौद्योगिकी को उस स्तर तक उन्नत किया जिस पर उद्यम पूंजी से वित्त पोषित स्टार्टअप वाणिज्यिक उत्पाद विकसित कर सकते थे। इन स्टार्टअप्स में डिस्केरा भी सम्मिलित है<ref>{{cite web|url=http://discera.com/ |title=CMOS उत्पादों के लिए CMOS समय|publisher=Discera |date= |accessdate=2011-11-10}}</ref> 2001 में, [[SiTime]] 2004 में, सिलिकॉन क्लॉक 2006 में, और हार्मोनिक डिवाइसेस 2006 में।{{citation needed|date=June 2022}}
यूएस डिफेंस एडवांस्ड रिसर्च प्रोजेक्ट्स एजेंसी (डीएआरपीए) ने एमईएमएस अनुसंधान की एक विस्तृत श्रृंखला को वित्तपोषित किया जो ऊपर वर्णित विकास के लिए आधार प्रौद्योगिकियां प्रदान करता है। 2001 और 2002 में [[DARPA]] ने विशेष रूप से एमईएमएस उच्च स्थिरता अनुनादक यंत्र और पैकेजिंग प्रौद्योगिकियों को विकसित करने के लिए नैनो मैकेनिकल एरे सिग्नल प्रोसेसर (NMASP) और कठोर पर्यावरण रोबस्ट माइक्रोमैकेनिकल टेक्नोलॉजी (HERMIT) प्रोग्राम लॉन्च किए। यह कार्य फलदायी था और प्रौद्योगिकी को उस स्तर तक उन्नत किया जिस पर उद्यम पूंजी से वित्त पोषित स्टार्टअप वाणिज्यिक उत्पाद विकसित कर सकते थे। इन स्टार्टअप्स में डिस्केरा <ref>{{cite web|url=http://discera.com/ |title=CMOS उत्पादों के लिए CMOS समय|publisher=Discera |date= |accessdate=2011-11-10}}</ref> 2001 में,[[SiTime]] 2004 में, सिलिकॉन क्लॉक 2006 में और हार्मोनिक डिवाइसेस 2006 में भी सम्मिलित है।{{citation needed|date=June 2022}}


SiTime ने 2006 में पहला उत्पादन MEMS थरथरानवाला पेश किया, इसके बाद 2007 में डिस्केरा। हार्मोनिक डिवाइसेस ने सेंसर उत्पादों पर अपना ध्यान केंद्रित किया और 2010 में क्वालकॉम द्वारा खरीदा गया। सिलिकॉन क्लॉक्स ने कभी भी वाणिज्यिक उत्पादों को पेश नहीं किया और 2010 में सिलिकॉन लैब्स द्वारा खरीदा गया। सैंड 9 सहित एमईएमएस ऑसिलेटर्स का उत्पादन करने के अपने इरादे की घोषणा की<ref>{{cite web|url=http://www.sand9.com/ |title=Sand 9 |publisher=Sand 9 |date= |accessdate=2011-11-10 |url-status=dead|archiveurl=https://web.archive.org/web/20111104193402/http://www.sand9.com/ |archivedate=November 4, 2011 }}</ref> और वीटीआई टेक्नोलॉजीज।<ref>{{cite web|url=http://www.vti.fi/ |title=VTI &#124; High accuracy motion sensors |publisher=Vti.fi |date= |accessdate=2011-11-10 |url-status=dead|archiveurl=https://web.archive.org/web/20111030003355/http://www.vti.fi/ |archivedate=October 30, 2011 }}</ref>
SiTime ने 2006 में पहला उत्पादन एमईएमएस दोलक समक्ष किया, इसके बाद 2007 में डिस्केरा समक्ष किया। हार्मोनिक डिवाइसेस ने संवेदक उत्पादों पर अपना ध्यान केंद्रित किया और 2010 में क्वालकॉम द्वारा खरीदा गया। सिलिकॉन क्लॉक्स ने कभी भी वाणिज्यिक उत्पादों को समक्ष नहीं किया और 2010 में सिलिकॉन लैब्स द्वारा खरीदा गया। सैंड 9 और वीटीआई टेक्नोलॉजीज सहित एमईएमएस दोलक का उत्पादन करने के अपने इरादे की घोषणा की<ref>{{cite web|url=http://www.sand9.com/ |title=Sand 9 |publisher=Sand 9 |date= |accessdate=2011-11-10 |url-status=dead|archiveurl=https://web.archive.org/web/20111104193402/http://www.sand9.com/ |archivedate=November 4, 2011 }}</ref> <ref>{{cite web|url=http://www.vti.fi/ |title=VTI &#124; High accuracy motion sensors |publisher=Vti.fi |date= |accessdate=2011-11-10 |url-status=dead|archiveurl=https://web.archive.org/web/20111030003355/http://www.vti.fi/ |archivedate=October 30, 2011 }}</ref>
बिक्री की मात्रा के अनुसार, एमईएमएस ऑसिलेटर आपूर्तिकर्ता SiTime और Discera के रूप में अवरोही क्रम में रैंक करते हैं। कई क्वार्ट्ज ऑसिलेटर आपूर्तिकर्ता एमईएमएस ऑसिलेटर्स को फिर से बेचते हैं। सीटाइम ने घोषणा की कि उसने 2011 के मध्य तक संचयी रूप से 50 मिलियन यूनिट भेज दिया है।<ref>{{cite web|url=http://www.sitime.com/news/press-releases/291-sitime-ships-50-million-units-of-its-mems-based-oscillators-clock-generators-and-resonators |title=SiTime Ships 50 Million Units of its MEMS-based Oscillators, Clock Generators and Resonators |publisher=Sitime.com |date=2011-06-06 |accessdate=2011-11-10}}</ref> दूसरों ने बिक्री की मात्रा का खुलासा नहीं किया है।
 
बिक्री की मात्रा के अनुसार, एमईएमएस ऑसिलेटर आपूर्तिकर्ता SiTime और Discera के रूप में अवरोही क्रम में रैंक करते हैं। कई क्वार्ट्ज ऑसिलेटर आपूर्तिकर्ता एमईएमएस दोलक को फिर से बेचते हैं। सीटाइम ने घोषणा की कि उसने 2011 के मध्य तक संचयी रूप से 50 मिलियन यूनिट भेज दिया है।<ref>{{cite web|url=http://www.sitime.com/news/press-releases/291-sitime-ships-50-million-units-of-its-mems-based-oscillators-clock-generators-and-resonators |title=SiTime Ships 50 Million Units of its MEMS-based Oscillators, Clock Generators and Resonators |publisher=Sitime.com |date=2011-06-06 |accessdate=2011-11-10}}</ref> दूसरों ने बिक्री की मात्रा का खुलासा नहीं किया है।


== ऑपरेशन ==
== ऑपरेशन ==
एमईएमएस गुंजयमान यंत्रों को छोटी घंटियों के रूप में सोच सकते हैं जो उच्च आवृत्तियों पर बजती हैं। बड़ी घंटियों की तुलना में छोटी घंटियाँ उच्च आवृत्तियों पर बजती हैं, और चूंकि एमईएमएस गुंजयमान यंत्र छोटे होते हैं इसलिए वे उच्च आवृत्तियों पर बज सकते हैं। सामान्य घंटियाँ मीटर नीचे से लेकर सेंटीमीटर तक होती हैं और सैकड़ों [[ हेटर्स ]]से [[किलोहर्ट्ज]]पर बजती हैं; एमईएमएस गुंजयमान यंत्र एक मिलीमीटर के दसवें हिस्से में होते हैं और दसियों किलोहर्ट्ज़ से लेकर सैकड़ों मेगाहर्ट्ज़ तक बजते हैं। एमईएमएस गुंजयमान यंत्रों ने [[गीगाहर्ट्ज़]] से अधिक पर काम किया है।<ref name="Nguyen2007" />
एमईएमएस अनुनादक यंत्रों को लघु घंटियों के रूप में सोच सकते हैं जो उच्च आवृत्तियों पर बजती हैं। दीर्घ घंटियों की तुलना में लघु घंटियाँ उच्च आवृत्तियों पर बजती हैं, और चूंकि एमईएमएस अनुनादक यंत्र छोटे होते हैं इसलिए वे उच्च आवृत्तियों पर बज सकते हैं। सामान्य घंटियाँ मीटर से लेकर सेंटीमीटर तक होती हैं और सैकड़ों [[Index.php?title=हर्ट्ज|हेटर्स]] से [[किलोहर्ट्ज]] पर बजती हैं; एमईएमएस अनुनादक यंत्र एक मिलीमीटर के दसवें हिस्से में होते हैं और दसियों किलोहर्ट्ज़ से लेकर सैकड़ों मेगाहर्ट्ज़ तक बजते हैं। एमईएमएस अनुनादक यंत्रों ने [[गीगाहर्ट्ज़]] से अधिक पर काम किया है।<ref name="Nguyen2007" />


सामान्य घंटियाँ यांत्रिक रूप से बजाई जाती हैं, जबकि एमईएमएस गुंजयमान यंत्र विद्युत चालित होते हैं। एमईएमएस गुंजयमान यंत्र बनाने के लिए उपयोग की जाने वाली दो आधार प्रौद्योगिकियां हैं जो यांत्रिक गति से विद्युत ड्राइव और अर्थ संकेतों को ट्रांसड्यूस करने के तरीके में भिन्न होती हैं। ये [[इलेक्ट्रोस्टैटिक]] और [[ piezoelectric ]] हैं। सभी वाणिज्यिक एमईएमएस ऑसिलेटर इलेक्ट्रोस्टैटिक ट्रांसडक्शन का उपयोग करते हैं जबकि एमईएमएस फिल्टर पीजोइलेक्ट्रिक ट्रांसडक्शन का उपयोग करते हैं। पीजोइलेक्ट्रिक अनुनादकों ने आवृत्ति संदर्भ अनुप्रयोगों के लिए पर्याप्त आवृत्ति स्थिरता या गुणवत्ता कारक (क्यू) नहीं दिखाया है।
सामान्य घंटियाँ यांत्रिक रूप से बजाई जाती हैं, जबकि एमईएमएस अनुनादक यंत्र विद्युत चालित होते हैं। एमईएमएस अनुनादक यंत्र बनाने के लिए उपयोग की जाने वाली दो आधार प्रौद्योगिकियां हैं जो यांत्रिक गति से विद्युत ड्राइव और अर्थ संकेतों को ट्रांसड्यूस करने के तरीके में भिन्न होती हैं। ये [[इलेक्ट्रोस्टैटिक]] और [[ piezoelectric | पेज़ोएलेक्ट्रिक]] हैं। सभी वाणिज्यिक एमईएमएस ऑसिलेटर इलेक्ट्रोस्टैटिक ट्रांसडक्शन का उपयोग करते हैं जबकि एमईएमएस फिल्टर पीजोइलेक्ट्रिक ट्रांसडक्शन का उपयोग करते हैं। पीजोइलेक्ट्रिक अनुनादकों ने आवृत्ति संदर्भ अनुप्रयोगों के लिए पर्याप्त आवृत्ति स्थिरता या गुणवत्ता कारक (Q) नहीं दिखाया है।


इलेक्ट्रॉनिक अनुरक्षण एम्प्स गुंजयमान यंत्रों को निरंतर दोलन में चलाते हैं। ये एम्पलीफायर गुंजयमान गति का पता लगाते हैं और अनुनादकों में अतिरिक्त ऊर्जा चलाते हैं। वे उचित आयामों पर अनुनादक गति को बनाए रखने और कम शोर आउटपुट घड़ी संकेतों को निकालने के लिए सावधानीपूर्वक डिज़ाइन किए गए हैं।
इलेक्ट्रॉनिक अनुरक्षण एम्प्स अनुनादक यंत्रों को निरंतर दोलन में चलाते हैं। ये एम्पलीफायर अनुनादक गति का पता लगाते हैं और अनुनादकों में अतिरिक्त ऊर्जा देते हैं। वे उचित आयामों पर अनुनादक गति को बनाए रखने और कम शोर आउटपुट घड़ी संकेतों को निकालने के लिए सावधानीपूर्वक डिज़ाइन किए गए हैं।


अतिरिक्त सर्किट जिन्हें फ्रैक्शनल-एन फेज लॉक लूप्स (frac-N PLLs) कहा जाता है, गुंजयमान यंत्र की यांत्रिक आवृत्तियों को ऑसिलेटर की आउटपुट आवृत्तियों से गुणा करते हैं।<ref name="Partridge, Lutz2004" /><ref name="Hsu, Brown, Cioffi2006" /><ref name="Perrott, Pamarti, Hoffman, Lee, Mukherjee, Lee, Tainker, Perumal, Soto, Arumugam, Garlepp2010" /><ref name="Lee, Salvia, Lee, Mukherjee, Melamud, Arumugam, Pamarti, Arft, Gupta, Tabatabaei, Garlepp, Lee, Partridge, Perrott, Assaderaghi2011" />ये अत्यधिक विशिष्ट PLL डिजिटल राज्य मशीनों के नियंत्रण में आउटपुट फ़्रीक्वेंसी सेट करते हैं। राज्य मशीनों को अंशांकन और गैर-वाष्पशील मेमोरी में संग्रहीत प्रोग्राम डेटा द्वारा नियंत्रित किया जाता है और तापमान भिन्नता की भरपाई के लिए PLL कॉन्फ़िगरेशन को समायोजित करता है।
अतिरिक्त सर्किट जिन्हें फ्रैक्शनल-एन फेज लॉक लूप्स (frac-N PLLs) कहा जाता है, अनुनादक यंत्र की यांत्रिक आवृत्तियों को ऑसिलेटर की आउटपुट आवृत्तियों से गुणा करते हैं।<ref name="Partridge, Lutz2004" /><ref name="Hsu, Brown, Cioffi2006" /><ref name="Perrott, Pamarti, Hoffman, Lee, Mukherjee, Lee, Tainker, Perumal, Soto, Arumugam, Garlepp2010" /><ref name="Lee, Salvia, Lee, Mukherjee, Melamud, Arumugam, Pamarti, Arft, Gupta, Tabatabaei, Garlepp, Lee, Partridge, Perrott, Assaderaghi2011" />ये अत्यधिक विशिष्ट PLL डिजिटल राज्य मशीनों के नियंत्रण में आउटपुट फ़्रीक्वेंसी सेट करते हैं। स्थिति मशीनों को अंशांकन और गैर-वाष्पशील मेमोरी में संग्रहीत प्रोग्राम डेटा द्वारा नियंत्रित किया जाता है और तापमान भिन्नता की भरपाई के लिए PLL कॉन्फ़िगरेशन को समायोजित करता है।


अतिरिक्त उपयोगकर्ता कार्यों को प्रदान करने के लिए राज्य मशीनों का भी निर्माण किया जा सकता है, उदाहरण के लिए [[स्प्रेड-स्पेक्ट्रम क्लॉकिंग]] और वोल्टेज नियंत्रित आवृत्ति ट्रिमिंग।
अतिरिक्त उपयोगकर्ता कार्यों को प्रदान करने के लिए स्थिति मशीनों का भी निर्माण किया जा सकता है, उदाहरण के लिए [[स्प्रेड-स्पेक्ट्रम क्लॉकिंग]] और वोल्टेज नियंत्रित आवृत्ति ट्रिमिंग।


<!--Block diagram showing SiTime's MEMS Oscillator-->
<!--Block diagram showing SiTime's MEMS Oscillator-->
एमईएमएस घड़ी जनरेटर एमईएमएस ऑसिलेटर्स के साथ उनके मूल में बनाए गए हैं और अतिरिक्त आउटपुट की आपूर्ति के लिए अतिरिक्त सर्किट्री सम्मिलित हैं। यह अतिरिक्त सर्किट्री सामान्यत: पर अनुप्रयोगों द्वारा आवश्यक विशिष्ट सुविधाएं प्रदान करने के लिए डिज़ाइन की जाती है।
एमईएमएस घड़ी जनरेटर एमईएमएस दोलक के साथ उनके मूल में बनाए गए हैं और अतिरिक्त आउटपुट की आपूर्ति के लिए अतिरिक्त सर्किट्री सम्मिलित हैं। यह अतिरिक्त सर्किट्री सामान्यत: अनुप्रयोगों द्वारा आवश्यक विशिष्ट सुविधाएं प्रदान करने के लिए डिज़ाइन की जाती है।


एमईएमएस आरटीसी ऑसिलेटर की तरह काम करते हैं लेकिन कम बिजली की खपत के लिए अनुकूलित होते हैं और इसमें दिनांक और समय को ट्रैक करने के लिए सहायक सर्किट सम्मिलित होते हैं। कम शक्ति पर काम करने के लिए वे कम आवृत्ति वाले एमईएमएस गुंजयमान यंत्रों के साथ निर्मित होते हैं। आवश्यक समय सटीकता प्रदान करते हुए बिजली की खपत को कम करने के लिए सर्किट डिजाइन में देखभाल की जाती है।
एमईएमएस आरटीसी ऑसिलेटर की तरह काम करते हैं लेकिन कम बिजली की खपत के लिए अनुकूलित होते हैं और इसमें दिनांक और समय को ट्रैक करने के लिए सहायक सर्किट सम्मिलित होते हैं। कम शक्ति पर काम करने के लिए वे कम आवृत्ति वाले एमईएमएस अनुनादक यंत्रों के साथ निर्मित होते हैं। आवश्यक समय सटीकता प्रदान करते हुए बिजली की खपत को कम करने के लिए सर्किट डिजाइन में देखभाल की जाती है।


== निर्माण ==
== निर्माण ==


=== गुंजयमान यंत्र ===
=== अनुनादक यंत्र ===
गुंजयमान यंत्र के प्रकार के आधार पर, निर्माण प्रक्रिया या तो एक विशेष एमईएमएस फैब या [[सीएमओएस]] फाउंड्री में की जाती है।
अनुनादक यंत्र के प्रकार के आधार पर, निर्माण प्रक्रिया या तो एक विशेष एमईएमएस फैब या [[सीएमओएस]] फाउंड्री में की जाती है।


निर्माण प्रक्रिया गुंजयमान यंत्र और इनकैप्सुलेशन डिज़ाइन के साथ भिन्न होती है, लेकिन सामान्य तौर पर गुंजयमान संरचनाएं [[लिथोग्राफिक रूप से प्रतिरूपित]] होती हैं और सिलिकॉन वेफर्स में या पर [[प्लाज्मा-नक़्क़ाशीदार]] होती हैं। सभी वाणिज्यिक एमईएमएस ऑसिलेटर पॉली या सिंगल क्रिस्टल सिलिकॉन से बने होते हैं।
निर्माण प्रक्रिया अनुनादक यंत्र और इनकैप्सुलेशन डिज़ाइन के साथ भिन्न होती है, लेकिन सामान्य तौर पर अनुनादक संरचनाएं [[लिथोग्राफिक रूप से प्रतिरूपित]] होती हैं और सिलिकॉन वेफर्स या पर [[प्लाज्मा-नक़्क़ाशीदार]] में होते हैं। सभी वाणिज्यिक एमईएमएस ऑसिलेटर पॉली या सिंगल क्रिस्टल सिलिकॉन से बने होते हैं।


संकीर्ण और अच्छी तरह से नियंत्रित ड्राइव और सेंस कैपेसिटर गैप बनाने के लिए इलेक्ट्रोस्टैटिक रूप से ट्रांसड्यूस्ड रेज़ोनेटर में यह महत्वपूर्ण है। ये या तो पार्श्व हो सकते हैं उदाहरण के लिए गुंजयमान यंत्र के तहत, या गुंजयमान यंत्र के बगल में लंबवत। प्रत्येक विकल्प के अपने फायदे हैं{{elucidate|date=May 2013}} और दोनों का व्यावसायिक उपयोग किया जाता है।
संकीर्ण और अच्छी तरह से नियंत्रित ड्राइव और सेंस कैपेसिटर गैप बनाने के लिए इलेक्ट्रोस्टैटिक रूप से ट्रांसड्यूस्ड रेज़ोनेटर में यह महत्वपूर्ण है।ये या तो अनुनादक के तहत उदाहरण के लिए पार्श्व हो सकते हैं, या अनुनादक यंत्र के बगल में लंबवत हो सकते हैं। प्रत्येक विकल्प के अपने फायदे हैं{{elucidate|date=May 2013}} और दोनों का व्यावसायिक उपयोग किया जाता है।


रेज़ोनेटर या तो रेज़ोनेटर वेफ़र्स पर कवर वेफ़र्स को जोड़कर या रेज़ोनेटर पर पतली फ़िल्म इनकैप्सुलेशन परतों को जमा करके समझाया जाता है। यहाँ फिर से, दोनों विधियों का व्यावसायिक उपयोग किया जाता है।
रेज़ोनेटर या तो रेज़ोनेटर वेफ़र्स पर कवर वेफ़र्स को जोड़कर या रेज़ोनेटर पर पतली फ़िल्म इनकैप्सुलेशन परतों को जमा करके समझाया जाता है। यहाँ फिर से, दोनों विधियों का व्यावसायिक उपयोग किया जाता है।


बंधुआ कवर वेफर्स को चिपकने वाला जोड़ा जाना चाहिए। दो विकल्पों का उपयोग किया जाता है, एक ग्लास फ्रिट बॉन्ड रिंग या एक मैटेलिक बॉन्ड रिंग। ग्लास फ्रिट बहुत अधिक संदूषण उत्पन्न करने के लिए पाया गया है, और इस प्रकार बहता है, और अब इसका सामान्यत: पर उपयोग नहीं किया जाता है।<ref name="Hsu2008" />
बंधा हुआ वेफर्स कवर को गोंद से जोड़ा जाना चाहिए। दो विकल्पों का उपयोग किया जाता है, एक ग्लास फ्रिट बॉन्ड रिंग या एक मैटेलिक बॉन्ड रिंग। ग्लास फ्रिट सामान्यत: उपयोग नहीं किया जाता है क्युकी इसमें बहुत अधिक दूषित पदार्थ उत्पन्न करना पाया गया और उसमे संचय भी है <ref name="Hsu2008" />


पतली फिल्म एनकैप्सुलेशन के लिए रेज़ोनेटर की संरचना ऑक्साइड और सिलिकॉन की परतों से ढकी होती है, फिर फ्रीस्टैंडिंग रेज़ोनेटर बनाने के लिए आसपास के ऑक्साइड को हटाकर जारी किया जाता है, और अंत में एक अतिरिक्त जमाव के साथ सील कर दिया जाता है।<ref name="Partridge, Lutz, Kim, Hopcroft, Candler, Kenny, Peteresen, Esashi2005" />
पतली फिल्म एनकैप्सुलेशन के लिए रेज़ोनेटर की संरचना ऑक्साइड और सिलिकॉन की परतों से ढकी होती है, फिर फ्री स्टैंडिंग रेज़ोनेटर बनाने के लिए आसपास के ऑक्साइड को हटाकर जारी किया जाता है, और अंत में एक अतिरिक्त जमाव के साथ सील कर दिया जाता है।<ref name="Partridge, Lutz, Kim, Hopcroft, Candler, Kenny, Peteresen, Esashi2005" />




=== सर्किट्री ===
=== सर्किट्री ===
निरंतर एम्प्स, [[चरण बंद लूप]] और सहायक सर्किट सीएमओएस फाउंड्री में निर्मित मानक मिश्रित-सिग्नल सीएमओएस प्रक्रियाओं के साथ बनाए गए हैं।
सीएमओएस फाउंड्री में गढ़ी गई मानक मिश्रित-सिग्नल सीएमओएस प्रक्रियाओं के साथ बनाए रखने वाले एएमपीएस, पीएलएल और सहायक सर्किट बनाए जाते हैं।


एक ही आईसी डाई पर सीएमओएस सर्किट के साथ एकीकृत एमईएमएस ऑसिलेटर्स का प्रदर्शन किया गया है<ref name="Nguyen, Howe1999" /><ref name="Lutz, Partridge, Gupta, Buchan, Klaassen, Peteresen, McDonald, Petersen2007" />लेकिन आज तक यह सजातीय एकीकरण व्यावसायिक रूप से व्यवहार्य नहीं है। इसके बजाय, एमईएमएस गुंजयमान यंत्र और सीएमओएस सर्किटरी को अलग-अलग डाई पर बनाना और उन्हें पैकेजिंग चरण में संयोजित करना फायदेमंद है। इस तरह से एक ही पैकेज में कई डाई को मिलाने को विषम एकीकरण या केवल डाई स्टैकिंग कहा जाता है।
एक ही आईसी डाई पर सीएमओएस सर्किट के साथ एकीकृत एमईएमएस दोलक का प्रदर्शन किया गया है<ref name="Nguyen, Howe1999" /><ref name="Lutz, Partridge, Gupta, Buchan, Klaassen, Peteresen, McDonald, Petersen2007" />लेकिन आज तक यह सजातीय एकीकरण व्यावसायिक रूप से व्यवहार्य में  नहीं है। इसके स्थान पर एमईएमएस अनुनादक यंत्र और सीएमओएस सर्किटरी को भिन्न भिन्न डाई पर बनाना और उन्हें पैकेजिंग फेज में संयोजित करना फायदेमंद है। इस तरह से एक ही पैकेज में कई डाई को मिलाने को विषम एकीकरण या केवल डाई स्टैकिंग कहा जाता है।


=== पैकेजिंग ===
=== पैकेजिंग ===
{{Main|integrated circuit packaging}}
<!--Schematic of a MEMS Resonator mounted on a CMOS driver IC, molded in a plastic chip package-->
<!--Schematic of a MEMS Resonator mounted on a CMOS driver IC, molded in a plastic chip package-->
पूर्ण किए गए एमईएमएस उपकरण, छोटे चिप-स्तर के [[निर्वात कक्ष]]ों में संलग्न होते हैं, उनके [[वेफर (इलेक्ट्रॉनिक्स)]] से काटे जाते हैं, और अनुनादक डाई को सीएमओएस डाई पर रखा जाता है और ऑसिलेटर बनाने के लिए प्लास्टिक पैकेज में ढाला जाता है।
पूर्ण किए गए एमईएमएस उपकरण, छोटे चिप-स्तरीय [[निर्वात कक्ष]]में संलग्न, उनको [[वेफर (इलेक्ट्रॉनिक्स)]] से काटे जाते हैं, अनुनादक डाई को सीएमओएस डाई पर रखा जाता है और ऑसिलेटर बनाने के लिए प्लास्टिक पैकेज में ढाला जाता है।


एमईएमएस ऑसिलेटरों को उन्हीं कारखानों में और उन्हीं उपकरणों और सामग्रियों के साथ पैक किया जाता है जिनका उपयोग मानक आईसी पैकेजिंग के लिए किया जाता है। क्वार्ट्ज ऑसिलेटर्स की तुलना में उनकी लागत-प्रभावशीलता और विश्वसनीयता में यह एक महत्वपूर्ण योगदान है, जो कस्टम-निर्मित कारखानों में विशेष सिरेमिक पैकेज के साथ इकट्ठे होते हैं।
एमईएमएस ऑसिलेटरों को उन्हीं कारखानों में और उन्हीं उपकरणों और सामग्रियों के साथ पैक किया जाता है जिनका उपयोग मानक आईसी पैकेजिंग के लिए किया जाता है। क्वार्ट्ज दोलक की तुलना में इनकी लागत-प्रभावशीलता और विश्वसनीयता में एक महत्वपूर्ण योगदान है, जो कस्टम-निर्मित कारखानों में विशेष सिरेमिक पैकेज के साथ एकत्रित होते हैं।


पैकेज आयाम और पैड आकार मानक क्वार्ट्ज ऑसिलेटर पैकेज से मेल खाते हैं इसलिए एमईएमएस ऑसिलेटर्स को बोर्ड संशोधन या फिर से डिजाइन की आवश्यकता के बिना क्वार्ट्ज के लिए डिज़ाइन किए गए पीसीबी पर सीधे टांका लगाया जा सकता है।
पैकेज आयाम और पैड आकार मानक क्वार्ट्ज ऑसिलेटर पैकेज से तालमेल  हैं इसलिए एमईएमएस दोलक को बोर्ड संशोधन या फिर से डिजाइन की आवश्यकता के बिना क्वार्ट्ज के लिए डिज़ाइन किए गए पीसीबी पर सीधे सीवन लगाया जा सकता है।


=== परीक्षण और अंशांकन ===
=== परीक्षण और अंशांकन ===
उत्पादन परीक्षण एमईएमएस गुंजयमान यंत्रों और सीएमओएस आईसी की जांच और अंशांकन करते हैं ताकि यह सत्यापित किया जा सके कि वे विनिर्देशों के अनुसार प्रदर्शन कर रहे हैं और उनकी आवृत्तियों को कम कर रहे हैं। इसके अलावा, कई एमईएमएस ऑसिलेटर्स में प्रोग्राम करने योग्य आउटपुट फ़्रीक्वेंसी होती हैं जिन्हें परीक्षण के समय कॉन्फ़िगर किया जा सकता है। बेशक विभिन्न प्रकार के ऑसिलेटर्स को विशेष सीएमओएस और एमईएमएस डाई से कॉन्फ़िगर किया गया है। उदाहरण के लिए, कम शक्ति और उच्च प्रदर्शन वाले ऑसिलेटर्स एक ही डाई के साथ नहीं बनाए जाते हैं। इसके अलावा, उच्च परिशुद्धता ऑसिलेटरों को प्रायः कम सटीक ऑसिलेटर्स की तुलना में अधिक सावधानीपूर्वक अंशांकन की आवश्यकता होती है।
उत्पादन परीक्षण एमईएमएस अनुनादक यंत्रों और सीएमओएस आईसी की जांच और अंशांकन करते हैं जिससे यह सत्यापित किया जा सके कि वे विनिर्देशों के अनुसार प्रदर्शन कर रहे हैं और उनकी आवृत्तियों को कम कर रहे हैं। इसके अलावा, कई एमईएमएस दोलक में प्रोग्राम करने योग्य आउटपुट फ़्रीक्वेंसी होती हैं जिन्हें परीक्षण के समय कॉन्फ़िगर किया जा सकता है। निःसंदेह विभिन्न प्रकार के दोलक को विशेष सीएमओएस और एमईएमएस डाई से कॉन्फ़िगर किया गया है। उदाहरण के लिए, कम शक्ति और उच्च प्रदर्शन वाले दोलक एक ही डाई के साथ नहीं बनाए जाते हैं। इसके अलावा, उच्च परिशुद्धता ऑसिलेटरों को प्रायः कम सटीक दोलक की तुलना में अधिक सावधानीपूर्वक अंशांकन की आवश्यकता होती है।


एमईएमएस ऑसिलेटरों का मानक आईसी की तरह ही परीक्षण किया जाता है। पैकेजिंग की तरह, यह मानक आईसी कारखानों में मानक आईसी परीक्षण उपकरण के साथ किया जाता है।
एमईएमएस ऑसिलेटरों का मानक आईसी की तरह ही परीक्षण किया जाता है। पैकेजिंग की तरह, यह मानक आईसी कारखानों में मानक आईसी परीक्षण उपकरण के साथ किया जाता है।


मानक आईसी पैकेजिंग और परीक्षण सुविधाओं (आईसी उद्योग में सबकॉन्स कहा जाता है) का उपयोग करना एमईएमएस ऑसिलेटर्स उत्पादन मापनीयता देता है।<ref name="Tang, Nguyen, Howe1989" />ये सुविधाएं बड़ी मात्रा में उत्पादन करने में सक्षम हैं, प्रायः प्रति दिन करोड़ों आईसी। यह क्षमता कई आईसी कंपनियों में साझा की जाती है, इसलिए विशिष्ट आईसी के उत्पादन की मात्रा में वृद्धि, या इस मामले में विशिष्ट एमईएमएस ऑसीलेटर, मानक उत्पादन उपकरण आवंटित करने का एक कार्य है। इसके विपरीत, क्वार्ट्ज ऑसिलेटर कारखाने प्रकृति में एकल-फ़ंक्शन हैं, ताकि रैंपिंग उत्पादन के लिए कस्टम उपकरण स्थापित करने की आवश्यकता हो, जो मानक उपकरण आवंटित करने की तुलना में अधिक महंगा और समय लेने वाला है।
मानक आईसी पैकेजिंग और परीक्षण सुविधाओं (आईसी उद्योग में सबकॉन्स कहा जाता है) का उपयोग करना एमईएमएस दोलक उत्पादन मापनीयता देता है।<ref name="Tang, Nguyen, Howe1989" />प्रति दिन करोड़ों आईसी सुविधाएं दीर्घ  मात्रा में उत्पादन करने में सक्षम हैं। यह क्षमता कई आईसी कंपनियों द्वारा साझा की जाती है, इसलिए विशिष्ट आईसी के उत्पादन की मात्रा में वृद्धि, या इस मामले में विशिष्ट एमईएमएस ऑसीलेटर, मानक उत्पादन उपकरण आवंटित करने का एक कार्य है। इसके विपरीत, क्वार्ट्ज ऑसिलेटर कारखाने प्रकृति में एकल-फ़ंक्शन हैं, ताकि रैंपिंग उत्पादन के लिए कस्टम उपकरण स्थापित करने की आवश्यकता हो, जो मानक उपकरण आवंटित करने की तुलना में अधिक महंगा और समय लेने वाला होता है।


== एमईएमएस और क्वार्ट्ज ऑसिलेटर्स की तुलना ==
== एमईएमएस और क्वार्ट्ज दोलक की तुलना ==
{{unreferenced section|date=November 2011}}
एमईएमएस दोलक की तुलना में क्वार्ट्ज दोलक बहुत अधिक मात्रा में बेचे जाते हैं, और इलेक्ट्रॉनिक्स इंजीनियरों द्वारा व्यापक रूप से उपयोग और समझे जाते हैं। इसलिए, क्वार्ट्ज दोलक आधार रेखा प्रदान करते हैं जिससे एमईएमएस दोलक की तुलना की जाती है।<ref>Lam, C. S. "A review of the recent development of MEMS and crystal oscillators and their impacts on the frequency control products industry." Ultrasonics Symposium, 2008. IUS 2008. IEEE. IEEE, 2008.</ref>


एमईएमएस ऑसिलेटर्स की तुलना में क्वार्ट्ज ऑसिलेटर्स बहुत अधिक मात्रा में बेचे जाते हैं, और इलेक्ट्रॉनिक्स इंजीनियरों द्वारा व्यापक रूप से उपयोग और समझे जाते हैं। इसलिए, क्वार्ट्ज ऑसिलेटर्स आधार रेखा प्रदान करते हैं जिससे एमईएमएस ऑसिलेटर्स की तुलना की जाती है।<ref>Lam, C. S. "A review of the recent development of MEMS and crystal oscillators and their impacts on the frequency control products industry." Ultrasonics Symposium, 2008. IUS 2008. IEEE. IEEE, 2008.</ref>
हाल के अग्रिमों ने एमईएमएस-आधारित समय उपकरणों को क्वार्ट्ज उपकरणों के समान प्रदर्शन स्तर और कभी-कभी उन्नत प्रदान करने में सक्षम बनाया है। फेज शोर द्वारा मापी गई एमईएमएस ऑसिलेटर सिग्नल गुणवत्ता अब अधिकांश अनुप्रयोगों के लिए पर्याप्त है। 10 मेगाहर्ट्ज से 10 kHz पर -150 dBc का फेज शोर अब उपलब्ध है, एक स्तर जो सामान्यतः  केवल रेडियो फ्रीक्वेंसी (RF) अनुप्रयोगों के लिए आवश्यक होता है। एमईएमएस दोलक अब 1.0 पिकोसेकंड के तहत एकीकृत जिटर के साथ उपलब्ध हैं, जिसे 12 kHz से 20 MHz तक मापा जाता है, एक ऐसे स्तर पर जो सामान्य रूप से उच्च गति वाले सीरियल डेटा लिंक, जैसे SONET और SyncE, और कुछ इंस्ट्रूमेंटेशन अनुप्रयोगों के लिए आवश्यक होता है।
हाल के अग्रिमों ने एमईएमएस-आधारित समय उपकरणों को क्वार्ट्ज उपकरणों के समान प्रदर्शन स्तर और कभी-कभी उन्नत प्रदान करने में सक्षम बनाया है। चरण शोर द्वारा मापी गई एमईएमएस ऑसिलेटर सिग्नल गुणवत्ता अब अधिकांश अनुप्रयोगों के लिए पर्याप्त है। 10 मेगाहर्ट्ज से 10 kHz पर -150 dBc का चरण शोर अब उपलब्ध है, एक स्तर जो आम तौर पर केवल रेडियो फ्रीक्वेंसी (RF) अनुप्रयोगों के लिए आवश्यक होता है। MEMS ऑसिलेटर्स अब 1.0 पिकोसेकंड के तहत एकीकृत जिटर के साथ उपलब्ध हैं, जिसे 12 kHz से 20 MHz तक मापा जाता है, एक ऐसा स्तर जो सामान्य रूप से उच्च गति वाले सीरियल डेटा लिंक, जैसे SONET और SyncE, और कुछ इंस्ट्रूमेंटेशन अनुप्रयोगों के लिए आवश्यक होता है।


लघु अवधि की स्थिरता, स्टार्टअप समय और बिजली की खपत, क्वार्ट्ज के समान हैं।{{Citation needed|date=December 2011}} कुछ मामलों में, एमईएमएस ऑसिलेटर क्वार्ट्ज की तुलना में कम बिजली की खपत दिखाते हैं।
लघु अवधि की स्थिरता, स्टार्टअप समय और बिजली की खपत, क्वार्ट्ज के समान हैं। कुछ मामलों में, एमईएमएस ऑसिलेटर क्वार्ट्ज की तुलना में कम बिजली की खपत दिखाते हैं।


उच्च परिशुद्धता एमईएमएस तापमान-मुआवजा ऑसिलेटर्स (टीसीएक्सओ) को हाल ही में तापमान पर ± 0.1 पीपीएम आवृत्ति स्थिरता के साथ घोषित किया गया है।<ref>Meisam H. Roshan, "Dual-MEMS-Resonator Temperature-to-Digital Converter with 40μK resolution and FOM of 0.12pJK<sup>2</sup>", ISSCC 2016</ref> यह बहुत उच्च अंत क्वार्ट्ज TCXOs और ओवन-नियंत्रित ऑसिलेटर्स (OCXOs) को छोड़कर सभी के प्रदर्शन से अधिक है।{{Citation needed|date=December 2011}}. एमईएमएस टीसीएक्सओ अब 100 मेगाहर्ट्ज से अधिक आउटपुट फ्रीक्वेंसी के साथ उपलब्ध हैं, एक ऐसी क्षमता जो केवल कुछ विशेष क्वार्ट्ज ऑसिलेटर्स (जैसे, इनवर्टेड मेसा) प्रदान कर सकते हैं।{{Citation needed|date=January 2012}}
उच्च परिशुद्धता एमईएमएस तापमान- आपूर्ति दोलक (टीसीएक्सओ) को हाल ही में तापमान पर ± 0.1 पीपीएम आवृत्ति स्थिरता के साथ घोषित किया गया है।<ref>Meisam H. Roshan, "Dual-MEMS-Resonator Temperature-to-Digital Converter with 40μK resolution and FOM of 0.12pJK<sup>2</sup>", ISSCC 2016</ref> यह बहुत उच्च अंत क्वार्ट्ज TCXOs और ओवन-नियंत्रित दोलक (OCXOs) को छोड़कर सभी के प्रदर्शन से अधिक है।. एमईएमएस टीसीएक्सओ अब 100 मेगाहर्ट्ज से अधिक आउटपुट फ्रीक्वेंसी के साथ उपलब्ध हैं, एक ऐसी क्षमता जो केवल कुछ विशेष क्वार्ट्ज दोलक (जैसे, इनवर्टेड मेसा) प्रदान कर सकते हैं।


आरटीसी अनुप्रयोगों में एमईएमएस ऑसीलेटर तापमान और सोल्डर-डाउन शिफ्ट पर आवृत्ति स्थिरता के मामले में सर्वश्रेष्ठ क्वार्ट्ज ट्यूनिंग फोर्क से थोड़ा उन्नत प्रदर्शन कर रहे हैं, जबकि क्वार्ट्ज अभी भी सबसे कम बिजली अनुप्रयोगों के लिए उन्नत है।
आरटीसी अनुप्रयोगों में एमईएमएस ऑसीलेटर तापमान और सोल्डर-डाउन शिफ्ट पर आवृत्ति स्थिरता के मामले में सर्वश्रेष्ठ क्वार्ट्ज ट्यूनिंग फोर्क से थोड़ा उन्नत प्रदर्शन कर रहे हैं, जबकिसबसे कम बिजली अनुप्रयोगों के लिए क्वार्ट्ज अभी भी  उन्नत है।


उपयोगकर्ताओं को आवश्यक विभिन्न प्रकार के विनिर्देशों के लिए क्वार्ट्ज ऑसिलेटर्स का निर्माण और स्टॉक करना मुश्किल है।{{Citation needed|date=January 2012}} विभिन्न अनुप्रयोगों के लिए विशिष्ट आवृत्तियों, सटीकता स्तरों, सिग्नल गुणवत्ता स्तरों, पैकेज आकारों, आपूर्ति वोल्टेज और विशेष सुविधाओं वाले ऑसिलेटर्स की आवश्यकता होती है। इनके संयोजन से भाग संख्याओं का प्रसार होता है जो स्टॉकिंग को अव्यावहारिक बनाता है और लंबे समय तक उत्पादन का नेतृत्व कर सकता है।{{Citation needed|date=January 2012}}
उपयोगकर्ताओं को आवश्यक विभिन्न प्रकार के विनिर्देशों के लिए क्वार्ट्ज दोलक का निर्माण और स्टॉक करना मुश्किल है। विभिन्न अनुप्रयोगों के लिए विशिष्ट आवृत्तियों, सटीकता स्तरों, सिग्नल गुणवत्ता स्तरों, पैकेज आकारों, आपूर्ति वोल्टेज और विशेष सुविधाओं वाले दोलक की आवश्यकता होती है। इनके संयोजन से भाग संख्याओं का प्रसार होता है जो स्टॉकिंग को अव्यावहारिक बनाता है और लंबे समय तक उत्पादन का नेतृत्व कर सकता है।


एमईएमएस थरथरानवाला आपूर्तिकर्ता सर्किट प्रौद्योगिकी का लाभ उठाकर विविधता की समस्या का समाधान करते हैं। जबकि क्वार्ट्ज ऑसिलेटर्स सामान्यत: पर वांछित आउटपुट आवृत्तियों पर संचालित क्वार्ट्ज क्रिस्टल के साथ बनाए जाते हैं{{Citation needed|date=January 2012}}, एमईएमएस ऑसिलेटर सामान्यत: पर रेज़ोनेटर को एक आवृत्ति पर चलाते हैं और इसे डिज़ाइन किए गए आउटपुट फ़्रीक्वेंसी से गुणा करते हैं। इस तरह, एमईएमएस गुंजयमान यंत्र या सर्किट को फिर से डिजाइन किए बिना सैकड़ों मानक अनुप्रयोग आवृत्तियों और सामयिक कस्टम आवृत्ति प्रदान की जा सकती है।
एमईएमएस दोलक आपूर्तिकर्ता सर्किट प्रौद्योगिकी का लाभ उठाकर विविधता की समस्या का समाधान करते हैं। जबकि क्वार्ट्ज दोलक सामान्यत: वांछित आउटपुट आवृत्तियों पर संचालित क्वार्ट्ज क्रिस्टल के साथ बनाए जाते हैं{{Citation needed|date=January 2012}}, एमईएमएस ऑसिलेटर सामान्यत: रेज़ोनेटर को एक आवृत्ति पर चलाते हैं और इसे डिज़ाइन किए गए आउटपुट फ़्रीक्वेंसी से गुणा करते हैं। इस तरह, एमईएमएस अनुनादक यंत्र या सर्किट को फिर से डिजाइन किए बिना सैकड़ों मानक अनुप्रयोग आवृत्तियों और सामयिक कस्टम आवृत्ति प्रदान की जा सकती है।


बेशक, भागों की विभिन्न श्रेणियों के लिए आवश्यक गुंजयमान यंत्र, सर्किट या अंशांकन में अंतर हैं, लेकिन इन श्रेणियों के भीतर आवृत्ति अनुवाद मापदंडों को प्रायः उत्पादन प्रक्रिया में देर से एमईएमएस ऑसिलेटर में प्रोग्राम किया जा सकता है। क्योंकि घटकों को प्रक्रिया में देर तक विभेदित नहीं किया जाता है, इसलिए लीड समय कम हो सकता है, सामान्यत: पर कुछ सप्ताह। तकनीकी रूप से, क्वार्ट्ज ऑसिलेटर्स को सर्किट-केंद्रित प्रोग्रामेबल आर्किटेक्चर के साथ बनाया जा सकता है, जैसे कि एमईएमएस में उपयोग किया जाता है, लेकिन ऐतिहासिक रूप से केवल अल्पसंख्यक ही इस तरह से बनाए गए हैं।
निःसंदेह, भागों की विभिन्न श्रेणियों के लिए आवश्यक अनुनादक यंत्र, सर्किट या अंशांकन में अंतर हैं, लेकिन इन श्रेणियों के भीतर आवृत्ति अनुवाद मापदंडों को प्रायः उत्पादन प्रक्रिया में देर से एमईएमएस ऑसिलेटर में प्रोग्राम किया जा सकता है। क्योंकि घटकों को प्रक्रिया में देर तक विभेदित नहीं किया जाता है, इसलिए लीड समय कुछ सप्ताह कम के लिए हो सकता है तकनीकी रूप से, क्वार्ट्ज दोलक को सर्किट-केंद्रित प्रोग्रामेबल आर्किटेक्चर के साथ बनाया जा सकता है, जैसे कि एमईएमएस में उपयोग किया जाता है, लेकिन ऐतिहासिक रूप से केवल अल्पसंख्यक ही इस तरह से बनाए गए हैं।


एमईएमएस ऑसिलेटर भी सदमे और कंपन के लिए काफी प्रतिरोधी हैं और उन्होंने क्वार्ट्ज से जुड़े उत्पादन की गुणवत्ता के स्तर को उच्च दिखाया है।{{Citation needed|date=January 2012}}
एमईएमएस ऑसिलेटर भी आघात और कंपन के लिए काफी प्रतिरोधी हैं और उन्होंने क्वार्ट्ज से जुड़े उत्पादन की गुणवत्ता के स्तर को उच्च दिखाया है।


क्वार्ट्ज ऑसिलेटर विशिष्ट अनुप्रयोगों में सुरक्षित हैं जहां उपयुक्त एमईएमएस ऑसिलेटर पेश नहीं किए गए हैं। उन अनुप्रयोगों में से एक, उदाहरण के लिए, सेल फोन हैंडसेट के लिए वोल्टेज-नियंत्रित टीसीएक्सओ (वीसीटीसीएक्सओ) है। इस एप्लिकेशन को क्षमताओं के एक बहुत विशिष्ट सेट की आवश्यकता होती है जिसके लिए क्वार्ट्ज उत्पादों को अत्यधिक अनुकूलित किया जाता है।{{Citation needed|date=January 2012}}
क्वार्ट्ज ऑसिलेटर विशिष्ट अनुप्रयोगों में सुरक्षित हैं जहां उपयुक्त एमईएमएस ऑसिलेटर समक्ष नहीं किए गए हैं। उन अनुप्रयोगों में से एक, उदाहरण के लिए, सेल फोन हैंडसेट के लिए वोल्टेज-नियंत्रित टीसीएक्सओ (वीसीटीसीएक्सओ) है। इस एप्लिकेशन को क्षमताओं के लिए एक बहुत विशिष्ट सेट की आवश्यकता होती है जिसके लिए क्वार्ट्ज उत्पादों को अत्यधिक अनुकूलित किया जाता है।


प्रदर्शन रेंज के चरम उच्च सिरों में क्वार्ट्ज ऑसिलेटर्स उन्नत हैं। इनमें ओसीएक्सओ सम्मिलित हैं जो प्रति बिलियन (पीपीबी) कुछ भागों के भीतर स्थिरता बनाए रख सकते हैं, और सतह ध्वनिक तरंग (एसएडब्ल्यू) ऑसिलेटर जो उच्च आवृत्तियों पर 100 फेमटोसेकंड के तहत जिटर वितरित कर सकते हैं। हाल तक तक, एमईएमएस ऑसिलेटर्स टीसीएक्सओ उत्पाद श्रेणी में प्रतिस्पर्धा नहीं करते थे, लेकिन नए उत्पाद परिचय ने एमईएमएस ऑसिलेटर्स को उस बाजार में ला दिया है।
प्रदर्शन रेंज के उच्च सिरों में क्वार्ट्ज दोलक उन्नत हैं। इनमें ओसीएक्सओ सम्मिलित हैं जो प्रति बिलियन (पीपीबी) कुछ भागों के भीतर स्थिरता बनाए रख सकते हैं, और सतह ध्वनिक तरंग (एसएडब्ल्यू) ऑसिलेटर जो उच्च आवृत्तियों पर 100 फेमटोसेकंड के तहत जिटर वितरित कर सकते हैं। अभी तक, एमईएमएस दोलक टीसीएक्सओ उत्पाद श्रेणी में प्रतिस्पर्धा नहीं करते थे, लेकिन नए उत्पाद परिचय ने एमईएमएस दोलक को उस बाजार में ला दिया है।


घड़ी जनरेटर अनुप्रयोगों में क्वार्ट्ज अभी भी प्रमुख है। इन अनुप्रयोगों के लिए अत्यधिक विशिष्ट आउटपुट संयोजनों और कस्टम पैकेजों की आवश्यकता होती है। इन उत्पादों के लिए आपूर्ति श्रृंखला विशिष्ट है और इसमें एमईएमएस ऑसिलेटर आपूर्तिकर्ता सम्मिलित नहीं है।
घड़ी जनरेटर अनुप्रयोगों में क्वार्ट्ज अभी भी प्रमुख है। इन अनुप्रयोगों के लिए अत्यधिक विशिष्ट आउटपुट संयोजनों और कस्टम पैकेजों की आवश्यकता होती है। इन उत्पादों के लिए आपूर्ति श्रृंखला विशिष्ट है और इसमें एमईएमएस ऑसिलेटर आपूर्तिकर्ता सम्मिलित नहीं है।


== विशिष्ट अनुप्रयोग ==
== विशिष्ट अनुप्रयोग ==
{{Main|clock signal}}
कंप्यूटिंग, उपभोक्ता, नेटवर्किंग, संचार, मोटर वाहन और औद्योगिक प्रणालियों जैसे विभिन्न अनुप्रयोगों में एमईएमएस दोलक क्वार्ट्ज दोलक की स्थान ले रहे हैं।
कंप्यूटिंग, उपभोक्ता, नेटवर्किंग, संचार, मोटर वाहन और औद्योगिक प्रणालियों जैसे विभिन्न अनुप्रयोगों में एमईएमएस ऑसिलेटर्स क्वार्ट्ज ऑसिलेटर्स की जगह ले रहे हैं।


प्रोग्राम करने योग्य एमईएमएस ऑसीलेटर का उपयोग अधिकांश अनुप्रयोगों में किया जा सकता है जहां पीसीआई-एक्सप्रेस, सैटा, एसएएस, पीसीआई, यूएसबी, गिगाबिट ईथरनेट, एमपीईजी वीडियो और केबल मोडेम जैसे निश्चित आवृत्ति क्वार्ट्ज ऑसीलेटर का उपयोग किया जाता है।
प्रोग्राम करने योग्य एमईएमएस ऑसीलेटर का उपयोग अधिकांश अनुप्रयोगों में किया जा सकता है जहां पीसीआई-एक्सप्रेस, सैटा, एसएएस, पीसीआई, यूएसबी, गिगाबिट ईथरनेट, एमपीईजी वीडियो और केबल मोडेम जैसे निश्चित आवृत्ति क्वार्ट्ज ऑसीलेटर का उपयोग किया जाता है।
Line 177: Line 169:
{| class="wikitable" style="width:100%; height:100px;" cellpadding="5"
{| class="wikitable" style="width:100%; height:100px;" cellpadding="5"
|-
|-
! colspan ="5"|'''MEMS Oscillator Types and Their Applications'''
! colspan ="5"|'''एमईएमएस ऑसिलेटर प्रकार और उनके अनुप्रयोग'''
|-
|-
! style="width:20%;"| Device Type
! style="width:20%;"| उपकरण का प्रकार
! style="width:20%;"| Stability Rating
! style="width:20%;"| स्थिरता रेटिंग
! style="width:30%;"| Applications
! style="width:30%;"| अनुप्रयोग
! style="width:30%;"| Comments
! style="width:30%;"| टिप्पणियाँ
|-
|-
| XO&nbsp;— Oscillator
| एक्सओ - थरथरानवाला
| 20 - 100 ppm
| 20 - 100 पीपीएम
| Those requiring a general-purpose clock, such as consumer electronics and computing:
| जिन्हें सामान्य प्रयोजन वाली घड़ी की आवश्यकता होती है, जैसे उपभोक्ता इलेक्ट्रॉनिक्स और कंप्यूटिंग:
*microprocessors
 
*digital state machines
* माइक्रोप्रोसेसरों
*video and audio clocking
* डिजिटल राज्य मशीनें
*low-bandwidth data communications, e.g., USB and Ethernet
* वीडियो और ऑडियो क्लॉकिंग
| This was the first product category to be supplied by MEMS oscillators
* कम बैंडविड्थ डेटा संचार, उदाहरण के लिए, यूएसबी और ईथरनेट
| यह एमईएमएस ऑसिलेटर्स द्वारा आपूर्ति की जाने वाली पहली उत्पाद श्रेणी थी
|-
|-
| VCXO&nbsp;— Voltage Controlled Oscillator
| वीसीएक्सओ - वोल्टेज नियंत्रित ऑसिलेटर
| < 50 ppm
| <50 पीपीएम
| Clock synchronization in:
| इसमें घड़ी सिंक्रनाइज़ेशन:
*telecom
 
*broadband
* दूरसंचार
*video
* ब्रॉडबैंड
*instrumentation
* वीडियो
|Clock outputs are “pullable,” i.e., their frequency can be “pulled” or fine-tuned. VCXO outputs can be pulled using an analog voltage input.
* इंस्ट्रुमेंटेशन
|क्लॉक आउटपुट "खींचने योग्य" हैं, अर्थात, उनकी आवृत्ति को "खींचा" या ठीक किया जा सकता है। वीसीएक्सओ आउटपुट को एनालॉग वोल्टेज इनपुट का उपयोग करके खींचा जा सकता है।
|-
|-
| TCXO&nbsp;– Temperature Compensated Oscillator
| टीसीएक्सओ - तापमान क्षतिपूर्ति थरथरानवाला
and
और


VC-TCXO&nbsp;— Voltage Controlled TCXO
वीसी-टीसीएक्सओ - वोल्टेज नियंत्रित टीसीएक्सओ
| 0.5 - 5 ppm
| 0.5 - 5 पीपीएम
| High-performance equipment that requires very stable frequencies:
| उच्च-प्रदर्शन वाले उपकरण जिनके लिए बहुत स्थिर आवृत्तियों की आवश्यकता होती है:
*networking
 
*base stations
* नेटवर्किंग
*femtocells
* बेस स्टेशन
*smart meters
* femtocels
*GPS systems
* स्मार्ट मीटर
*mobile systems
* जीपीएस सिस्टम
| VC-TCXO outputs are pullable
* मोबाइल सिस्टम
| वीसी-टीसीएक्सओ आउटपुट खींचने योग्य हैं
|-
|-
| SSXO&nbsp;– Spread Spectrum Oscillator
| एसएसएक्सओ - स्प्रेड स्पेक्ट्रम ऑसिलेटर
| 20 - 100 ppm
| 20 - 100 पीपीएम
| Microprocessor-based clocking:
| माइक्रोप्रोसेसर-आधारित क्लॉकिंग:
*desktop PCs
 
*laptops
* डेस्कटॉप पीसी
*storage systems
* लैपटॉप
*USB
* भंडारण प्रणालियाँ
| [[spread-spectrum clocking]] reduces EMI in systems that are clocked from the oscillators
* USB
| स्प्रेड-स्पेक्ट्रम क्लॉकिंग उन प्रणालियों में ईएमआई को कम करती है जो ऑसिलेटर्स से क्लॉक की जाती हैं
|-
|-
| FSXO&nbsp;– Frequency Select Oscillator
| एफएसएक्सओ - फ्रीक्वेंसी सेलेक्ट ऑसिलेटर
| 20 - 100 ppm
| 20 - 100 पीपीएम
| Those requiring frequency agility and multi-protocol serial interfaces.
| जिन्हें फ़्रीक्वेंसी चपलता और मल्टी-प्रोटोकॉल सीरियल इंटरफ़ेस की आवश्यकता होती है।
| Clock output frequencies are changeable with hardware or serial-select inputs, reducing BOM and simplifying the supply chain
| क्लॉक आउटपुट आवृत्तियाँ हार्डवेयर या सीरियल-चयन इनपुट के साथ परिवर्तनीय हैं, बीओएम को कम करती हैं और आपूर्ति श्रृंखला को सरल बनाती हैं
|-
|-
| DCXO&nbsp;– Digitally Controlled Oscillator
| डीसीएक्सओ - डिजिटली नियंत्रित ऑसिलेटर
| 0.5 - 100 ppm
| 0.5 - 100 पीपीएम
| Clock synchronization in
| में घड़ी सिंक्रनाइज़ेशन
*telecom
 
*broadband
* दूरसंचार
*video
* ब्रॉडबैंड
*instrumentation
* वीडियो
| Clock output frequencies are pulled by digital inputs.
* इंस्ट्रुमेंटेशन
| क्लॉक आउटपुट आवृत्तियों को डिजिटल इनपुट द्वारा खींचा जाता है।
|}
|}
थरथरानवाला प्रकार के नाम में "एक्स" मूल रूप से "क्रिस्टल" को दर्शाता है। कुछ निर्माताओं ने एमईएमएस ऑसिलेटर्स को सम्मिलित करने के लिए इस परिपाटी को अपनाया है। अन्य क्वार्ट्ज-आधारित ऑसिलेटर्स से एमईएमएस-आधारित ऑसिलेटर्स को अलग करने के लिए "एक्स" ("वीसीएमओ" बनाम "वीसीएक्सओ") के लिए "एम" को प्रतिस्थापित कर रहे हैं।
दोलक प्रकार के नाम में "एक्स" मूल रूप से "क्रिस्टल" को दर्शाता है। कुछ निर्माताओं ने एमईएमएस दोलक को सम्मिलित करने के लिए इस परिपाटी को अपनाया है। अन्य क्वार्ट्ज-आधारित दोलक से एमईएमएस-आधारित दोलक को अलग करने के लिए "एक्स" ("वीसीएमओ" बनाम "वीसीएक्सओ") के लिए "एम" को प्रतिस्थापित कर रहे हैं।


== सीमाएं ==
== सीमाएं ==
एमईएमएस ऑसिलेटर्स [[हीलियम]] से हानिकारक रूप से प्रभावित हो सकते हैं। 2018 में एक अस्पताल में एक हीलियम रिसाव के कारण एमईएमएस ऑसिलेटर्स का उपयोग करने वाले उपकरणों की बड़े पैमाने पर विफलता हुई। 2% से कम हीलियम सांद्रता को एमईएमएस ऑसिलेटर की पूर्ण विफलता का कारण दिखाया गया है।<ref>{{cite web|url=https://ifixit.org/blog/11986/iphones-are-allergic-to-helium/ |title=iPhones हीलियम से एलर्जी है|date=2018-10-30 |accessdate=2018-11-02}}</ref>
एमईएमएस दोलक [[हीलियम]] से हानिकारक रूप से प्रभावित हो सकते हैं। 2018 में एक अस्पताल में एक हीलियम रिसाव के कारण एमईएमएस दोलक का उपयोग करने वाले उपकरणों की बड़े पैमाने पर विफलता हुई। 2% से कम हीलियम सांद्रता को एमईएमएस ऑसिलेटर की पूर्ण विफलता का कारण दिखाया गया है।<ref>{{cite web|url=https://ifixit.org/blog/11986/iphones-are-allergic-to-helium/ |title=iPhones हीलियम से एलर्जी है|date=2018-10-30 |accessdate=2018-11-02}}</ref>




Line 364: Line 361:
}}
}}


{{Electronic component}}
[[Category:All articles needing additional references]]
[[Category: अमेरिकी आविष्कार]] [[Category: दोलक]] [[Category: माइक्रोइलेक्ट्रॉनिक और माइक्रोइलेक्ट्रॉनिक सिस्टम]]  
[[Category:All articles with bare URLs for citations]]
 
[[Category:All articles with unsourced statements]]
 
[[Category:Articles needing additional references from November 2011]]
 
[[Category:Articles with PDF format bare URLs for citations]]
[[Category: Machine Translated Page]]
[[Category:Articles with bare URLs for citations from March 2022]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with unsourced statements from December 2011]]
[[Category:Articles with unsourced statements from January 2012]]
[[Category:Articles with unsourced statements from June 2022]]
[[Category:Collapse templates]]
[[Category:Created On 26/05/2023]]
[[Category:Created On 26/05/2023]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia articles needing clarification from May 2013]]
[[Category:Wikipedia metatemplates]]
[[Category:अमेरिकी आविष्कार]]
[[Category:दोलक]]
[[Category:माइक्रोइलेक्ट्रॉनिक और माइक्रोइलेक्ट्रॉनिक सिस्टम]]

Latest revision as of 12:05, 12 September 2023

माइक्रोइलेक्ट्रोमैकेनिकल प्रणाली दोलक (माइक्रोइलेक्ट्रोमैकेनिकल सिस्टम ऑसिलेटर्स) ऐसे उपकरण हैं जो समय को मापने के लिए अत्यधिक स्थिर संदर्भ आवृत्ति (इलेक्ट्रॉनिक प्रणाली को अनुक्रमित करने, डेटा स्थानांतरण का प्रबंधन करने, आकाशवाणी आवृति को परिभाषित करने और गत समय मापने के लिए उपयोग किया जाता है) उत्पन्न करते हैं। एमईएमएस दोलक में उपयोग की जाने वाली मुख्य प्रौद्योगिकियां 1960 के दशक के मध्य से विकास में हैं, लेकिन 2006 से केवल व्यावसायिक अनुप्रयोगों के लिए पर्याप्त रूप से उन्नत हैं।[1] एमईएमएस दोलक में एमईएमएस अनुनादक यंत्र सम्मिलित होते हैं, जो माइक्रोइलेक्ट्रोमैकेनिकल संरचनाएं हैं और स्थिर आवृत्तियों को परिभाषित करती हैं। एमईएमएस घड़ी जनरेटर एमईएमएस समय उपकरण हैं जो प्रणाली के लिए कई आउटपुट होते हैं जिन्हें एक से अधिक संदर्भ आवृत्ति की आवश्यकता होती है। एमईएमएस दोलक पुराने, अधिक स्थापित क्वार्ट्ज क्रिस्टल दोलक के लिए एक वैध विकल्प हैं, जो कंपन और यांत्रिक झटके के विरुद्ध उन्नत लचीलापन प्रदान करते हैं, और तापमान भिन्नता के संबंध में विश्वसनीयता प्रदान करते हैं।

एमईएमएस टाइमिंग डिवाइस

अनुनादक यंत्र

माइक्रोइलेक्ट्रोमैकेनिकल प्रणाली ऑसिलेटर लघु विद्युत यांत्रिक संरचनाएं हैं जो उच्च आवृत्तियों पर कंपन करते हैं। उनका उपयोग समय के संदर्भ, सिग्नल फ़िल्टरिंग, मास सेंसिंग, बायोलॉजिकल सेंसिंग, मोशन सेंसिंग और अन्य विविध अनुप्रयोगों के लिए किया जाता है। यह आलेख आवृत्ति और समय संदर्भों में उनके आवेदन से संबंधित है।

आवृत्ति और समय संदर्भों के लिए, एमईएमएस अनुनादक यंत्र इलेक्ट्रॉनिक सर्किट से जुड़े होते हैं, जिन्हें प्रायः एम्पलीफायरों को बनाए रखने के लिए कहा जाता है, ताकि उन्हें निरंतर गति में चलाया जा सके। ज्यादातर मामलों में ये सर्किट रेज़ोनेटर के पास और उसी भौतिक पैकेज में स्थित होते हैं। अनुनादक यंत्रों को चलाने के अलावा, ये सर्किट डाउनस्ट्रीम इलेक्ट्रॉनिक्स के लिए आउटपुट सिग्नल उत्पन्न करते हैं।

दोलक

अधिवेशन के अनुसार, दोलक शब्द सामान्यत: एकीकृत सर्किट (आईसी) को दर्शाता है जो एकल आउटपुट आवृत्तियों की आपूर्ति करता है। एमईएमएस दोलक में एमईएमएस अनुनादक, अनुरक्षण एम्प्स और अतिरिक्त इलेक्ट्रॉनिक्स सम्मिलित हैं जो उनके आउटपुट आवृत्तियों को सेट या समायोजित करते हैं। इन सर्किटों में प्रायः फेज़ लॉक्ड लूप (PLL) सम्मिलित होते हैं जो अपस्ट्रीम एमईएमएस संदर्भ आवृत्तियों से चयन योग्य या प्रोग्राम करने योग्य आउटपुट आवृत्तियाँ उत्पन्न करते हैं।[2]

एमईएमएस ऑसिलेटर सामान्यत: 4- या 6- पिन IC के रूप में उपलब्ध होते हैं जो प्रिंटेड सर्किट बोर्ड (PCB) सोल्डर फुटप्रिंट्स के अनुरूप होते हैं जो पहले क्वार्ट्ज क्रिस्टल दोलक के लिए मानकीकृत होते थे।

घड़ी जनरेटर

टर्म क्लॉक जनरेटर सामान्यत: कई आउटपुट के साथ एक समय आईसी को दर्शाता है। इस नियम के बाद, एमईएमएस घड़ी जनरेटर बहु-आउटपुट एमईएमएस टाइमिंग डिवाइस हैं। इनका उपयोग जटिल इलेक्ट्रॉनिक प्रणालियों में समय के संकेतों की आपूर्ति के लिए किया जाता है जिनके लिए कई आवृत्तियों या घड़ी फेजों की आवश्यकता होती है। उदाहरण के लिए, अधिकांश कंप्यूटर को प्रोसेसर टाइमिंग, डिस्क I/O, सीरियल I/O, वीडियो जेनरेशन, ईथरनेट I/O, ऑडियो रूपांतरण और अन्य कार्यों के लिए स्वतंत्र घड़ियों की आवश्यकता होती है।[3]

घड़ी जनरेटर सामान्यत: उन अनुप्रयोगों के लिए विशिष्ट होते हैं, जिसमें आवृत्तियों की संख्या और चयन, विभिन्न सहायक विशेषताएं और पैकेज कॉन्फ़िगरेशन सम्मिलित हैं। वे प्रायः कई आउटपुट आवृत्तियों या फेजों को उत्पन्न करने के लिए कई PLL सम्मिलित करते हैं।

वास्तविक समय की घड़ियां

एमईएमएस वास्तविक समय की घड़ियाँ (आरटीसी) आईसी हैं जो दिन और दिनांक के समय को ट्रैक करते हैं। इनमें एमईएमएस अनुनादक यंत्र, स्थायी एम्प्स और रजिस्टर सम्मिलित हैं जो समय के साथ बढ़ते हैं, उदाहरण के लिए दिन, घंटे, मिनट और सेकंड की गिनती। इनमें अलार्म आउटपुट और बैटरी प्रबंधन जैसे सहायक कार्य भी सम्मिलित हैं।

गत समय का ट्रैक रखने के लिए आरटीसी को लगातार संचलन होना चाहिए। ऐसा करने के लिए आरटीसी को कभी-कभी लघुबैटरी द्वारा संचलन होना चाहिए और बहुत कम बिजली के स्तर पर भी आरटीसी का संचलन होना चाहिए। वे सामान्यतः मध्यम आकार के आईसी होते हैं जिनमें बिजली, बैटरी बैकअप, डिजिटल इंटरफ़ेस और कई अन्य कार्यों के लिए 20 पिन तक होते हैं।

एमईएमएस टाइमिंग उपकरणों का इतिहास

पहला प्रदर्शन

क्वार्ट्ज क्रिस्टल दोलक की कमियों से प्रेरित होकर, शोधकर्ता 1965 से एमईएमएस संरचनाओं के अनुनाद गुणों का विकास कर रहे हैं।[4][5]हालांकि, हाल ही में सीलिंग, पैकेजिंग और अनुनादक तत्वों को समायोजित करने से संबंधित विभिन्न सटीकता, स्थिरता और विनिर्माण क्षमता के मुद्दों ने लागत प्रभावी वाणिज्यिक निर्माण में अवरोध उत्पन्न किया है,पांच तकनीकी चुनौतियों को दूर करना पड़ा:

  • पहला प्रदर्शन
  • स्थिर और पूर्वानुमेय अनुनादक सामग्री ढूँढना,
  • पर्याप्त स्वच्छ भली भांति बंद पैकेजिंग प्रौद्योगिकियों का विकास करना,
  • उत्पादन आवृत्तियों को ट्रिम करना और क्षतिपूर्ति करना, अनुनादक तत्वों के गुणवत्ता कारक को बढ़ाना, और
  • विभिन्न एप्लिकेशन आवश्यकताओं को पूरा करने के लिए सिग्नल अखंडता में सुधार।

पहले एमईएमएस अनुनादक यंत्र धात्विक अनुनादक तत्वों के साथ बनाए गए थे।[4] इन अनुनादक यंत्रों की कल्पना ऑडियो फिल्टर के रूप में की गई थी और इनमें 500 के मध्यम गुणवत्ता कारक (Qs) और 1 kHz से 100 kHz की आवृत्तियां थीं।उच्च आवृत्ति रेडियो के लिए, फ़िल्टरिंग अनुप्रयोग,अभी भी महत्वपूर्ण हैं और एमईएमएस अनुसंधान और पूंजीवाद के लिए एक सक्रिय क्षेत्र हैं।

हालांकि, शुरुआती एमईएमएस अनुनादक यंत्रों में समय संदर्भ या घड़ी पीढ़ी के लिए उपयोग की जाने वाली पर्याप्त स्थिर आवृत्तियां नहीं थीं। धात्विक अनुनादक तत्व समय के साथ (जीर्ण थे) और उपयोग के साथ (श्रांत थे) आवृत्ति में बदलाव करते थे। तापमान भिन्नता के तहत वे दीर्घ और पूरी तरह से अनुमानित आवृत्ति बदलाव नहीं करते थे (उनके पास दीर्घ तापमान संवेदनशीलता था) और जब तापमान चक्रित होते थे तो वे भिन्न भिन्न आवृत्तियों पर लौटने के लिए प्रवृत्त होते थे (वे हिस्टेरेटिक थे)।

भौतिक विकास

1970 के दशक[6][7][8]से 1990 के दशक में काम के द्वारा[9] पर्याप्त रूप से स्थिर अनुनादक सामग्री और संबंधित निर्माण तकनीकों की पहचान किया गया। विशेष रूप से, एकल और पॉलीक्रिस्टलाइन सिलिकॉन प्रभावी रूप से जीरो एजिंग, श्रान्ति और हिस्टैरिसीस और मध्यम तापमान संवेदनशीलता के साथ आवृत्ति संदर्भों के लिए उपयुक्त पाया गया।[10][11]

एमईएमएस अनुनादक अनुसंधान में सामग्री का विकास अभी भी जारी है। इसके निम्न तापमान संविरचन के लिए के लिए सिलिकॉन-जर्मेनियम (SiGe) और इसके पीजोइलेक्ट्रिक ट्रांसडक्शन के लिए एल्यूमीनियम नाइट्राइड (AlN)[12] में महत्वपूर्ण प्रयास किए गए हैं।[13]माइक्रोमाचिन्ड क्वार्ट्ज पर काम जारी है,[14]जबकि पॉलीक्रिस्टलाइन हीरे का उपयोग इसकी असाधारण कठोरता-से-द्रव्यमान अनुपात के लिए उच्च आवृत्ति अनुनादक यंत्रों के लिए किया गया है।[15]

पैकेजिंग विकास

एमईएमएस अनुनादक यंत्रों को गुहाओं की आवश्यकता होती है जिसमें वे स्वतंत्र रूप से स्थानांतरित हो सकते हैं,और आवृत्ति संदर्भों के लिए इन गुहाओं को रिक्त किया जाना चाहिए। प्रारंभिक अनुनादक यंत्र सिलिकॉन वेफर्स के शीर्ष पर बनाए गए थे और निर्वात कक्षों में परीक्षण किए गए थे,[9] लेकिन भिन्न भिन्न अनुनादक यंत्र को इनकैप्सुलेशन की स्पष्ट रूप से आवश्यकता थी।

एमईएमएस समूह ने अन्य एमईएमएस घटकों, उदाहरण के लिए दाबानुकूलित संवेदक, अक्सेसेलोरेमेटेर, और जाइरोस्कोप को संलग्न करने के लिए बंधा हुआ कवर तकनीकों को नियोजित किया और इन तकनीकों को अनुनादकों के लिए अनुकूलित किया गया था।[16][17] इस दृष्टिकोण में, वेफर्स कवर को छोटे गुहाओं के साथ माइक्रो मशीन किया गया था और अनुनादक यंत्र वेफर्स से बंधे थे, छोटे खाली गुहाओं में अनुनादक यंत्रों को घेरते थे। प्रारंभ में इन वेफर्स को कम पिघलने वाले तापमान वाले ग्लास से जोड़ा जाता था, जिसे ग्लास फ्रिट बॉन्डिंग कहा जाता है,[18]लेकिन हाल ही में धात्विक संपीड़न और धात्विक अमलगम सहित अन्य संबंध तकनीकों ने ग्लास फ्रिट को बदल दिया है।[19][20]

रेज़ोनेटर पर बॉन्डिंग कवर के बजाय निर्माण प्रक्रिया में रेज़ोनेटर पर सीधे कवर बनाकर संलग्न गुहाओं को बनाने के लिए पतली फिल्म एनकैप्सुलेशन तकनीक विकसित की गई थी।[21][22][23][24][25][26]इन तकनीकों का यह फायदा था कि वे सीलिंग संरचना के लिए ज्यादा मरने वाले क्षेत्र का उपयोग नहीं करते थे, उन्हें कवर बनाने के लिए दूसरे वेफर्स की तैयारी की आवश्यकता नहीं थी, और परिणामी डिवाइस वेफर्स पतले थे।

आवृत्ति संदर्भों में सामान्यत: 100 भाग प्रति मिलियन (पीपीएम) या उन्नत की आवृत्ति स्थिरता की आवश्यकता होती है। हालांकि, शुरुआती आवरण और एनकैप्सुलेशन तकनीकों ने गुहाओं में महत्वपूर्ण मात्रा में दूषित पदार्थ छोड़ा। क्योंकि एमईएमएस अनुनादक यंत्र छोटे होते हैं, और विशेष रूप से उनका आयतन-सतह क्षेत्र से छोटा होता है, वे विशेष रूप से बड़े पैमाने पर लोडिंग के प्रति संवेदनशील होते हैं। यहां तक ​​कि पानी या हाइड्रोकार्बन जैसे प्रदूषकों की एकल-परमाणु परतें अनुनादक यंत्र की आवृत्तियों को विनिर्देश से बाहर कर सकती हैं।[27][28]

जब अनुनादक यंत्र वृद्ध या तापमान चक्रित होते हैं, तो दूषित पदार्थ कक्षों में स्थानांतरित हो सकते हैं, और अनुनादक यंत्रों पर या उसके बाहर स्थानांतरित हो सकते हैं।[10][29]अनुनादक यंत्रों पर द्रव्यमान में परिवर्तन हजारों पीपीएम के हिस्टैरिसीस का उत्पादन कर सकता है, जो वस्तुतः सभी आवृत्ति संदर्भ अनुप्रयोगों के लिए अस्वीकार्य है।

ग्लास फ्रिट सील के साथ शुरुआती कवर किए गए अनुनादक यंत्र अस्थिर थे क्योंकि सीलिंग सामग्री से दूषित पदार्थ बाहर निकल गए थे। इसे दूर करने के लिए गुहाओं में गेटर्स बनाए गए थे। गेटर्स ऐसी सामग्रियां हैं जो गुहाओं को सील करने के बाद गैस और दूषित पदार्थों को अवशोषित कर सकती हैं। हालांकि, गेटर्स दूषित पदार्थ भी छोड़ सकते हैं और महंगा हो सकता है, इसलिए क्लीनर कवर बॉन्डिंग प्रक्रियाओं के पक्ष में इस एप्लिकेशन में उनका उपयोग बंद किया जा रहा है।

इसी तरह, पतली फिल्म एनकैप्सुलेशन गुहाओं में फैब्रिकेशन बायप्रोडक्ट्स को फंसा सकती है। इसे खत्म करने के लिए एपिटैक्सियल सिलिकॉन जमाव पर आधारित एक उच्च तापमान पतली फिल्म एनकैप्सुलेशन विकसित की गई थी। यह एपिटैक्सियल सीलिंग (एपिसील) प्रक्रिया[30]असाधारण रूप से स्वच्छ पाया गया और उच्चतम स्थिरता अनुनादक उत्पन्न करता है।[31][32][33][34][35]

इलेक्ट्रॉनिक आवृत्ति चयन और ट्रिमिंग

प्रारंभिक एमईएमएस अनुनादक यंत्र विकास में, शोधकर्ताओं ने लक्षित अनुप्रयोग आवृत्तियों पर अनुनादक यंत्र बनाने और तापमान पर उन आवृत्तियों को बनाए रखने की कोशिश की। इस समस्या को हल करने के दृष्टिकोण में एमईएमएस अनुनादक यंत्रों को क्वार्ट्ज क्रिस्टल के लिए उपयोग किए जाने वाले तरीकों के अनुरूप ट्रिमिंग और तापमान सम्मिलित थे।[36][37][38]

हालाँकि, ये तकनीकें तकनीकी रूप से सीमित और महंगी पाई गईं। एक अधिक प्रभावी समाधान इलेक्ट्रॉनिक रूप से अनुनादक यंत्रों की आवृत्तियों को दोलक की आउटपुट आवृत्तियों में स्थानांतरित करना था।[39][40]इसका यह फायदा था कि अनुनादक यंत्रों को व्यक्तिगत रूप से छंटनी करने की आवश्यकता नहीं थी; इसके बजाय उनकी आवृत्तियों को मापा जा सकता है और ऑसीलेटर आईसी में उचित स्केलिंग गुणांक दर्ज किए जा सकते हैं। इसके अलावा, अनुनादक यंत्रों के तापमान को इलेक्ट्रॉनिक रूप से मापा जा सकता है, और तापमान पर अनुनादक यंत्रों की आवृत्ति भिन्नता की भरपाई के लिए आवृत्ति स्केलिंग को समायोजित किया जा सकता है।

सिग्नल अखंडता में सुधार

विभिन्न अनुप्रयोगों के लिए पूर्व निर्धारित सिग्नल और प्रदर्शन विशिष्टताओं वाली घड़ियों की आवश्यकता होती है। इनमें से, प्रमुख विनिर्देश फेज शोर और आवृत्ति स्थिरता हैं।

अनुनादक यंत्र की प्राकृतिक आवृत्तियों (F) और गुणवत्ता कारकों (Q) को बढ़ाकर फेज शोर को अनुकूलित किया गया है। Q निर्दिष्ट करता है कि ड्राइव बंद होने के बाद अनुनादक कितनी देर तक बजते रहते हैं, या समकक्ष रूप से फ़िल्टर के रूप में देखे जाने पर उनके पास-बैंड कितने संकीर्ण होते हैं। विशेष रूप से, Q गुना F, या Q F उत्पाद, निकट-वाहक फेज शोर को निर्धारित करता है।[41]प्रारंभिक एमईएमएस अनुनादक यंत्रों ने संदर्भ के लिए अस्वीकार्य रूप से कम QF उत्पाद दिखाए। महत्वपूर्ण सैद्धांतिक कार्य ने अंतर्निहित भौतिकी को स्पष्ट किया[42][43]जबकि प्रायोगिक कार्य ने उच्च Qf अनुनादक यंत्र विकसित किए।[44]वर्तमान में उपलब्ध एमईएमएस QF प्रदर्शन वस्तुतः सभी अनुप्रयोगों के लिए उपयुक्त है।

अनुनादक यंत्र संरचनात्मक डिजाइन, विशेष रूप से मोड नियंत्रण में,[45]एंकरिंग के तरीके,[15][46]संकीर्ण अंतर ट्रांसड्यूसर,[47]रैखिकता,[48]और सरणी संरचनाएं[49]महत्वपूर्ण शोध प्रयासों का उपभोग किया।

सामान्यत: 50 से 100 पीपीएम पर आवश्यक आवृत्ति सटीकता प्रोसेसर क्लॉकिंग के लिए अपेक्षाकृत ढीली होती है, प्रायः 2.5 पीपीएम और नीचे पर उच्च गति डेटा क्लॉकिंग के लिए सटीक होती है। अनुसंधान ने प्रदर्शित किया कि एमईएमएस अनुनादक यंत्र और ऑसिलेटर इन स्तरों के भीतर अच्छी तरह से बनाए जा सकते हैं।[50][51]वाणिज्यिक उत्पाद अब 0.5 पीपीएम पर उपलब्ध हैं,[52] जो अधिकांश आवेदन आवश्यकताओं को कवर करता है।

अंत में, आवृत्ति नियंत्रण इलेक्ट्रॉनिक्स और संबंधित समर्थन सर्किट्री को विकसित और अनुकूलित करने की आवश्यकता है। प्रमुख क्षेत्र तापमान संवेदक में थे[53]और पीएलएल डिजाइन।[54]हाल के सर्किट विकास ने उच्च गति सीरियल अनुप्रयोगों के लिए सब-पिकोसेकंड इंटीग्रेटेड जिटर के साथ उपयुक्त एमईएमएस दोलक का उत्पादन किया है[55][56]


व्यावसायीकरण

यूएस डिफेंस एडवांस्ड रिसर्च प्रोजेक्ट्स एजेंसी (डीएआरपीए) ने एमईएमएस अनुसंधान की एक विस्तृत श्रृंखला को वित्तपोषित किया जो ऊपर वर्णित विकास के लिए आधार प्रौद्योगिकियां प्रदान करता है। 2001 और 2002 में DARPA ने विशेष रूप से एमईएमएस उच्च स्थिरता अनुनादक यंत्र और पैकेजिंग प्रौद्योगिकियों को विकसित करने के लिए नैनो मैकेनिकल एरे सिग्नल प्रोसेसर (NMASP) और कठोर पर्यावरण रोबस्ट माइक्रोमैकेनिकल टेक्नोलॉजी (HERMIT) प्रोग्राम लॉन्च किए। यह कार्य फलदायी था और प्रौद्योगिकी को उस स्तर तक उन्नत किया जिस पर उद्यम पूंजी से वित्त पोषित स्टार्टअप वाणिज्यिक उत्पाद विकसित कर सकते थे। इन स्टार्टअप्स में डिस्केरा [57] 2001 में,SiTime 2004 में, सिलिकॉन क्लॉक 2006 में और हार्मोनिक डिवाइसेस 2006 में भी सम्मिलित है।[citation needed]

SiTime ने 2006 में पहला उत्पादन एमईएमएस दोलक समक्ष किया, इसके बाद 2007 में डिस्केरा समक्ष किया। हार्मोनिक डिवाइसेस ने संवेदक उत्पादों पर अपना ध्यान केंद्रित किया और 2010 में क्वालकॉम द्वारा खरीदा गया। सिलिकॉन क्लॉक्स ने कभी भी वाणिज्यिक उत्पादों को समक्ष नहीं किया और 2010 में सिलिकॉन लैब्स द्वारा खरीदा गया। सैंड 9 और वीटीआई टेक्नोलॉजीज सहित एमईएमएस दोलक का उत्पादन करने के अपने इरादे की घोषणा की[58][59]

बिक्री की मात्रा के अनुसार, एमईएमएस ऑसिलेटर आपूर्तिकर्ता SiTime और Discera के रूप में अवरोही क्रम में रैंक करते हैं। कई क्वार्ट्ज ऑसिलेटर आपूर्तिकर्ता एमईएमएस दोलक को फिर से बेचते हैं। सीटाइम ने घोषणा की कि उसने 2011 के मध्य तक संचयी रूप से 50 मिलियन यूनिट भेज दिया है।[60] दूसरों ने बिक्री की मात्रा का खुलासा नहीं किया है।

ऑपरेशन

एमईएमएस अनुनादक यंत्रों को लघु घंटियों के रूप में सोच सकते हैं जो उच्च आवृत्तियों पर बजती हैं। दीर्घ घंटियों की तुलना में लघु घंटियाँ उच्च आवृत्तियों पर बजती हैं, और चूंकि एमईएमएस अनुनादक यंत्र छोटे होते हैं इसलिए वे उच्च आवृत्तियों पर बज सकते हैं। सामान्य घंटियाँ मीटर से लेकर सेंटीमीटर तक होती हैं और सैकड़ों हेटर्स से किलोहर्ट्ज पर बजती हैं; एमईएमएस अनुनादक यंत्र एक मिलीमीटर के दसवें हिस्से में होते हैं और दसियों किलोहर्ट्ज़ से लेकर सैकड़ों मेगाहर्ट्ज़ तक बजते हैं। एमईएमएस अनुनादक यंत्रों ने गीगाहर्ट्ज़ से अधिक पर काम किया है।[61]

सामान्य घंटियाँ यांत्रिक रूप से बजाई जाती हैं, जबकि एमईएमएस अनुनादक यंत्र विद्युत चालित होते हैं। एमईएमएस अनुनादक यंत्र बनाने के लिए उपयोग की जाने वाली दो आधार प्रौद्योगिकियां हैं जो यांत्रिक गति से विद्युत ड्राइव और अर्थ संकेतों को ट्रांसड्यूस करने के तरीके में भिन्न होती हैं। ये इलेक्ट्रोस्टैटिक और पेज़ोएलेक्ट्रिक हैं। सभी वाणिज्यिक एमईएमएस ऑसिलेटर इलेक्ट्रोस्टैटिक ट्रांसडक्शन का उपयोग करते हैं जबकि एमईएमएस फिल्टर पीजोइलेक्ट्रिक ट्रांसडक्शन का उपयोग करते हैं। पीजोइलेक्ट्रिक अनुनादकों ने आवृत्ति संदर्भ अनुप्रयोगों के लिए पर्याप्त आवृत्ति स्थिरता या गुणवत्ता कारक (Q) नहीं दिखाया है।

इलेक्ट्रॉनिक अनुरक्षण एम्प्स अनुनादक यंत्रों को निरंतर दोलन में चलाते हैं। ये एम्पलीफायर अनुनादक गति का पता लगाते हैं और अनुनादकों में अतिरिक्त ऊर्जा देते हैं। वे उचित आयामों पर अनुनादक गति को बनाए रखने और कम शोर आउटपुट घड़ी संकेतों को निकालने के लिए सावधानीपूर्वक डिज़ाइन किए गए हैं।

अतिरिक्त सर्किट जिन्हें फ्रैक्शनल-एन फेज लॉक लूप्स (frac-N PLLs) कहा जाता है, अनुनादक यंत्र की यांत्रिक आवृत्तियों को ऑसिलेटर की आउटपुट आवृत्तियों से गुणा करते हैं।[39][40][54][56]ये अत्यधिक विशिष्ट PLL डिजिटल राज्य मशीनों के नियंत्रण में आउटपुट फ़्रीक्वेंसी सेट करते हैं। स्थिति मशीनों को अंशांकन और गैर-वाष्पशील मेमोरी में संग्रहीत प्रोग्राम डेटा द्वारा नियंत्रित किया जाता है और तापमान भिन्नता की भरपाई के लिए PLL कॉन्फ़िगरेशन को समायोजित करता है।

अतिरिक्त उपयोगकर्ता कार्यों को प्रदान करने के लिए स्थिति मशीनों का भी निर्माण किया जा सकता है, उदाहरण के लिए स्प्रेड-स्पेक्ट्रम क्लॉकिंग और वोल्टेज नियंत्रित आवृत्ति ट्रिमिंग।

एमईएमएस घड़ी जनरेटर एमईएमएस दोलक के साथ उनके मूल में बनाए गए हैं और अतिरिक्त आउटपुट की आपूर्ति के लिए अतिरिक्त सर्किट्री सम्मिलित हैं। यह अतिरिक्त सर्किट्री सामान्यत: अनुप्रयोगों द्वारा आवश्यक विशिष्ट सुविधाएं प्रदान करने के लिए डिज़ाइन की जाती है।

एमईएमएस आरटीसी ऑसिलेटर की तरह काम करते हैं लेकिन कम बिजली की खपत के लिए अनुकूलित होते हैं और इसमें दिनांक और समय को ट्रैक करने के लिए सहायक सर्किट सम्मिलित होते हैं। कम शक्ति पर काम करने के लिए वे कम आवृत्ति वाले एमईएमएस अनुनादक यंत्रों के साथ निर्मित होते हैं। आवश्यक समय सटीकता प्रदान करते हुए बिजली की खपत को कम करने के लिए सर्किट डिजाइन में देखभाल की जाती है।

निर्माण

अनुनादक यंत्र

अनुनादक यंत्र के प्रकार के आधार पर, निर्माण प्रक्रिया या तो एक विशेष एमईएमएस फैब या सीएमओएस फाउंड्री में की जाती है।

निर्माण प्रक्रिया अनुनादक यंत्र और इनकैप्सुलेशन डिज़ाइन के साथ भिन्न होती है, लेकिन सामान्य तौर पर अनुनादक संरचनाएं लिथोग्राफिक रूप से प्रतिरूपित होती हैं और सिलिकॉन वेफर्स या पर प्लाज्मा-नक़्क़ाशीदार में होते हैं। सभी वाणिज्यिक एमईएमएस ऑसिलेटर पॉली या सिंगल क्रिस्टल सिलिकॉन से बने होते हैं।

संकीर्ण और अच्छी तरह से नियंत्रित ड्राइव और सेंस कैपेसिटर गैप बनाने के लिए इलेक्ट्रोस्टैटिक रूप से ट्रांसड्यूस्ड रेज़ोनेटर में यह महत्वपूर्ण है।ये या तो अनुनादक के तहत उदाहरण के लिए पार्श्व हो सकते हैं, या अनुनादक यंत्र के बगल में लंबवत हो सकते हैं। प्रत्येक विकल्प के अपने फायदे हैं[further explanation needed] और दोनों का व्यावसायिक उपयोग किया जाता है।

रेज़ोनेटर या तो रेज़ोनेटर वेफ़र्स पर कवर वेफ़र्स को जोड़कर या रेज़ोनेटर पर पतली फ़िल्म इनकैप्सुलेशन परतों को जमा करके समझाया जाता है। यहाँ फिर से, दोनों विधियों का व्यावसायिक उपयोग किया जाता है।

बंधा हुआ वेफर्स कवर को गोंद से जोड़ा जाना चाहिए। दो विकल्पों का उपयोग किया जाता है, एक ग्लास फ्रिट बॉन्ड रिंग या एक मैटेलिक बॉन्ड रिंग। ग्लास फ्रिट सामान्यत: उपयोग नहीं किया जाता है क्युकी इसमें बहुत अधिक दूषित पदार्थ उत्पन्न करना पाया गया और उसमे संचय भी है ।[62]

पतली फिल्म एनकैप्सुलेशन के लिए रेज़ोनेटर की संरचना ऑक्साइड और सिलिकॉन की परतों से ढकी होती है, फिर फ्री स्टैंडिंग रेज़ोनेटर बनाने के लिए आसपास के ऑक्साइड को हटाकर जारी किया जाता है, और अंत में एक अतिरिक्त जमाव के साथ सील कर दिया जाता है।[31]


सर्किट्री

सीएमओएस फाउंड्री में गढ़ी गई मानक मिश्रित-सिग्नल सीएमओएस प्रक्रियाओं के साथ बनाए रखने वाले एएमपीएस, पीएलएल और सहायक सर्किट बनाए जाते हैं।

एक ही आईसी डाई पर सीएमओएस सर्किट के साथ एकीकृत एमईएमएस दोलक का प्रदर्शन किया गया है[9][63]लेकिन आज तक यह सजातीय एकीकरण व्यावसायिक रूप से व्यवहार्य में नहीं है। इसके स्थान पर एमईएमएस अनुनादक यंत्र और सीएमओएस सर्किटरी को भिन्न भिन्न डाई पर बनाना और उन्हें पैकेजिंग फेज में संयोजित करना फायदेमंद है। इस तरह से एक ही पैकेज में कई डाई को मिलाने को विषम एकीकरण या केवल डाई स्टैकिंग कहा जाता है।

पैकेजिंग

पूर्ण किए गए एमईएमएस उपकरण, छोटे चिप-स्तरीय निर्वात कक्षो में संलग्न, उनको वेफर (इलेक्ट्रॉनिक्स) से काटे जाते हैं, अनुनादक डाई को सीएमओएस डाई पर रखा जाता है और ऑसिलेटर बनाने के लिए प्लास्टिक पैकेज में ढाला जाता है।

एमईएमएस ऑसिलेटरों को उन्हीं कारखानों में और उन्हीं उपकरणों और सामग्रियों के साथ पैक किया जाता है जिनका उपयोग मानक आईसी पैकेजिंग के लिए किया जाता है। क्वार्ट्ज दोलक की तुलना में इनकी लागत-प्रभावशीलता और विश्वसनीयता में एक महत्वपूर्ण योगदान है, जो कस्टम-निर्मित कारखानों में विशेष सिरेमिक पैकेज के साथ एकत्रित होते हैं।

पैकेज आयाम और पैड आकार मानक क्वार्ट्ज ऑसिलेटर पैकेज से तालमेल हैं इसलिए एमईएमएस दोलक को बोर्ड संशोधन या फिर से डिजाइन की आवश्यकता के बिना क्वार्ट्ज के लिए डिज़ाइन किए गए पीसीबी पर सीधे सीवन लगाया जा सकता है।

परीक्षण और अंशांकन

उत्पादन परीक्षण एमईएमएस अनुनादक यंत्रों और सीएमओएस आईसी की जांच और अंशांकन करते हैं जिससे यह सत्यापित किया जा सके कि वे विनिर्देशों के अनुसार प्रदर्शन कर रहे हैं और उनकी आवृत्तियों को कम कर रहे हैं। इसके अलावा, कई एमईएमएस दोलक में प्रोग्राम करने योग्य आउटपुट फ़्रीक्वेंसी होती हैं जिन्हें परीक्षण के समय कॉन्फ़िगर किया जा सकता है। निःसंदेह विभिन्न प्रकार के दोलक को विशेष सीएमओएस और एमईएमएस डाई से कॉन्फ़िगर किया गया है। उदाहरण के लिए, कम शक्ति और उच्च प्रदर्शन वाले दोलक एक ही डाई के साथ नहीं बनाए जाते हैं। इसके अलावा, उच्च परिशुद्धता ऑसिलेटरों को प्रायः कम सटीक दोलक की तुलना में अधिक सावधानीपूर्वक अंशांकन की आवश्यकता होती है।

एमईएमएस ऑसिलेटरों का मानक आईसी की तरह ही परीक्षण किया जाता है। पैकेजिंग की तरह, यह मानक आईसी कारखानों में मानक आईसी परीक्षण उपकरण के साथ किया जाता है।

मानक आईसी पैकेजिंग और परीक्षण सुविधाओं (आईसी उद्योग में सबकॉन्स कहा जाता है) का उपयोग करना एमईएमएस दोलक उत्पादन मापनीयता देता है।[46]प्रति दिन करोड़ों आईसी सुविधाएं दीर्घ मात्रा में उत्पादन करने में सक्षम हैं। यह क्षमता कई आईसी कंपनियों द्वारा साझा की जाती है, इसलिए विशिष्ट आईसी के उत्पादन की मात्रा में वृद्धि, या इस मामले में विशिष्ट एमईएमएस ऑसीलेटर, मानक उत्पादन उपकरण आवंटित करने का एक कार्य है। इसके विपरीत, क्वार्ट्ज ऑसिलेटर कारखाने प्रकृति में एकल-फ़ंक्शन हैं, ताकि रैंपिंग उत्पादन के लिए कस्टम उपकरण स्थापित करने की आवश्यकता हो, जो मानक उपकरण आवंटित करने की तुलना में अधिक महंगा और समय लेने वाला होता है।

एमईएमएस और क्वार्ट्ज दोलक की तुलना

एमईएमएस दोलक की तुलना में क्वार्ट्ज दोलक बहुत अधिक मात्रा में बेचे जाते हैं, और इलेक्ट्रॉनिक्स इंजीनियरों द्वारा व्यापक रूप से उपयोग और समझे जाते हैं। इसलिए, क्वार्ट्ज दोलक आधार रेखा प्रदान करते हैं जिससे एमईएमएस दोलक की तुलना की जाती है।[64]

हाल के अग्रिमों ने एमईएमएस-आधारित समय उपकरणों को क्वार्ट्ज उपकरणों के समान प्रदर्शन स्तर और कभी-कभी उन्नत प्रदान करने में सक्षम बनाया है। फेज शोर द्वारा मापी गई एमईएमएस ऑसिलेटर सिग्नल गुणवत्ता अब अधिकांश अनुप्रयोगों के लिए पर्याप्त है। 10 मेगाहर्ट्ज से 10 kHz पर -150 dBc का फेज शोर अब उपलब्ध है, एक स्तर जो सामान्यतः केवल रेडियो फ्रीक्वेंसी (RF) अनुप्रयोगों के लिए आवश्यक होता है। एमईएमएस दोलक अब 1.0 पिकोसेकंड के तहत एकीकृत जिटर के साथ उपलब्ध हैं, जिसे 12 kHz से 20 MHz तक मापा जाता है, एक ऐसे स्तर पर जो सामान्य रूप से उच्च गति वाले सीरियल डेटा लिंक, जैसे SONET और SyncE, और कुछ इंस्ट्रूमेंटेशन अनुप्रयोगों के लिए आवश्यक होता है।

लघु अवधि की स्थिरता, स्टार्टअप समय और बिजली की खपत, क्वार्ट्ज के समान हैं। कुछ मामलों में, एमईएमएस ऑसिलेटर क्वार्ट्ज की तुलना में कम बिजली की खपत दिखाते हैं।

उच्च परिशुद्धता एमईएमएस तापमान- आपूर्ति दोलक (टीसीएक्सओ) को हाल ही में तापमान पर ± 0.1 पीपीएम आवृत्ति स्थिरता के साथ घोषित किया गया है।[65] यह बहुत उच्च अंत क्वार्ट्ज TCXOs और ओवन-नियंत्रित दोलक (OCXOs) को छोड़कर सभी के प्रदर्शन से अधिक है।. एमईएमएस टीसीएक्सओ अब 100 मेगाहर्ट्ज से अधिक आउटपुट फ्रीक्वेंसी के साथ उपलब्ध हैं, एक ऐसी क्षमता जो केवल कुछ विशेष क्वार्ट्ज दोलक (जैसे, इनवर्टेड मेसा) प्रदान कर सकते हैं।

आरटीसी अनुप्रयोगों में एमईएमएस ऑसीलेटर तापमान और सोल्डर-डाउन शिफ्ट पर आवृत्ति स्थिरता के मामले में सर्वश्रेष्ठ क्वार्ट्ज ट्यूनिंग फोर्क से थोड़ा उन्नत प्रदर्शन कर रहे हैं, जबकिसबसे कम बिजली अनुप्रयोगों के लिए क्वार्ट्ज अभी भी उन्नत है।

उपयोगकर्ताओं को आवश्यक विभिन्न प्रकार के विनिर्देशों के लिए क्वार्ट्ज दोलक का निर्माण और स्टॉक करना मुश्किल है। विभिन्न अनुप्रयोगों के लिए विशिष्ट आवृत्तियों, सटीकता स्तरों, सिग्नल गुणवत्ता स्तरों, पैकेज आकारों, आपूर्ति वोल्टेज और विशेष सुविधाओं वाले दोलक की आवश्यकता होती है। इनके संयोजन से भाग संख्याओं का प्रसार होता है जो स्टॉकिंग को अव्यावहारिक बनाता है और लंबे समय तक उत्पादन का नेतृत्व कर सकता है।

एमईएमएस दोलक आपूर्तिकर्ता सर्किट प्रौद्योगिकी का लाभ उठाकर विविधता की समस्या का समाधान करते हैं। जबकि क्वार्ट्ज दोलक सामान्यत: वांछित आउटपुट आवृत्तियों पर संचालित क्वार्ट्ज क्रिस्टल के साथ बनाए जाते हैं[citation needed], एमईएमएस ऑसिलेटर सामान्यत: रेज़ोनेटर को एक आवृत्ति पर चलाते हैं और इसे डिज़ाइन किए गए आउटपुट फ़्रीक्वेंसी से गुणा करते हैं। इस तरह, एमईएमएस अनुनादक यंत्र या सर्किट को फिर से डिजाइन किए बिना सैकड़ों मानक अनुप्रयोग आवृत्तियों और सामयिक कस्टम आवृत्ति प्रदान की जा सकती है।

निःसंदेह, भागों की विभिन्न श्रेणियों के लिए आवश्यक अनुनादक यंत्र, सर्किट या अंशांकन में अंतर हैं, लेकिन इन श्रेणियों के भीतर आवृत्ति अनुवाद मापदंडों को प्रायः उत्पादन प्रक्रिया में देर से एमईएमएस ऑसिलेटर में प्रोग्राम किया जा सकता है। क्योंकि घटकों को प्रक्रिया में देर तक विभेदित नहीं किया जाता है, इसलिए लीड समय कुछ सप्ताह कम के लिए हो सकता है । तकनीकी रूप से, क्वार्ट्ज दोलक को सर्किट-केंद्रित प्रोग्रामेबल आर्किटेक्चर के साथ बनाया जा सकता है, जैसे कि एमईएमएस में उपयोग किया जाता है, लेकिन ऐतिहासिक रूप से केवल अल्पसंख्यक ही इस तरह से बनाए गए हैं।

एमईएमएस ऑसिलेटर भी आघात और कंपन के लिए काफी प्रतिरोधी हैं और उन्होंने क्वार्ट्ज से जुड़े उत्पादन की गुणवत्ता के स्तर को उच्च दिखाया है।

क्वार्ट्ज ऑसिलेटर विशिष्ट अनुप्रयोगों में सुरक्षित हैं जहां उपयुक्त एमईएमएस ऑसिलेटर समक्ष नहीं किए गए हैं। उन अनुप्रयोगों में से एक, उदाहरण के लिए, सेल फोन हैंडसेट के लिए वोल्टेज-नियंत्रित टीसीएक्सओ (वीसीटीसीएक्सओ) है। इस एप्लिकेशन को क्षमताओं के लिए एक बहुत विशिष्ट सेट की आवश्यकता होती है जिसके लिए क्वार्ट्ज उत्पादों को अत्यधिक अनुकूलित किया जाता है।

प्रदर्शन रेंज के उच्च सिरों में क्वार्ट्ज दोलक उन्नत हैं। इनमें ओसीएक्सओ सम्मिलित हैं जो प्रति बिलियन (पीपीबी) कुछ भागों के भीतर स्थिरता बनाए रख सकते हैं, और सतह ध्वनिक तरंग (एसएडब्ल्यू) ऑसिलेटर जो उच्च आवृत्तियों पर 100 फेमटोसेकंड के तहत जिटर वितरित कर सकते हैं। अभी तक, एमईएमएस दोलक टीसीएक्सओ उत्पाद श्रेणी में प्रतिस्पर्धा नहीं करते थे, लेकिन नए उत्पाद परिचय ने एमईएमएस दोलक को उस बाजार में ला दिया है।

घड़ी जनरेटर अनुप्रयोगों में क्वार्ट्ज अभी भी प्रमुख है। इन अनुप्रयोगों के लिए अत्यधिक विशिष्ट आउटपुट संयोजनों और कस्टम पैकेजों की आवश्यकता होती है। इन उत्पादों के लिए आपूर्ति श्रृंखला विशिष्ट है और इसमें एमईएमएस ऑसिलेटर आपूर्तिकर्ता सम्मिलित नहीं है।

विशिष्ट अनुप्रयोग

कंप्यूटिंग, उपभोक्ता, नेटवर्किंग, संचार, मोटर वाहन और औद्योगिक प्रणालियों जैसे विभिन्न अनुप्रयोगों में एमईएमएस दोलक क्वार्ट्ज दोलक की स्थान ले रहे हैं।

प्रोग्राम करने योग्य एमईएमएस ऑसीलेटर का उपयोग अधिकांश अनुप्रयोगों में किया जा सकता है जहां पीसीआई-एक्सप्रेस, सैटा, एसएएस, पीसीआई, यूएसबी, गिगाबिट ईथरनेट, एमपीईजी वीडियो और केबल मोडेम जैसे निश्चित आवृत्ति क्वार्ट्ज ऑसीलेटर का उपयोग किया जाता है।

एमईएमएस घड़ी जनरेटर जटिल प्रणालियों में उपयोगी होते हैं जिनके लिए कई आवृत्तियों की आवश्यकता होती है, जैसे डेटा सर्वर और टेलीकॉम स्विच।

एमईएमएस रीयल-टाइम घड़ियों का उपयोग उन प्रणालियों में किया जाता है जिनके लिए सटीक समय मापन की आवश्यकता होती है। गैस और बिजली के लिए स्मार्ट मीटर एक उदाहरण है जो इन उपकरणों की महत्वपूर्ण मात्रा में खपत कर रहा है।

एमईएमएस ऑसिलेटर प्रकार और उनके अनुप्रयोग
उपकरण का प्रकार स्थिरता रेटिंग अनुप्रयोग टिप्पणियाँ
एक्सओ - थरथरानवाला 20 - 100 पीपीएम जिन्हें सामान्य प्रयोजन वाली घड़ी की आवश्यकता होती है, जैसे उपभोक्ता इलेक्ट्रॉनिक्स और कंप्यूटिंग:
  • माइक्रोप्रोसेसरों
  • डिजिटल राज्य मशीनें
  • वीडियो और ऑडियो क्लॉकिंग
  • कम बैंडविड्थ डेटा संचार, उदाहरण के लिए, यूएसबी और ईथरनेट
यह एमईएमएस ऑसिलेटर्स द्वारा आपूर्ति की जाने वाली पहली उत्पाद श्रेणी थी
वीसीएक्सओ - वोल्टेज नियंत्रित ऑसिलेटर <50 पीपीएम इसमें घड़ी सिंक्रनाइज़ेशन:
  • दूरसंचार
  • ब्रॉडबैंड
  • वीडियो
  • इंस्ट्रुमेंटेशन
क्लॉक आउटपुट "खींचने योग्य" हैं, अर्थात, उनकी आवृत्ति को "खींचा" या ठीक किया जा सकता है। वीसीएक्सओ आउटपुट को एनालॉग वोल्टेज इनपुट का उपयोग करके खींचा जा सकता है।
टीसीएक्सओ - तापमान क्षतिपूर्ति थरथरानवाला

और

वीसी-टीसीएक्सओ - वोल्टेज नियंत्रित टीसीएक्सओ

0.5 - 5 पीपीएम उच्च-प्रदर्शन वाले उपकरण जिनके लिए बहुत स्थिर आवृत्तियों की आवश्यकता होती है:
  • नेटवर्किंग
  • बेस स्टेशन
  • femtocels
  • स्मार्ट मीटर
  • जीपीएस सिस्टम
  • मोबाइल सिस्टम
वीसी-टीसीएक्सओ आउटपुट खींचने योग्य हैं
एसएसएक्सओ - स्प्रेड स्पेक्ट्रम ऑसिलेटर 20 - 100 पीपीएम माइक्रोप्रोसेसर-आधारित क्लॉकिंग:
  • डेस्कटॉप पीसी
  • लैपटॉप
  • भंडारण प्रणालियाँ
  • USB
स्प्रेड-स्पेक्ट्रम क्लॉकिंग उन प्रणालियों में ईएमआई को कम करती है जो ऑसिलेटर्स से क्लॉक की जाती हैं
एफएसएक्सओ - फ्रीक्वेंसी सेलेक्ट ऑसिलेटर 20 - 100 पीपीएम जिन्हें फ़्रीक्वेंसी चपलता और मल्टी-प्रोटोकॉल सीरियल इंटरफ़ेस की आवश्यकता होती है। क्लॉक आउटपुट आवृत्तियाँ हार्डवेयर या सीरियल-चयन इनपुट के साथ परिवर्तनीय हैं, बीओएम को कम करती हैं और आपूर्ति श्रृंखला को सरल बनाती हैं
डीसीएक्सओ - डिजिटली नियंत्रित ऑसिलेटर 0.5 - 100 पीपीएम में घड़ी सिंक्रनाइज़ेशन
  • दूरसंचार
  • ब्रॉडबैंड
  • वीडियो
  • इंस्ट्रुमेंटेशन
क्लॉक आउटपुट आवृत्तियों को डिजिटल इनपुट द्वारा खींचा जाता है।

दोलक प्रकार के नाम में "एक्स" मूल रूप से "क्रिस्टल" को दर्शाता है। कुछ निर्माताओं ने एमईएमएस दोलक को सम्मिलित करने के लिए इस परिपाटी को अपनाया है। अन्य क्वार्ट्ज-आधारित दोलक से एमईएमएस-आधारित दोलक को अलग करने के लिए "एक्स" ("वीसीएमओ" बनाम "वीसीएक्सओ") के लिए "एम" को प्रतिस्थापित कर रहे हैं।

सीमाएं

एमईएमएस दोलक हीलियम से हानिकारक रूप से प्रभावित हो सकते हैं। 2018 में एक अस्पताल में एक हीलियम रिसाव के कारण एमईएमएस दोलक का उपयोग करने वाले उपकरणों की बड़े पैमाने पर विफलता हुई। 2% से कम हीलियम सांद्रता को एमईएमएस ऑसिलेटर की पूर्ण विफलता का कारण दिखाया गया है।[66]


यह भी देखें

संदर्भ

List of references:

  1. "संग्रहीत प्रति" (PDF). Archived from the original (PDF) on 2017-02-02. Retrieved 2016-05-07.
  2. https://www.ittc.ku.edu/~jstiles/622/handouts/Oscillators%20A%20Brief%20History.pdf[bare URL PDF]
  3. https://www.ece.cmu.edu/~ee100/docs/Chapter8.pdf[bare URL PDF]
  4. 4.0 4.1 Nathanson, H. C.; Wickstrom, R. A. (1965-08-15). "A resonant-gate silicon surface transistor with high-Q bandpass properties". Applied Physics Letters. AIP Publishing. 7 (4): 84–86. Bibcode:1965ApPhL...7...84N. doi:10.1063/1.1754323. ISSN 0003-6951.
  5. Nathanson, H.C.; Newell, W.E.; Wickstrom, R.A.; Davis, J.R. (1967). "The resonant gate transistor". IEEE Transactions on Electron Devices. Institute of Electrical and Electronics Engineers (IEEE). 14 (3): 117–133. Bibcode:1967ITED...14..117N. doi:10.1109/t-ed.1967.15912. ISSN 0018-9383.
  6. Petersen, K.E. (1978). "Dynamic micromechanics on silicon: Techniques and devices". IEEE Transactions on Electron Devices. Institute of Electrical and Electronics Engineers (IEEE). 25 (10): 1241–1250. Bibcode:1978ITED...25.1241P. doi:10.1109/t-ed.1978.19259. ISSN 0018-9383. S2CID 31025130.
  7. Petersen, K.E. (1982). "Silicon as a mechanical material". Proceedings of the IEEE. Institute of Electrical and Electronics Engineers (IEEE). 70 (5): 420–457. doi:10.1109/proc.1982.12331. ISSN 0018-9219. S2CID 15378788.
  8. Fan, L.-S.; Tai, Y.-C.; Muller, R.S. (1988). "Integrated movable micromechanical structures for sensors and actuators" (PDF). IEEE Transactions on Electron Devices. Institute of Electrical and Electronics Engineers (IEEE). 35 (6): 724–730. Bibcode:1988ITED...35..724F. doi:10.1109/16.2523. ISSN 0018-9383.
  9. 9.0 9.1 9.2 Nguyen, C.T.-C.; Howe, R.T. (1999). "An integrated CMOS micromechanical resonator high-Q oscillator". IEEE Journal of Solid-State Circuits. Institute of Electrical and Electronics Engineers (IEEE). 34 (4): 440–455. Bibcode:1999IJSSC..34..440N. doi:10.1109/4.753677. ISSN 0018-9200.
  10. 10.0 10.1 Koskenvuori, M.; Mattila, T.; Häärä, A.; Kiihamäki, J.; Tittonen, I.; Oja, A.; Seppä, H. (2004). "Long-term stability of single-crystal silicon microresonators". Sensors and Actuators A: Physical. Elsevier BV. 115 (1): 23–27. doi:10.1016/j.sna.2004.03.013. ISSN 0924-4247.
  11. J. Wang, Y. Xie, C.T.-C. Nguyen, “Frequency Tolerance of RF Micromechanical Disk Resonators in Nanocrystalline Diamond and Polysilicon Structural Materials,” IEEE Int. Electron Devices Mtg., pp.291-294, 2005.
  12. G. Piazza, P.J. Stephanou, J.M. Porter, M.B.J. Wijesundara, A.P. Pisano, “Low Motional Resistance Ring-Shaped Contour-Mode Aluminum Nitride Piezoelectric Micromechanical Resonators for UHF Applications,” 18th IEEE International Conference on Micro Electro Mechanical Systems, MEMS’05, pp.20-23, 2005.
  13. Franke, A.E.; Heck, J.M.; Howe, R.T. (2003). "Polycrystalline silicon-germanium films for integrated microsystems". Journal of Microelectromechanical Systems. Institute of Electrical and Electronics Engineers (IEEE). 12 (2): 160–171. doi:10.1109/jmems.2002.805051. ISSN 1057-7157.
  14. F.P. Stratton, D.T. Chang, D.J. Kirby, R.J. Joyce, T.-Y. Hsu, R.L. Kubena, Y.-K. Yong, “A MEMS-Based Quartz Resonator Technology for GHz Applications,” in Proc. IEEE Int. Ultrason., Ferroelect., Freq. Contr. Conf., pp.27-34, 2004.
  15. 15.0 15.1 J. Wang, J.E. Butler, T. Feygelson, C.T.-C. Nguyen, “1.51 GHz Polydiamond Micromechanical Disk Resonator with Impedance-Mismatched Isolating Support,” 17th IEEE International Conference on Micro Electro Mechanical Systems, MEMS’04, pp.641-644, 2004.
  16. Esashi, M.; Sugiyama, S.; Ikeda, K.; Wang, Y.; Miyashita, H. (1998). "Vacuum-sealed silicon micromachined pressure sensors". Proceedings of the IEEE. Institute of Electrical and Electronics Engineers (IEEE). 86 (8): 1627–1639. doi:10.1109/5.704268. ISSN 0018-9219.
  17. M. Lutz, W. Golderer, J. Gerstenmeier, J. Marek, B. Maihofer, S. Mahler, H. Munzel, U. Bischof, “A Precision Yaw Rate Sensor in Silicon Micromachining,” International Conference on Solid State Sensors and Actuators, Transducers '97, v.2, pp.847-850, 1997.
  18. Sparks, Douglas; Massoud-Ansari, Sonbol; Najafi, Nader (2005-06-28). "Long-term evaluation of hermetically glass frit sealed silicon to Pyrex wafers with feedthroughs". Journal of Micromechanics and Microengineering. IOP Publishing. 15 (8): 1560–1564. Bibcode:2005JMiMi..15.1560S. doi:10.1088/0960-1317/15/8/026. ISSN 0960-1317. S2CID 137594750.
  19. Y. T. Cheng, L. Lin, K. Najafi, “Localized Bonding with PSG or Indium Solder as Intermediate Layer,” Twelfth IEEE International Conference on Micro Electro Mechanical Systems, pp.285-289, 1999.
  20. Tsau, C.H.; Spearing, S.M.; Schmidt, M.A. (2002). "Fabrication of wafer-level thermocompression bonds" (PDF). Journal of Microelectromechanical Systems. Institute of Electrical and Electronics Engineers (IEEE). 11 (6): 641–647. doi:10.1109/jmems.2002.805214. ISSN 1057-7157.
  21. C.M. Mastrangelo, R.S. Muller, “Vacuum-Sealed Silicon Micromachined Incandescent Light Source,” Proc. of the International Electron Devices Meeting, pp.503-506, 1989.
  22. K.S. Lebouitz, A. Mazaheri, R.T. Howe, A.P. Pisano, “Vacuum Encapsulation of Resonant Devices Using Permeable Polysilicon,” 12th IEEE International Conference on Micro Electro Mechanical Systems. MEMS'99, pp.470-475, 1999.
  23. A. Partridge, A.E. Rice, T.W. Kenny, M. Lutz, “New Thin Film Epitaxial Polysilicon Encapsulation for Piezoresistive Accelerometers,” 14th IEEE International Conference on Micro Electro Mechanical Systems, MEMS’01, pp.54-59, 2001.
  24. A. Partridge, “Lateral Piezoresistive Accelerometer with Epipoly Encapsulation,” Stanford University Thesis, 2003.
  25. W.T. Park, R.N. Candler, S. Kronmueller, M. Lutz, A. Partridge, G. Yama, T.W. Kenny, “Wafer-Scale Film Encapsulation of Micromachined Accelerometers,” Transducers '03, v.2, pp.1903-1906, 2003.
  26. Stark, B.H.; Najafi, K. (2004). "A Low-Temperature Thin-Film Electroplated Metal Vacuum Package". Journal of Microelectromechanical Systems. Institute of Electrical and Electronics Engineers (IEEE). 13 (2): 147–157. doi:10.1109/jmems.2004.825301. ISSN 1057-7157. S2CID 12098161.
  27. A. Partridge, J. McDonald. “MEMS to Replace Quartz Oscillators as Frequency Sources". NASA Tech Briefs. v.30, n.6, 2006.
  28. Vig, J.R. (1999). "Noise in microelectromechanical system resonators". IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. Institute of Electrical and Electronics Engineers (IEEE). 46 (6): 1558–1565. doi:10.1109/58.808881. ISSN 0885-3010. PMID 18244354. S2CID 35574630.
  29. V. Kaajakari, J. Kiihamaki, A. Oja, H. Seppa, S. Pietikainen, V. Kokkala, H. Kuisma, “Stability of Wafer Level Vacuum Encapsulated Single-Crystal Silicon Resonators,” 13th International Conference on Solid-State Actuators and Microsystems, Transducers’05, pp.916-919, 2005.
  30. A. Partridge, M. Lutz, S. Kronmueller, “Microelectromechanical Systems and Devices having Thin film Encapsulated Mechanical Structures,” US 7075160, 2003.
  31. 31.0 31.1 A. Partridge, M. Lutz, B. Kim, M. Hopcroft, R.N. Candler, T.W. Kenny, K. Petersen, M. Esashi “MEMS Resonators: Getting the Packaging Right,” SEMICON-Japan, 2005.
  32. R.N. Candler, W.T. Park, M. Hopcroft, B. Kim, T.W. Kenny, “Hydrogen Diffusion and Pressure Control of Encapsulated MEMS Resonators,” 13th International Conference on Solid-State Actuators and Microsystems, Transducers’05, pp.920-923, 2005.
  33. Candler, Rob N.; Hopcroft, Matthew A.; Kim, Bongsang; Park, Woo-Tae; Melamud, Renata; et al. (2006). "Long-Term and Accelerated Life Testing of a Novel Single-Wafer Vacuum Encapsulation for MEMS Resonators". Journal of Microelectromechanical Systems. Institute of Electrical and Electronics Engineers (IEEE). 15 (6): 1446–1456. doi:10.1109/jmems.2006.883586. ISSN 1057-7157. S2CID 4999225.
  34. Kim, Bongsang; Candler, Rob N.; Hopcroft, Matthew A.; Agarwal, Manu; Park, Woo-Tae; Kenny, Thomas W. (2007). "Frequency stability of wafer-scale film encapsulated silicon based MEMS resonators". Sensors and Actuators A: Physical. Elsevier BV. 136 (1): 125–131. doi:10.1016/j.sna.2006.10.040. ISSN 0924-4247.
  35. B. Kim, R. Melamud, R.N. Candler, M.A. Hopcroft, C. Jha, S. Chandorkar, T.W. Kenny, “Encapsulated MEMS Resonators — A technology path for MEMS into Frequency Control Applications,” IEEE International Frequency Control Symposium, pp.1-4, 2010.
  36. M.A. Abdelmoneum, M.U. Demirci, Y.-W. Lin, C.T.-C. Nguyen, “Location Dependent Tuning of Vibrating Micromechanical Resonators Via Laser Trimming,” IEEE Int. Ultrason., Ferroelect., Freq. Contr. Conf., pp. 272-279, 2004.
  37. X. Huang, J.D. MacDonald, W-.T. Hsu, “Method and Apparatus for Frequency Tuning of a Micro-Mechanical Resonator,” US 7068126, 2004.
  38. W.-T. Hsu, C.T.-C. Nguyen, “Stiffness-Compensated Temperature-Insensitive Micromechanical Resonators,” 15th IEEE International Conference on Micro Electro Mechanical Systems, MEMS’02, pp.731-734, 2002.
  39. 39.0 39.1 A. Partridge, M. Lutz, “Frequency and/or Phase Compensated Micromechanical Oscillator,” US 6995622, 2004.
  40. 40.0 40.1 W.-T. Hsu, A.R. Brown, K. Cioffi, “A Programmable MEMS FSK Transmitter". Solid-State Circuits conference, ISSCC’06, sec.16.2, 2006.
  41. Leeson, D.B. (1966). "A simple model of feedback oscillator noise spectrum". Proceedings of the IEEE. Institute of Electrical and Electronics Engineers (IEEE). 54 (2): 329–330. doi:10.1109/proc.1966.4682. ISSN 0018-9219.
  42. Duwel, Amy; Candler, Rob N.; Kenny, Thomas W.; Varghese, Mathew (2006). "Engineering MEMS Resonators With Low Thermoelastic Damping". Journal of Microelectromechanical Systems. Institute of Electrical and Electronics Engineers (IEEE). 15 (6): 1437–1445. doi:10.1109/jmems.2006.883573. ISSN 1057-7157. S2CID 45644755.
  43. Candler, R.N.; Duwel, A.; Varghese, M.; Chandorkar, S.A.; Hopcroft, M.A.; et al. (2006). "Impact of Geometry on Thermoelastic Dissipation in Micromechanical Resonant Beams". Journal of Microelectromechanical Systems. Institute of Electrical and Electronics Engineers (IEEE). 15 (4): 927–934. doi:10.1109/jmems.2006.879374. ISSN 1057-7157. S2CID 5001845.
  44. Ren, Z.; Nguyen, C.T.-C. (2004). "1.156-GHz self-aligned vibrating micromechanical disk resonator". IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. Institute of Electrical and Electronics Engineers (IEEE). 51 (12): 1607–1628. doi:10.1109/tuffc.2004.1386679. ISSN 0885-3010. PMID 15690722. S2CID 9498440.
  45. R.A. Brennen, A.P. Pisano, W.C. Tang, “Multiple Mode Micromechanical Resonators,” IEEE International Conference on Micro Electro Mechanical Systems, pp.9-14, 1990.
  46. 46.0 46.1 W.C. Tang, C.T.-C. Nguyen, R.T. Howe, “Laterally Driven Polysilicon Resonant Microstructures,” Tech. Dig., IEEE Micro Electro Mech. Syst. Workshop, pp.53-59, 1989.
  47. Pourkamali, S.; Hao, Z.; Ayazi, F. (2004). "VHF Single Crystal Silicon Capacitive Elliptic Bulk-Mode Disk Resonators—Part II: Implementation and Characterization". Journal of Microelectromechanical Systems. Institute of Electrical and Electronics Engineers (IEEE). 13 (6): 1054–1062. doi:10.1109/jmems.2004.838383. ISSN 1057-7157. S2CID 14884922.
  48. Kaajakari, V.; Koskinen, J.K.; Mattila, T. (2005). "Phase noise in capacitively coupled micromechanical oscillators". IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. Institute of Electrical and Electronics Engineers (IEEE). 52 (12): 2322–2331. doi:10.1109/tuffc.2005.1563277. ISSN 0885-3010. PMID 16463500. S2CID 27106479.
  49. S. Lee, C.T.-C. Nguyen, “Mechanically-Coupled Micromechanical Arrays for Improved Phase Noise,” IEEE Int. Ultrason., Ferroelect., Freq. Contr. Conf., pp.280-286, 2004.
  50. Melamud, R.; Chandorkar, S.A.; Salvia, J.C.; Bahl, G.; Hopcroft, M.A.; Kenny, T.W. (2009). "Temperature-Insensitive Composite Micromechanical Resonators". Journal of Microelectromechanical Systems. Institute of Electrical and Electronics Engineers (IEEE). 18 (6): 1409–1419. doi:10.1109/jmems.2009.2030074. ISSN 1057-7157. S2CID 23114238.
  51. Salvia, James C.; Melamud, Renata; Chandorkar, Saurabh A.; Lord, Scott F.; Kenny, Thomas W. (2010). "Real-Time Temperature Compensation of MEMS Oscillators Using an Integrated Micro-Oven and a Phase-Locked Loop". Journal of Microelectromechanical Systems. Institute of Electrical and Electronics Engineers (IEEE). 19 (1): 192–201. doi:10.1109/jmems.2009.2035932. ISSN 1057-7157. S2CID 36937985.
  52. "SiTime Introduces Industry's First MEMS VCTCXO with ±0.5 PPM Stability". Sitime.com. 2011-07-11. Retrieved 2011-11-10.
  53. M.A.P. Pertijs, K.A.A. Makinwa, J.H. Huijsing, “A CMOS Temperature Sensor with a 3s Inaccuracy of ±0.1 °C from -55 °C to 125 °C,” J. Solid-State Circuits, v.40, is.12, pp.2805-2815, 2005.
  54. 54.0 54.1 Perrott, Michael H.; Pamarti, Sudhakar; Hoffman, Eric G.; Lee, Fred S.; Mukherjee, Shouvik; et al. (2010). "A Low Area, Switched-Resistor Based Fractional-N Synthesizer Applied to a MEMS-Based Programmable Oscillator". IEEE Journal of Solid-State Circuits. Institute of Electrical and Electronics Engineers (IEEE). 45 (12): 2566–2581. Bibcode:2010IJSSC..45.2566P. doi:10.1109/jssc.2010.2076570. ISSN 0018-9200. S2CID 15063350.
  55. S. Tabatabaei, A. Partridge, “Silicon MEMS Oscillators for High-Speed Digital Systems,” IEEE Micro, v.30, issue.2, pp.80-89, 2010.
  56. 56.0 56.1 F.S. Lee, J. Salvia, C. Lee, S. Mukherjee, R. Melamud, N. Arumugam, S. Pamarti, C. Arft, P. Gupta, S. Tabatabaei, B. Garlepp, H.-C. Lee, A. Partridge, M.H. Perrott, F. Assaderaghi, “A Programmable MEMS-Based Clock Generator with Sub-ps Jitter Performance,” VLSI, 2011.
  57. "CMOS उत्पादों के लिए CMOS समय". Discera. Retrieved 2011-11-10.
  58. "Sand 9". Sand 9. Archived from the original on November 4, 2011. Retrieved 2011-11-10.
  59. "VTI | High accuracy motion sensors". Vti.fi. Archived from the original on October 30, 2011. Retrieved 2011-11-10.
  60. "SiTime Ships 50 Million Units of its MEMS-based Oscillators, Clock Generators and Resonators". Sitime.com. 2011-06-06. Retrieved 2011-11-10.
  61. Nguyen, Clark (2007). "MEMS technology for timing and frequency control". IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. Institute of Electrical and Electronics Engineers (IEEE). 54 (2): 251–270. doi:10.1109/tuffc.2007.240. ISSN 0885-3010. PMID 17328323. S2CID 13570050.
  62. W.-T. Hsu. “Recent Progress in Silicon MEMS Oscillators". 40th Precision Time and Time Interval Meeting, 2008.
  63. M. Lutz, A. Partridge, P. Gupta, N. Buchan, E. Klaassen, J. McDonald, K. Petersen. “MEMS Oscillators for High Volume Commercial Applications". 15th International Conference on Solid-State Actuators and Microsystems, Transducers’07, pp.49-52, 2007.
  64. Lam, C. S. "A review of the recent development of MEMS and crystal oscillators and their impacts on the frequency control products industry." Ultrasonics Symposium, 2008. IUS 2008. IEEE. IEEE, 2008.
  65. Meisam H. Roshan, "Dual-MEMS-Resonator Temperature-to-Digital Converter with 40μK resolution and FOM of 0.12pJK2", ISSCC 2016
  66. "iPhones हीलियम से एलर्जी है". 2018-10-30. Retrieved 2018-11-02.