गणित का मॉडल: Difference between revisions
No edit summary |
No edit summary |
||
(38 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{other uses}} | {{other uses}} | ||
{{short description|Description of a system using mathematical concepts and language}} | {{short description|Description of a system using mathematical concepts and language}} '''गणितीय मॉडल''', गणितीय अवधारणाओं और भाषा का उपयोग करने वाली एक प्रणाली का विवरण है। गणितीय मॉडल को विकसित करने की प्रक्रिया को गणितीय मॉडलिंग कहा जाता है। गणितीय मॉडल प्राकृतिक विज्ञान (जैसे भौतिकी, जीव विज्ञान, पृथ्वी विज्ञान, रसायन विज्ञान) और इंजीनियरिंग विषयों (जैसे कंप्यूटर विज्ञान, इलेक्ट्रिकल इंजीनियरिंग) के साथ-साथ गैर-भौतिक प्रणालियों जैसे सामाजिक विज्ञान (जैसे अर्थशास्त्र, मनोविज्ञान, समाजशास्त्र, राजनीति विज्ञान) में उपयोग किए जाते हैं। व्यवसाय या सैन्य संचालन में समस्याओं को हल करने के लिए गणितीय मॉडल का उपयोग संचालन अनुसंधान के क्षेत्र का एक बड़ा हिस्सा है। गणितीय मॉडल का उपयोग संगीत ,<ref> D. Tymoczko, A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice (Oxford Studies in Music Theory), Oxford University Press; Illustrated Edition (March 21, 2011), {{ISBN|978-0195336672}}</ref>भाषा विज्ञान,<ref> Andras Kornai, | ||
Mathematical Linguistics (Advanced Information and Knowledge Processing),Springer, {{ISBN|978-1849966948}}</ref>तथा | Mathematical Linguistics (Advanced Information and Knowledge Processing),Springer, {{ISBN|978-1849966948}}</ref>तथा दर्शन में भी किया जाता हैl (उदाहरण के लिए, विश्लेषणात्मक दर्शन में गहन रूप से किया जाता हैl) | ||
दर्शन (उदाहरण के लिए, विश्लेषणात्मक दर्शन में गहन रूप से) | |||
मॉडल किसी प्रणाली को समझाने और विभिन्न घटकों के प्रभावों का अध्ययन करने और व्यवहार के बारे में पूर्वाकलन को करने में मदद कर सकता है। | |||
== एक गणितीय मॉडल के तत्व == | == एक गणितीय मॉडल के तत्व == | ||
गणितीय मॉडल कई रूप ले सकते हैं, जिसमें डायनेमिक सिस्टम, सांख्यिकीय मॉडल, अंतर समीकरण या गेम थियोरेटिक मॉडल शामिल | गणितीय मॉडल कई रूप ले सकते हैं, जिसमें डायनेमिक सिस्टम (गतिशील प्रणाली), सांख्यिकीय मॉडल, अंतर समीकरण या गेम थियोरेटिक(खेल-सैद्धांतिक) मॉडल शामिल हैं। ये और अन्य प्रकार के मॉडल ओवरलैप(अतिव्यापन) कर सकते हैं, एक दिए गए मॉडल के साथ विभिन्न प्रकार के अमूर्त संरचनाएं शामिल हैं। सामान्य तौर पर, गणितीय मॉडल में तार्किक मॉडल शामिल हो सकते हैं। कई मामलों में, एक वैज्ञानिक क्षेत्र की गुणवत्ता इस बात पर निर्भर करती है, कि सैद्धांतिक पक्ष पर गणितीय मॉडल कितनी अच्छी तरह से विकसित किए गए हैं जो दोहराए जाने वाले प्रयोगों के परिणामों से सहमत हैं। सैद्धांतिक गणितीय मॉडल और प्रयोगात्मक माप के बीच अनुबंध की कमी अक्सर महत्वपूर्ण प्रगति की ओर जाता है क्योंकि बेहतर सिद्धांत विकसित होते हैं। | ||
भौतिक विज्ञान में, एक पारंपरिक गणितीय मॉडल में निम्नलिखित तत्वों में से अधिकांश शामिल हैं: | भौतिक विज्ञान में, एक पारंपरिक गणितीय मॉडल में निम्नलिखित तत्वों में से अधिकांश शामिल हैं: | ||
# समीकरणों संचालन | # समीकरणों का संचालन | ||
# पूरक उप-मॉडल | # पूरक उप-मॉडल | ||
## समीकरणों को परिभाषित करना | ## समीकरणों को परिभाषित करना | ||
Line 19: | Line 17: | ||
# मान्यताएं और प्रतिबंध | # मान्यताएं और प्रतिबंध | ||
## प्रारंभिक और सीमा की स्थिति | ## प्रारंभिक और सीमा की स्थिति | ||
## शास्त्रीय बाधाओं और | ## शास्त्रीय बाधाओं और गतिज समीकरण | ||
== वर्गीकरण == | == वर्गीकरण == | ||
गणितीय मॉडल विभिन्न प्रकार के हैं: | गणितीय मॉडल विभिन्न प्रकार के हैं: | ||
* रैखिक बनाम | * '''रैखिक बनाम अरैखिक''': यदि एक गणितीय मॉडल में सभी ऑपरेटर रैखिकता का प्रदर्शन करते हैं, तो परिणामी गणितीय मॉडल को रैखिक के रूप में परिभाषित किया जाता है, अन्यथा एक मॉडल को अरैखिक माना जाता है। रैखिकता और अरैखिकता की परिभाषा संदर्भ पर निर्भर है, और रैखिक मॉडल में उनमें अरैखिकता अभिव्यक्ति हो सकती है। उदाहरण के लिए, एक सांख्यिकीय रैखिक मॉडल में, यह माना जाता है कि एक संबंध मापदंडों में रैखिक है, लेकिन यह प्रेडिक्टर वैरिएबल(एक स्वतंत्र वैरिएबल को दिया गया नाम है जिसका इस्तेमाल रिग्रेशन एनालिसिस में किया जाता है) में अरैखिक हो सकता है। इसी तरह, एक अवकल समीकरण को रैखिक कहा जाता है यदि इसे रैखिक अवकल संकारक के साथ लिखा जा सकता है, लेकिन अभी भी इसमें अरैखिकता हो सकती है। एक गणितीय प्रोग्रामिंग मॉडल में, यदि उद्देश्य फलन और बाधाओं (एक अनुकूलन समस्या की स्थिति है जिसे समाधान को संतुष्ट करना चाहिए) को पूरी तरह से रैखिक समीकरणों द्वारा दर्शाया जाता है, तो मॉडल को एक रैखिक मॉडल के रूप में माना जाता है। यदि एक या अधिक उद्देश्य कार्यों या बाधाओं को एक अरैखिक समीकरण के साथ दर्शाया जाता है, तो मॉडल को एक अरैखिक मॉडल के रूप में जाना जाता है। <br> रैखिक संरचना का तात्पर्य है कि एक समस्या को सरल भागों में विघटित किया जा सकता है जिसका स्वतंत्र रूप से इलाज किया जा सकता है और/या एक अलग पैमाने पर विश्लेषण किया जा सकता है और प्राप्त परिणाम प्रारंभिक समस्या के लिए मान्य रहेंगे जब पुन: संयोजित और पुनर्विक्रय किया जाएगा। हालांकि अपवाद हैं, अरैखिक सिस्टम और मॉडल रैखिक लोगों की तुलना में अध्ययन करना अधिक कठिन होते हैं। अरैखिक समस्याओं के लिए एक सामान्य दृष्टिकोण रैखिककरण है, लेकिन यह समस्याग्रस्त हो सकता है यदि कोई अपरिवर्तनीयता जैसे पहलुओं का अध्ययन करने की कोशिश कर रहा है, जो कि दृढ़ता से अरैखिकता से बंधे हैं। | ||
* स्टेटिक बनाम डायनामिक: | * स्टेटिक बनाम डायनामिक(स्थिर बनाम गतिशील):एक गतिशील मॉडल प्रणाली की स्थिति में परिवर्तन समय पर निर्भर है, जबकि एक ''स्टेटिक '' (या स्थिर अवस्था) मॉडल इक्विलिब्रियम(संतुलन) में सिस्टम की गणना करता है, और इस प्रकार समय अपरिवर्तनीय है। गतिशील मॉडल आमतौर पर अवकल समीकरण या अंतर समीकरणों द्वारा दर्शाया जाता है। | ||
* स्पष्ट बनाम निहित: यदि समग्र मॉडल के सभी | * स्पष्ट बनाम निहित: यदि समग्र मॉडल के सभी आगत पैरामीटर ज्ञात हैं, और निर्गत मापदंडों की गणना एक परिमित श्रृंखला द्वारा की जा सकती है, तो मॉडल को 'स्पष्ट' 'कहा जाता है। लेकिन कभी -कभी यह'' निर्गत '' पैरामीटर होता है जो ज्ञात होते हैं, और इसी आदानों को एक पुनरावृत्त प्रक्रिया द्वारा हल किया जाना चाहिए, जैसे कि न्यूटन की विधि या ब्रायडेन की विधि। ऐसे मामले में मॉडल को ''निहित '' कहा जाता है। उदाहरण के लिए, एक जेट इंजन के भौतिक गुणों जैसे टरबाइन और नोजल कंठ के क्षेत्रों को स्पष्ट रूप से गणना की जा सकती है, एक विशिष्ट उड़ान स्थिति और बिजली की स्थापना पर एक डिजाइन ऊष्मागतिकी चक्र (वायु और ईंधन प्रवाह दर, दबाव और तापमान) को देखते हुए, लेकिन इंजन के ऑपरेटिंग चक्रों पर अन्य उड़ान स्थितियों और बिजली सेटिंग्स पर स्पष्ट रूप से निरंतर भौतिक गुणों से गणना नहीं की जा सकती है। | ||
* असतत बनाम निरंतर: एक असतत मॉडल वस्तुओं को असतत मानता है, जैसे कि आणविक मॉडल में कण या सांख्यिकीय मॉडल में | * असतत बनाम निरंतर: एक असतत मॉडल वस्तुओं को असतत मानता है, जैसे कि आणविक मॉडल में कण या सांख्यिकीय मॉडल में अवस्थाओ, जबकि एक निरंतर मॉडल एक निरंतर तरीके से वस्तुओं का प्रतिनिधित्व करता है, जैसे कि पाइप प्रवाह में द्रव का वेग क्षेत्र, एक ठोस और विद्युत क्षेत्र में तापमान और तनाव जो एक बिंदु चार्ज के कारण पूरे मॉडल पर लगातार लागू होता है। | ||
* नियतात्मक बनाम संभाव्य (स्टोकेस्टिक): एक नियतात्मक मॉडल वह है जिसमें चर राज्यों के प्रत्येक सेट को मॉडल में मापदंडों द्वारा और इन चर के पिछले | * नियतात्मक बनाम संभाव्य (स्टोकेस्टिक): एक नियतात्मक मॉडल वह है जिसमें चर राज्यों के प्रत्येक सेट को मॉडल में मापदंडों द्वारा और इन चर के पिछले अवस्थाओ के सेट द्वारा निर्धारित किया जाता है; इसलिए, एक नियतात्मक मॉडल हमेशा प्रारंभिक स्थितियों के दिए गए सेट के लिए उसी तरह करता है। इसके विपरीत, एक स्टोकेस्टिक मॉडल में - जिसे आमतौर पर एक सांख्यिकीय मॉडल कहा जाता है -डोमनेस मौजूद है, और चर राज्यों को अद्वितीय मूल्यों द्वारा वर्णित नहीं किया जाता है, बल्कि संभावना वितरण द्वारा किया जाता है। | ||
* डिडक्टिव, इंडक्टिव, या फ्लोटिंग: | * डिडक्टिव (आगमन), इंडक्टिव(निगमन), या फ्लोटिंग: आगमनात्मक मॉडल एक सिद्धांत पर आधारित एक तार्किक संरचना है। एक प्रेरक मॉडल प्रयोगसिद्ध निष्कर्षों और उनसे सामान्यीकरण से उत्पन्न होता है।फ्लोटिंग मॉडल न तो सिद्धांत पर टिकी हुई है और न ही अवलोकन, लेकिन केवल अपेक्षित संरचना का आह्वान है।अर्थशास्त्र के बाहर सामाजिक विज्ञान में गणित के अनुप्रयोग को निराधार मॉडल के लिए आलोचना की गई है।<ref>{{cite book |author-link=Stanislav Andreski |first=Stanislav |last=Andreski |year=1972 |title=Social Sciences as Sorcery |publisher=[[St. Martin’s Press]] |isbn=0-14-021816-5 }}</ref>विज्ञान में आपदा सिद्धांत के अनुप्रयोग को एक फ्लोटिंग मॉडल के रूप में चित्रित किया गया है।<ref>{{cite book |author-link=Clifford Truesdell |first=Clifford |last=Truesdell |year=1984 |title=An Idiot's Fugitive Essays on Science |pages=121–7 |publisher=Springer |isbn=3-540-90703-3 }}</ref> | ||
*गेम थ्योरी में उपयोग किए जाने वाले रणनीतिक बनाम गैर-रणनीतिक मॉडल इस अर्थ में अलग-अलग हैं कि वे असंगत प्रोत्साहन के साथ एजेंटों को मॉडल करते हैं, जैसे कि प्रतिस्पर्धी प्रजातियों या नीलामी में बोली लगाने वाले। रणनीतिक मॉडल यह मानते हैं कि खिलाड़ी स्वायत्त निर्णय निर्माता हैं जो तर्कसंगत रूप से उन कार्यों का चयन करते हैं जो उनके उद्देश्य कार्य को अधिकतम करते हैं। रणनीतिक मॉडल का उपयोग करने की एक महत्वपूर्ण चुनौती नैश इक्विलिब्रियम (नैस का संतुलन) जैसे समाधान अवधारणाओं को परिभाषित और अभिकलन है।रणनीतिक मॉडल की एक दिलचस्प विशेषता यह है कि वे खिलाड़ियों के व्यवहार से खेल के नियमों के बारे में तर्क करते हैं।<ref>Li, C., Xing, Y., He, F., & Cheng, D. (2018). A Strategic Learning Algorithm for State-based Games. ArXiv.</ref> | |||
== निर्माण == | == निर्माण == | ||
व्यवसाय और इंजीनियरिंग में, एक निश्चित | व्यवसाय और इंजीनियरिंग में, एक निश्चित निर्गत को अधिकतम करने के लिए गणितीय मॉडल का उपयोग किया जा सकता है। विचाराधीन सिस्टम को कुछ आगत की आवश्यकता होगी। निर्गत से संबंधित आगत से संबंधित सिस्टम अन्य चर पर भी निर्भर करता है: निर्णय चर, अवस्था चर, बहिर्जात चर और यादृच्छिक चर। | ||
निर्णय चर को कभी -कभी स्वतंत्र चर के रूप में जाना जाता है। बहिर्जात चर को कभी -कभी मापदंडों या स्थिरांक के रूप में जाना जाता | निर्णय चर को कभी -कभी स्वतंत्र चर के रूप में जाना जाता है। बहिर्जात चर को कभी -कभी मापदंडों या स्थिरांक के रूप में जाना जाता है।चर एक दूसरे से स्वतंत्र नहीं हैं क्योंकि राज्य चर निर्णय, इनपुट, यादृच्छिक और बहिर्जात चर पर निर्भर हैं। इसके अलावा, निर्गत चर सिस्टम की स्थिति (अवस्था चर द्वारा दर्शाया गया) पर निर्भर हैं। | ||
सिस्टम और उसके उपयोगकर्ताओं के उद्देश्य और बाधाओं को | सिस्टम और उसके उपयोगकर्ताओं के उद्देश्य और बाधाओं को निर्गत चर या अवस्था चर के कार्यों के रूप में दर्शाया जा सकता है। उद्देश्य कार्य मॉडल के उपयोगकर्ता के परिप्रेक्ष्य पर निर्भर करेगा। संदर्भ के आधार पर, एक उद्देश्य फ़ंक्शन को प्रदर्शन के सूचकांक के रूप में भी जाना जाता है, क्योंकि यह उपयोगकर्ता के लिए रुचि के कुछ उपाय है। यद्यपि किसी मॉडल के उद्देश्य कार्यों और बाधाओं की संख्या की कोई सीमा नहीं है, एक मॉडल का उपयोग करना या अनुकूलित करना संख्या बढ़ने के साथ मॉडल को अधिक शामिल (कम्प्यूटेशनल) हो सकता है। | ||
उदाहरण के लिए, अर्थशास्त्री अक्सर | उदाहरण के लिए, अर्थशास्त्री अक्सर आगत-निर्गत मॉडल का उपयोग करते समय रैखिक बीजगणित लागू करते हैं। जटिल गणितीय मॉडल जिनमें कई चर होते हैं, वे वैक्टर के उपयोग से समेकित हो सकते हैं जहां एक प्रतीक कई चर का प्रतिनिधित्व करता है। | ||
=== एक प्राथमिक जानकारी === | === एक प्राथमिक जानकारी === | ||
[[File:Blackbox3D-withGraphs.png|thumb|480px|एक विशिष्ट ब्लैक बॉक्स दृष्टिकोण के साथ कुछ का विश्लेषण करने के लिए, केवल उत्तेजना/प्रतिक्रिया के व्यवहार को (अज्ञात) बॉक्स का अनुमान लगाने के लिए जिम्मेदार ठहराया जाएगा।इस ब्लैक बॉक्स सिस्टम का सामान्य प्रतिनिधित्व बॉक्स में केंद्रित एक डेटा प्रवाह आरेख है।]] | [[File:Blackbox3D-withGraphs.png|thumb|480px|एक विशिष्ट ब्लैक बॉक्स दृष्टिकोण के साथ कुछ का विश्लेषण करने के लिए, केवल उत्तेजना/प्रतिक्रिया के व्यवहार को (अज्ञात) बॉक्स का अनुमान लगाने के लिए जिम्मेदार ठहराया जाएगा।इस ब्लैक बॉक्स सिस्टम का सामान्य प्रतिनिधित्व बॉक्स में केंद्रित एक डेटा प्रवाह आरेख है।]] | ||
गणितीय मॉडलिंग समस्याओं को अक्सर ब्लैक बॉक्स या व्हाइट बॉक्स मॉडल में वर्गीकृत किया जाता है, सिस्टम पर एक प्राथमिक जानकारी कितनी उपलब्ध है। एक ब्लैक-बॉक्स मॉडल एक ऐसी प्रणाली है जिसमें कोई प्राथमिक जानकारी उपलब्ध नहीं है। एक व्हाइट-बॉक्स मॉडल (जिसे ग्लास बॉक्स या क्लियर बॉक्स भी कहा जाता है) एक ऐसी प्रणाली है जहां सभी आवश्यक जानकारी उपलब्ध है। व्यावहारिक रूप से सभी सिस्टम ब्लैक-बॉक्स और व्हाइट-बॉक्स मॉडल के बीच कहीं हैं, इसलिए यह अवधारणा केवल यह तय करने के लिए एक सहज ज्ञान युक्त मार्गदर्शिका के रूप में उपयोगी है कि कौन | गणितीय मॉडलिंग समस्याओं को अक्सर ब्लैक बॉक्स या व्हाइट बॉक्स मॉडल में वर्गीकृत किया जाता है, इस आधार पर कि सिस्टम पर एक प्राथमिक जानकारी कितनी उपलब्ध है। एक ब्लैक-बॉक्स मॉडल एक ऐसी प्रणाली है जिसमें कोई प्राथमिक जानकारी उपलब्ध नहीं है। एक व्हाइट-बॉक्स मॉडल (जिसे ग्लास बॉक्स या क्लियर बॉक्स भी कहा जाता है) एक ऐसी प्रणाली है जहां सभी आवश्यक जानकारी उपलब्ध है। व्यावहारिक रूप से सभी सिस्टम ब्लैक-बॉक्स और व्हाइट-बॉक्स मॉडल के बीच कहीं हैं, इसलिए यह अवधारणा केवल यह तय करने के लिए एक सहज ज्ञान युक्त मार्गदर्शिका के रूप में उपयोगी है कि कौन सी पद्धति लेना है। | ||
आमतौर पर मॉडल को अधिक सटीक बनाने के लिए जितना संभव हो उतना प्राथमिकता की जानकारी का उपयोग करना बेहतर होता है। इसलिए, व्हाइट-बॉक्स मॉडल को आमतौर पर आसान माना जाता है, क्योंकि यदि आपने जानकारी का सही उपयोग किया है, तो मॉडल सही तरीके से व्यवहार करेगा। अक्सर एक प्राथमिकता की जानकारी विभिन्न चर से संबंधित कार्यों के प्रकार को जानने के रूपों में आती है। उदाहरण के लिए, यदि हम एक मॉडल बनाते हैं कि एक मानव प्रणाली में एक दवा कैसे काम करती है, तो हम जानते हैं कि आमतौर पर रक्त में दवा की मात्रा एक घातीय क्षय कार्य है। लेकिन हम अभी भी कई अज्ञात मापदंडों के साथ छोड़ दिए गए हैं; दवा की मात्रा कितनी तेजी से क्षय करती है, और रक्त में दवा की प्रारंभिक मात्रा क्या है? यह उदाहरण | आमतौर पर, मॉडल को अधिक सटीक बनाने के लिए जितना संभव हो उतना प्राथमिकता की जानकारी का उपयोग करना बेहतर होता है। इसलिए, व्हाइट-बॉक्स मॉडल को आमतौर पर आसान माना जाता है, क्योंकि यदि आपने जानकारी का सही उपयोग किया है, तो मॉडल सही तरीके से व्यवहार करेगा। अक्सर एक प्राथमिकता की जानकारी विभिन्न चर से संबंधित कार्यों के प्रकार को जानने के रूपों में आती है। उदाहरण के लिए, यदि हम एक मॉडल बनाते हैं कि एक मानव प्रणाली में एक दवा कैसे काम करती है, तो हम जानते हैं कि आमतौर पर रक्त में दवा की मात्रा एक घातीय क्षय कार्य है। लेकिन हम अभी भी कई अज्ञात मापदंडों के साथ छोड़ दिए गए हैं; दवा की मात्रा कितनी तेजी से क्षय करती है, और रक्त में दवा की प्रारंभिक मात्रा क्या है?इसलिए यह उदाहरण पूरी तरह से सफेद-बॉक्स मॉडल नहीं है। मॉडल का उपयोग करने से पहले इन मापदंडों का अनुमान कुछ साधनों के माध्यम से किया जाना चाहिए। | ||
ब्लैक-बॉक्स मॉडल में, उन कार्यों में चर और संख्यात्मक मापदंडों के बीच संबंधों के कार्यात्मक रूप दोनों का अनुमान लगाने की कोशिश करता है। एक प्राथमिक जानकारी का उपयोग करके हम समाप्त कर सकते हैं, उदाहरण के लिए, कार्यों के एक सेट के साथ जो संभवतः सिस्टम का पर्याप्त रूप से वर्णन कर सकता है। यदि कोई प्राथमिक जानकारी नहीं है, तो हम सभी अलग -अलग मॉडलों को कवर करने के लिए कार्यों को सामान्य रूप से उपयोग करने का प्रयास करेंगे। ब्लैक-बॉक्स मॉडल के लिए अक्सर इस्तेमाल किया जाने वाला दृष्टिकोण तंत्रिका नेटवर्क हैं जो आमतौर पर आने वाले डेटा के बारे में धारणा नहीं बनाते हैं। वैकल्पिक रूप से | ब्लैक-बॉक्स मॉडल में, उन कार्यों में चर और संख्यात्मक मापदंडों के बीच संबंधों के कार्यात्मक रूप दोनों का अनुमान लगाने की कोशिश करता है। एक प्राथमिक जानकारी का उपयोग करके हम समाप्त कर सकते हैं, उदाहरण के लिए, कार्यों के एक सेट के साथ जो संभवतः सिस्टम का पर्याप्त रूप से वर्णन कर सकता है। यदि कोई प्राथमिक जानकारी नहीं है, तो हम सभी अलग-अलग मॉडलों को कवर करने के लिए कार्यों को सामान्य रूप से उपयोग करने का प्रयास करेंगे। ब्लैक-बॉक्स मॉडल के लिए अक्सर इस्तेमाल किया जाने वाला दृष्टिकोण तंत्रिका नेटवर्क हैं जो आमतौर पर आने वाले डेटा के बारे में धारणा नहीं बनाते हैं। वैकल्पिक रूप से NARMAX (अरैखिक ऑटोरेग्रेसिव मूविंग एवरेज मॉडल विद एक्सोजेनस इनपुट्स) एल्गोरिदम जो कि अरैखिक सिस्टम पहचान के हिस्से के रूप में विकसित किए गए थे<ref name="SAB1">Billings S.A. (2013), ''Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains'', Wiley.</ref>मॉडल की शर्तों का चयन करने, मॉडल संरचना का निर्धारण करने के लिए उपयोग किया जा सकता है, और सहसंबद्ध और शोर की उपस्थिति में अज्ञात मापदंडों का अनुमान लगाया जा सकता है।तंत्रिका नेटवर्क की तुलना में NARMAX मॉडल का लाभ यह है कि NARMAX ऐसे मॉडल का उत्पादन करता है जो नीचे लिखे जा सकते हैं और अंतर्निहित प्रक्रिया से संबंधित हैं, जबकि तंत्रिका नेटवर्क एक सन्निकटन का उत्पादन करते हैं जो अपारदर्शी है। | ||
==== व्यक्तिपरक जानकारी ==== | ==== व्यक्तिपरक जानकारी ==== | ||
कभी -कभी यह एक गणितीय मॉडल में व्यक्तिपरक जानकारी को शामिल करना उपयोगी होता है। यह अंतर्ज्ञान, अनुभव या विशेषज्ञ की राय के आधार पर, या गणितीय रूप की सुविधा के आधार पर किया जा सकता है। बायेसियन सांख्यिकी इस तरह की विषयवस्तु को एक कठोर विश्लेषण में शामिल करने के लिए एक सैद्धांतिक रूपरेखा प्रदान करता है | कभी -कभी यह एक गणितीय मॉडल में व्यक्तिपरक जानकारी को शामिल करना उपयोगी होता है। यह अंतर्ज्ञान, अनुभव या विशेषज्ञ की राय के आधार पर, या गणितीय रूप की सुविधा के आधार पर किया जा सकता है। बायेसियन सांख्यिकी इस तरह की विषयवस्तु को एक कठोर विश्लेषण में शामिल करने के लिए एक सैद्धांतिक रूपरेखा प्रदान करता है, हम एक पूर्व संभावना वितरण (जो व्यक्तिपरक हो सकते हैं) निर्दिष्ट करते हैं, और फिर अनुभवजन्य डेटा के आधार पर इस वितरण को अपडेट करते हैं। | ||
इस तरह के दृष्टिकोण को आवश्यक होने का एक उदाहरण एक ऐसी स्थिति है जिसमें एक प्रयोगकर्ता एक सिक्के को थोड़ा | इस तरह के दृष्टिकोण को आवश्यक होने का एक उदाहरण एक ऐसी स्थिति है जिसमें एक प्रयोगकर्ता एक सिक्के को थोड़ा झुकाता है और इसे एक बार उछालता है, यह रिकॉर्ड करता है कि क्या यह ऊपर आता है, और फिर इस संभावना की भविष्यवाणी करने का कार्य दिया जाता है कि अगला फ्लिप सिर ऊपर आता है। सिक्के को झुकने के बाद, सच संभावना है कि सिक्का ऊपर आ जाएगा अज्ञात है, तो प्रयोगकर्ता को एक निर्णय लेने की आवश्यकता होगी (शायद सिक्के के आकार को देखकर) के बारे में कि पूर्व वितरण का उपयोग क्या है। इस तरह की व्यक्तिपरक जानकारी को शामिल करना संभावना का सटीक अनुमान प्राप्त करने के लिए महत्वपूर्ण हो सकता है। | ||
=== जटिलता === | === जटिलता === | ||
सामान्य तौर पर, मॉडल जटिलता में मॉडल की सादगी और सटीकता के बीच एक | सामान्य तौर पर, मॉडल जटिलता में मॉडल की सादगी और सटीकता के बीच एक समझौताकारी समन्वयन शामिल है। ओकैम का रेजर एक सिद्धांत है जो विशेष रूप से मॉडलिंग के लिए प्रासंगिक है, इसका आवश्यक विचार यह है कि लगभग समान पूर्वानुमान शक्ति वाले मॉडल के बीच, सबसे सरल सबसे वांछनीय है।जबकि अतिरिक्त जटिलता आमतौर पर एक मॉडल के यथार्थवाद में सुधार करती है, यह मॉडल को समझने और विश्लेषण करने में मुश्किल बना सकता है, और संख्यात्मक अस्थिरता सहित संगणनात्मक समस्याओं को भी बना सकता है।थॉमस कुह्न का तर्क है कि जैसे-जैसे विज्ञान आगे बढ़ता है, व्याख्याएं अधिक जटिल हो जाती हैं, इससे पहले कि एक प्रतिमान बदलाव कट्टरपंथी सरलीकरण प्रदान करता है।<ref>{{Cite web|url=https://plato.stanford.edu/entries/thomas-kuhn/|title=Thomas Kuhn|date=13 August 2004|website=Stanford Encyclopedia of Philosophy|access-date=15 January 2019}}</ref> | ||
उदाहरण के लिए, जब एक विमान की उड़ान | उदाहरण के लिए, जब एक विमान की उड़ान की मॉडलिंग करते हैं, तो हम विमान के प्रत्येक यांत्रिक भाग को अपने मॉडल में सन्निहित कर सकते हैं और इस प्रकार सिस्टम के लगभग सफेद-बॉक्स मॉडल का अधिग्रहण करेंगे। हालांकि, इतनी बड़ी मात्रा में विस्तार को जोड़ने की कम्प्यूटेशनल(संगणनात्मक) लागत प्रभावी रूप से इस तरह के मॉडल के उपयोग को बाधित करेगी। इसके अतिरिक्त, एक अत्यधिक जटिल प्रणाली के कारण अनिश्चितता बढ़ जाएगी, क्योंकि प्रत्येक अलग भाग मॉडल में कुछ मात्रा में विचरण को प्रेरित करता है। इसलिए आमतौर पर मॉडल को एक प्रत्यक्ष आकार में कम करने के लिए कुछ अनुमान लगाना उचित है। अधिक मजबूत और सरल मॉडल प्राप्त करने के लिए इंजीनियर अक्सर कुछ अनुमानों को स्वीकार कर सकते हैं। उदाहरण के लिए, न्यूटन का शास्त्रीय यांत्रिकी वास्तविक दुनिया का एक अनुमानित मॉडल है। फिर भी, न्यूटन का मॉडल अधिकांश साधारण जीवन की स्थितियों के लिए काफी पर्याप्त है, अर्थात्, जब तक कि कण गति प्रकाश की गति से काफी कम है, और हम केवल मैक्रो-कणों का अध्ययन करते हैं। | ||
ध्यान दें कि बेहतर सटीकता जरूरी नहीं कि एक बेहतर मॉडल हो। सांख्यिकीय मॉडल ओवरफिटिंग के लिए प्रवण हैं, जिसका अर्थ है कि एक मॉडल को डेटा के लिए बहुत अधिक फिट किया गया है और इसने उन नई घटनाओं के लिए सामान्यीकरण करने की अपनी क्षमता खो दी है जो पहले नहीं देखी गई थीं। | ध्यान दें कि बेहतर सटीकता जरूरी नहीं कि एक बेहतर मॉडल हो। सांख्यिकीय मॉडल ओवरफिटिंग के लिए प्रवण हैं, जिसका अर्थ है कि एक मॉडल को डेटा के लिए बहुत अधिक फिट किया गया है और इसने उन नई घटनाओं के लिए सामान्यीकरण करने की अपनी क्षमता खो दी है जो पहले नहीं देखी गई थीं। | ||
=== प्रशिक्षण और ट्यूनिंग === | === प्रशिक्षण और ट्यूनिंग === | ||
कोई भी मॉडल जो शुद्ध व्हाइट-बॉक्स नहीं है, उसमें कुछ पैरामीटर होते हैं जिनका उपयोग मॉडल को उस सिस्टम के लिए फिट करने के लिए किया जा सकता है जिसका | कोई भी मॉडल जो शुद्ध व्हाइट-बॉक्स नहीं है, उसमें कुछ पैरामीटर होते हैं जिनका उपयोग मॉडल को उस सिस्टम के लिए फिट करने के लिए किया जा सकता है जिसका उपयोग इसका वर्णन करने के लिए किया गया है।यदि मॉडलिंग एक कृत्रिम तंत्रिका नेटवर्क या अन्य मशीन लर्निंग द्वारा किया जाता है, तो मापदंडों के अनुकूलन को प्रशिक्षण कहा जाता है, जबकि मॉडल हाइपरपैरामीटर के अनुकूलन को ट्यूनिंग कहा जाता है और अक्सर क्रॉस-वैलिडेशन (सांख्यिकी) का उपयोग करता है। क्रॉस-वैलिडेशन।<ref>{{Cite web | title = Machine Learning Lecture | url = http://users.sussex.ac.uk/~christ/crs/ml/lec03a.html | last = Thornton | first = Chris | access-date = 2019-02-06}}</ref> स्पष्ट रूप से दिए गए गणितीय कार्यों के माध्यम से अधिक पारंपरिक मॉडलिंग में, पैरामीटर अक्सर वक्र फिटिंग द्वारा निर्धारित किए जाते हैं{{Citation needed|date=September 2017}}। | ||
=== मॉडल मूल्यांकन ==== | === मॉडल मूल्यांकन ==== | ||
मॉडलिंग प्रक्रिया का एक महत्वपूर्ण हिस्सा यह है कि किसी दिए गए गणितीय मॉडल का सही वर्णन है या नहीं, इसका मूल्यांकन | मॉडलिंग प्रक्रिया का एक महत्वपूर्ण हिस्सा यह है कि किसी दिए गए गणितीय मॉडल का सही वर्णन है या नहीं, इसका मूल्यांकन है। इस प्रश्न का उत्तर देना मुश्किल हो सकता है क्योंकि इसमें कई अलग -अलग प्रकार के मूल्यांकन शामिल हैं। | ||
==== अनुभवजन्य डेटा के लिए फिट ==== | ==== अनुभवजन्य डेटा के लिए फिट ==== | ||
आमतौर पर, मॉडल मूल्यांकन का सबसे आसान हिस्सा यह | आमतौर पर, मॉडल मूल्यांकन का सबसे आसान हिस्सा यह जांचना है कि क्या एक मॉडल प्रयोगात्मक माप या अन्य अनुभवजन्य डेटा फिट बैठता है। मापदंडों वाले मॉडल में, इस फिट का परीक्षण करने के लिए एक सामान्य दृष्टिकोण डेटा को दो अलग-अलग सबसेट में विभाजित करना है: प्रशिक्षण डेटा और सत्यापन डेटा। प्रशिक्षण डेटा का उपयोग मॉडल मापदंडों का अनुमान लगाने के लिए किया जाता है। एक सटीक मॉडल सत्यापन डेटा से निकटता से मेल खाएगा, भले ही इन डेटा का उपयोग मॉडल के मापदंडों को सेट करने के लिए नहीं किया गया था। इस अभ्यास को क्रॉस-वैलिडेशन (सांख्यिकी) के रूप में संदर्भित किया जाता है। | ||
अवलोकन और अनुमानित डेटा के बीच दूरी को मापने के लिए एक मीट्रिक को परिभाषित करना मॉडल फिट का आकलन करने के लिए एक उपयोगी उपकरण है। सांख्यिकी, निर्णय सिद्धांत और कुछ आर्थिक मॉडल में, एक | अवलोकन और अनुमानित डेटा के बीच दूरी को मापने के लिए एक मीट्रिक को परिभाषित करना मॉडल फिट का आकलन करने के लिए एक उपयोगी उपकरण है। सांख्यिकी, निर्णय सिद्धांत और कुछ आर्थिक मॉडल में, एक हानि फलन एक समान भूमिका निभाता है। | ||
हालांकि यह मापदंडों की उपयुक्तता का परीक्षण करने के लिए सीधा है, एक मॉडल के सामान्य गणितीय रूप की वैधता का परीक्षण करना अधिक कठिन हो सकता है। सामान्य तौर पर, | हालांकि यह मापदंडों की उपयुक्तता का परीक्षण करने के लिए सीधा है, एक मॉडल के सामान्य गणितीय रूप की वैधता का परीक्षण करना अधिक कठिन हो सकता है। सामान्य तौर पर, अवकल समीकरणों से जुड़े मॉडल की तुलना में सांख्यिकीय मॉडल के फिट का परीक्षण करने के लिए अधिक गणितीय उपकरण विकसित किए गए हैं। गैर-पैरामीट्रिक आँकड़ों के उपकरणों का उपयोग कभी -कभी यह मूल्यांकन करने के लिए किया जा सकता है कि डेटा एक ज्ञात वितरण को कितनी अच्छी तरह से फिट करता है या एक सामान्य मॉडल के साथ आता है जो मॉडल के गणितीय रूप के बारे में केवल न्यूनतम धारणाएं बनाता है। | ||
==== मॉडल का दायरा ==== | ==== मॉडल का दायरा ==== | ||
एक मॉडल के दायरे का आकलन करना, अर्थात् | एक मॉडल के दायरे का आकलन करना, अर्थात् यह निर्धारित करना कि मॉडल किन स्थितियों पर कम स्पष्ट हो सकता है। यदि मॉडल का निर्माण डेटा के एक सेट के आधार पर किया गया था, तो यह निर्धारित करना होगा कि ज्ञात डेटा किस सिस्टम या स्थितियों के लिए डेटा का एक विशिष्ट सेट है। | ||
यह सवाल कि क्या मॉडल अच्छी तरह से वर्णन करता है कि डेटा बिंदुओं के बीच सिस्टम के गुणों को | यह सवाल कि क्या मॉडल अच्छी तरह से वर्णन करता है कि डेटा बिंदुओं के बीच सिस्टम के गुणों को अच्छी तरह से वर्णन करता है इसे अंतर्वेशन(इंटरपोलेशन) कहा जाता है, और डेटा के बाहर की घटनाओं या डेटा बिंदुओं के लिए इसको बहिर्वेशन (एक्सट्रपलेशन) कहा जाता है। | ||
एक मॉडल के दायरे की विशिष्ट सीमाओं के एक उदाहरण के रूप में | एक मॉडल के दायरे की विशिष्ट सीमाओं के एक उदाहरण के रूप में हम ध्यान दे सकते हैं कि न्यूटन के शास्त्रीय यांत्रिकी का मूल्यांकन करने में, न्यूटन ने उन्नत उपकरणों के बिना माप कि थी, इसलिए वह प्रकाश की गति के करीब यात्रा करने वाले कणों कि गति के गुणों को नहीं माप सके थे। इसी तरह, उन्होंने अणुओं और अन्य छोटे कणों के आंदोलनों को नहीं मापा, लेकिन केवल मैक्रो कण। तब यह आश्चर्य की बात नहीं है कि उनका मॉडल इन डोमेन में अच्छी तरह से एक्सट्रपलेशन (बहिर्वेशन) नहीं करता है, भले ही उनका मॉडल सामान्य जीवन भौतिकी के लिए काफी पर्याप्त है। | ||
==== दार्शनिक विचार ==== | ==== दार्शनिक विचार ==== | ||
कई प्रकार के मॉडलिंग में निहित रूप से कार्य -कारण के बारे में दावे शामिल | कई प्रकार के मॉडलिंग में निहित रूप से कार्य-कारण के बारे में दावे शामिल हैं। यह आमतौर पर (लेकिन हमेशा नहीं) अवकल समीकरणों से जुड़े मॉडलों के लिए सही होता है।जैसा कि मॉडलिंग का उद्देश्य दुनिया के बारे मे हमारी समझ को बढ़ाना है, एक मॉडल की वैधता न केवल अनुभवजन्य टिप्पणियों के लिए अपने फिट पर टिकी हुई है, बल्कि मूल रूप से मॉडल में वर्णित स्थितियों से परे या डेटा को एक्सट्रपलेशन(बहिर्वेशन) करने की क्षमता पर भी है। कोई इसे गुणात्मक और मात्रात्मक भविष्यवाणियों के बीच भेदभाव के रूप में सोच सकता है। कोई यह भी तर्क दे सकता है कि एक मॉडल बेकार है जब तक कि यह कुछ अंतर्दृष्टि प्रदान नहीं करता है जो पहले से ही उस घटना की प्रत्यक्ष जांच से जाना जाता है जो अध्ययन किया जा रहा है। | ||
इस तरह की आलोचना का एक उदाहरण यह तर्क है कि इष्टतम फोर्जिंग थ्योरी के गणितीय मॉडल उन अंतर्दृष्टि की पेशकश नहीं करते हैं जो विकास के सामान्य ज्ञान के निष्कर्ष और पारिस्थितिकी के अन्य बुनियादी सिद्धांतों से परे हैं।<ref>{{Cite journal | last1 = Pyke | first1 = G. H. | doi = 10.1146/annurev.es.15.110184.002515 | title = Optimal Foraging Theory: A Critical Review | journal = Annual Review of Ecology and Systematics | volume = 15 | pages = 523–575 | year = 1984 }}</ref> | इस तरह की आलोचना का एक उदाहरण यह तर्क है कि इष्टतम फोर्जिंग थ्योरी के गणितीय मॉडल उन अंतर्दृष्टि की पेशकश नहीं करते हैं जो विकास के सामान्य ज्ञान के निष्कर्ष और पारिस्थितिकी के अन्य बुनियादी सिद्धांतों से परे हैं।<ref>{{Cite journal | last1 = Pyke | first1 = G. H. | doi = 10.1146/annurev.es.15.110184.002515 | title = Optimal Foraging Theory: A Critical Review | journal = Annual Review of Ecology and Systematics | volume = 15 | pages = 523–575 | year = 1984 }}</ref> | ||
== प्राकृतिक विज्ञान में महत्व == | == प्राकृतिक विज्ञान में महत्व == | ||
विशेष रूप से भौतिकी | प्राकृतिक विज्ञान में विशेष रूप से भौतिकी में गणितीय मॉडल बहुत महत्व रखते हैं। गणितीय मॉडल का उपयोग करके भौतिक सिद्धांतों को लगभग हमेशा व्यक्त किया जाता है। | ||
पूरे इतिहास में, अधिक से अधिक सटीक गणितीय मॉडल विकसित किए गए हैं। न्यूटन | पूरे इतिहास में, अधिक से अधिक सटीक गणितीय मॉडल विकसित किए गए हैं। न्यूटन के नियम रोज़मर्रा की कई घटनाओं का सटीक वर्णन करते हैं, लेकिन कुछ सीमाओं पर सापेक्षता और क्वांटम यांत्रिकी के सिद्धांत का उपयोग किया जाना चाहिए। | ||
चीजों को सरल बनाने के लिए भौतिकी में आदर्शित मॉडल का उपयोग करना आम है। एक बॉक्स में | चीजों को सरल बनाने के लिए भौतिकी में आदर्शित मॉडल का उपयोग करना आम बात है। एक बॉक्स में द्रव्यमान रहित रस्सियों, बिंदु कणों, आदर्श गैसों और कण भौतिकी में उपयोग किए जाने वाले कई सरलीकृत मॉडल में से हैं। भौतिकी के नियमों को न्यूटन के कानूनों, मैक्सवेल के समीकरणों और श्रोडिंगर समीकरण जैसे सरल समीकरणों के साथ दर्शाया गया है। ये कानून वास्तविक स्थितियों के गणितीय मॉडल बनाने के लिए एक आधार हैं। कई वास्तविक स्थितियां बहुत जटिल हैं और इस प्रकार एक कंप्यूटर पर अनुमानित मॉडलिंग की जाती है, एक मॉडल जो गणना करने के लिए कम्प्यूटेशनल रूप से संभव है, मूल नियमो से या मूल नियमो से बने अनुमानित मॉडल से बनाया जाता है। उदाहरण के लिए, अणुओं को आणविक कक्षीय मॉडल द्वारा मॉडलिंग किया जा सकता है जो श्रोडिंगर समीकरण के अनुमानित समाधान हैं। इंजीनियरिंग में, भौतिकी मॉडल अक्सर गणितीय तरीकों जैसे परिमित तत्व विश्लेषण द्वारा बनाए जाते हैं। | ||
विभिन्न गणितीय मॉडल विभिन्न ज्यामिति का उपयोग करते हैं जो जरूरी नहीं कि ब्रह्मांड की ज्यामिति के सटीक विवरण हों। | विभिन्न गणितीय मॉडल विभिन्न ज्यामिति का उपयोग करते हैं जो जरूरी नहीं कि ब्रह्मांड की ज्यामिति के सटीक विवरण हों। यूक्लिड कि ज्यामिति का उपयोग शास्त्रीय भौतिकी में किया जाता है, जबकि विशेष सापेक्षता और सामान्य सापेक्षता उन सिद्धांतों के उदाहरण हैं जो ज्यामिति का उपयोग करते हैं जो यूक्लिडियन नहीं हैं। | ||
== कुछ अनुप्रयोग == | == कुछ अनुप्रयोग == | ||
अक्सर जब इंजीनियर नियंत्रित या अनुकूलित होने के लिए एक प्रणाली का विश्लेषण करते हैं, तो वे एक गणितीय मॉडल का उपयोग करते हैं।विश्लेषण में, इंजीनियर सिस्टम के एक वर्णनात्मक मॉडल का निर्माण कर सकते हैं कि सिस्टम कैसे काम कर सकता है, या यह अनुमान लगाने की कोशिश कर सकता है कि एक अप्रत्याशित घटना प्रणाली को कैसे प्रभावित कर सकती है। इसी तरह, एक प्रणाली के नियंत्रण में, इंजीनियर सिमुलेशन में विभिन्न नियंत्रण दृष्टिकोणों को आज़मा सकते हैं। | |||
एक गणितीय मॉडल आमतौर पर चर के एक सेट और समीकरणों के एक सेट द्वारा एक प्रणाली का वर्णन करता है जो चर के बीच संबंधों को स्थापित करता है।चर कई प्रकार के हो सकते हैं | एक गणितीय मॉडल आमतौर पर चर के एक सेट और समीकरणों के एक सेट द्वारा एक प्रणाली का वर्णन करता है जो चर के बीच संबंधों को स्थापित करता है।चर कई प्रकार के हो सकते हैं, उदाहरण के लिए वास्तविक या पूर्णांक संख्या, बूलियन मान या तार। चर सिस्टम के कुछ गुणों का प्रतिनिधित्व करते हैं, उदाहरण के लिए, मापा गया सिस्टम आउटपुट अक्सर संकेतों, समय डेटा, काउंटरों और घटना की घटना के रूप में होता है।वास्तविक मॉडल उन कार्यों का सेट है जो विभिन्न चर के बीच संबंधों का वर्णन करते हैं। | ||
== उदाहरण == | == उदाहरण == | ||
* कंप्यूटर विज्ञान में लोकप्रिय उदाहरणों में से एक विभिन्न मशीनों का गणितीय मॉडल है, एक उदाहरण नियतात्मक परिमित ऑटोमेटन (डीएफए) है जिसे एक | * कंप्यूटर विज्ञान में लोकप्रिय उदाहरणों में से एक विभिन्न मशीनों का गणितीय मॉडल है, एक उदाहरण नियतात्मक परिमित ऑटोमेटन डेटर्मीनिस्टिक फिनिट ऑटोमाटों(डीएफए) है जिसे एक अमूर्त गणितीय अवधारणा के रूप में परिभाषित किया गया है, लेकिन डीएफए की नियतात्मक प्रकृति के कारण, इसे हार्डवेयर में लागू किया जा सकता है और विभिन्न विशिष्ट समस्याओं को हल करने के लिए सॉफ्टवेयर मे।उदाहरण के लिए, निम्नलिखित एक बाइनरी वर्णमाला के साथ एक DFA m है, जिसके लिए आवश्यक है कि इनपुट में 0s की एक सम संख्या है: | ||
[[File:DFAexample.svg|right|thumb|250px| | [[File:DFAexample.svg|right|thumb|250px|M के लिए राज्य आरेख]] | ||
:: | :: M = (q, σ, d, q<sub>0,</sub>F) कहाँ | ||
::*q = {s<sub>1</sub>, ''S''<sub>2</sub>}, | ::*q = {s<sub>1</sub>, ''S''<sub>2</sub>}, | ||
::*σ = {0, 1}, | ::*σ = {0, 1}, | ||
::* | ::*q<sub>0</sub>'' = ''S''<sub>1</sub> | ||
::*f = {s<sub>1</sub>}, तथा | ::*f = {s<sub>1</sub>}, तथा | ||
::* | ::* | ||
::*δ निम्नलिखित अवस्था संक्रमण सारणी द्वारा परिभाषित किया गया है: | |||
::::: {| border="1" | ::::: {| border="1" | ||
| || <center>'''0'''</center> || <center>'''1'''</center> | | || <center>'''0'''</center> || <center>'''1'''</center> | ||
Line 116: | Line 115: | ||
|'''''S''<sub>2</sub>''' || ''S''<sub>1</sub> || ''S''<sub>2</sub> | |'''''S''<sub>2</sub>''' || ''S''<sub>1</sub> || ''S''<sub>2</sub> | ||
|} | |} | ||
: | :अवस्था S<sub>1</sub> दर्शाती है कि अब तक इनपुट में 0 की सम संख्या रही है, जबकि S<sub>2</sub> एक विषम संख्या को दर्शाता है। इनपुट में A 1 ऑटोमेटन की स्थिति को नहीं बदलता है। जब इनपुट समाप्त हो जाता है, तो अवस्था यह दिखाएगी कि इनपुट में 0 की संख्या भी है या नहीं। यदि इनपुट में 0s की एक सम संख्या होती है, तो M राज्य S1 में समाप्त हो जाएगा, एक स्वीकार्य स्थिति, इसलिए इनपुट स्ट्रिंग स्वीकार की जाएगीl | ||
: M द्वारा मान्यता प्राप्त भाषा नियमित अभिव्यक्ति 1*(0 (1*) 0 (1*))*द्वारा दी गई नियमित भाषा है, जहां*क्लेन स्टार है, जैसे, 1*किसी भी गैर-नकारात्मक संख्या को दर्शाता है (संभवतःशून्य) प्रतीकों का 1। | : M द्वारा मान्यता प्राप्त भाषा नियमित अभिव्यक्ति 1*(0 (1*) 0 (1*))*द्वारा दी गई नियमित भाषा है, जहां*क्लेन स्टार है, जैसे, 1*किसी भी गैर-नकारात्मक संख्या को दर्शाता है (संभवतःशून्य) प्रतीकों का 1। | ||
Line 127: | Line 126: | ||
::<math> m\frac{\mathrm{d}^2\mathbf{r}(t)}{\mathrm{d}t^2}=-\nabla V[\mathbf{r}(t)]. </math> | ::<math> m\frac{\mathrm{d}^2\mathbf{r}(t)}{\mathrm{d}t^2}=-\nabla V[\mathbf{r}(t)]. </math> | ||
: ध्यान दें कि यह मॉडल मानता है कि कण एक बिंदु द्रव्यमान है, जो निश्चित रूप से कई मामलों में गलत माना जाता है जिसमें हम इस मॉडल का उपयोग करते हैं | : ध्यान दें कि यह मॉडल कि मानता है कि कण एक बिंदु द्रव्यमान है, जो निश्चित रूप से कई मामलों में गलत माना जाता है जिसमें हम इस मॉडल का उपयोग करते हैं, उदाहरण के लिए, ग्रह गति के एक मॉडल के रूप में। | ||
* एक उपभोक्ता के लिए तर्कसंगत व्यवहार का | * एक उपभोक्ता के लिए तर्कसंगत व्यवहार का मॉडल। इस मॉडल में हम मानते हैं कि एक उपभोक्ता को 1,2,...,n लेबल वाली n वस्तुओं के विकल्प उपस्थित है, जिनमें से प्रत्येक का बाजार मूल्य p<sub>1</sub>, p<sub>2</sub>,..., p<sub>n</sub> होता है। यह माना जाता है कि उपभोक्ता के पास एक क्रमिक उपयोगिता फलन U है (इस अर्थ में क्रमिक है कि केवल दो उपयोगिताओं के बीच अंतर का संकेत है, न कि प्रत्येक उपयोगिता का स्तर सार्थक है), वस्तुओं की मात्रा x<sub>1</sub>, x<sub>2</sub> पर निर्भर करता है। .., x<sub>n</sub> का सेवन किया। मॉडल आगे मानता है कि उपभोक्ता के पास एक बजट M है जिसका उपयोग वेक्टर x<sub>1</sub>, x<sub>2</sub>,..., x<sub>n</sub> को इस तरह से खरीदने के लिए किया जाता है कि U(x<sub>1</sub>, x<sub>2</sub>,..., x<sub>n</sub>) को अधिकतम किया जा सके। इस मॉडल में तर्कसंगत व्यवहार की समस्या तब गणितीय अनुकूलन समस्या बन जाती है, जो है: | ||
:: <math> \max U(x_1,x_2,\ldots, x_n) </math> | :: <math> \max U(x_1,x_2,\ldots, x_n) </math> | ||
:: का विषय है: | :: का विषय है: | ||
:: <math> \sum_{i=1}^n p_i x_i \leq M.</math> | :: <math> \sum_{i=1}^n p_i x_i \leq M.</math> | ||
:: <math> x_{i} \geq 0 \; \; \; \forall i \in \{1, 2, \ldots, n \} </math> | :: <math> x_{i} \geq 0 \; \; \; \forall i \in \{1, 2, \ldots, n \} </math> | ||
: इस मॉडल का उपयोग विभिन्न प्रकार के आर्थिक संदर्भों में किया गया है, जैसे कि सामान्य संतुलन सिद्धांत में अस्तित्व और आर्थिक संतुलन की परतो दक्षता दिखाने के लिए। | : इस मॉडल का उपयोग विभिन्न प्रकार के आर्थिक संदर्भों में विस्तृत विविधता में किया गया है, जैसे कि सामान्य संतुलन सिद्धांत में अस्तित्व और आर्थिक संतुलन की परतो दक्षता दिखाने के लिए। | ||
* | * नेबर-सेंसिंग मॉडल एक मॉडल है जो शुरू में अराजक कवक नेटवर्क से मशरूम के गठन की व्याख्या करता है। | ||
* कंप्यूटर विज्ञान में, कंप्यूटर नेटवर्क का अनुकरण करने के लिए गणितीय मॉडल का उपयोग किया जा सकता है। | * कंप्यूटर विज्ञान में, कंप्यूटर नेटवर्क का अनुकरण करने के लिए गणितीय मॉडल का उपयोग किया जा सकता है। | ||
* यांत्रिकी में, | * यांत्रिकी में, गणितीय मॉडल का उपयोग रॉकेट मॉडल की गति का विश्लेषण करने के लिए किया जा सकता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 182: | Line 181: | ||
* लिन, सी.सी.और सेगेल, एल.ए. (1988)।प्राकृतिक विज्ञान, फिलाडेल्फिया में नियतात्मक समस्याओं पर लागू गणित: सियाम। {{isbn|0-89871-229-7}} | * लिन, सी.सी.और सेगेल, एल.ए. (1988)।प्राकृतिक विज्ञान, फिलाडेल्फिया में नियतात्मक समस्याओं पर लागू गणित: सियाम। {{isbn|0-89871-229-7}} | ||
=== विशिष्ट अनुप्रयोग | === विशिष्ट अनुप्रयोग === | ||
* पापादिमित्रीउ, फिवोस।(2010)।स्थानिक-पारिस्थितिक जटिल प्रणालियों का गणितीय मॉडलिंग: एक मूल्यांकन।भूगोल, पर्यावरण, स्थिरता 1 (3), 67-80। {{DOI|10.24057/2071-9388-2010-3-1-67-80}} | * पापादिमित्रीउ, फिवोस।(2010)।स्थानिक-पारिस्थितिक जटिल प्रणालियों का गणितीय मॉडलिंग: एक मूल्यांकन।भूगोल, पर्यावरण, स्थिरता 1 (3), 67-80। {{DOI|10.24057/2071-9388-2010-3-1-67-80}} | ||
* {{Cite journal | last1 = Peierls | first1 = R. | doi = 10.1080/00107518008210938 | title = Model-making in physics | journal = Contemporary Physics | volume = 21 | pages = 3–17 | year = 1980 |bibcode = 1980ConPh..21....3P }} | * {{Cite journal | last1 = Peierls | first1 = R. | doi = 10.1080/00107518008210938 | title = Model-making in physics | journal = Contemporary Physics | volume = 21 | pages = 3–17 | year = 1980 |bibcode = 1980ConPh..21....3P }} | ||
Line 192: | Line 191: | ||
* Patrone, F. [http://www.fioravante.patrone.name/mat/u-u/en/differential_equations_intro.htm Introduction to modeling via differential equations], with critical remarks. | * Patrone, F. [http://www.fioravante.patrone.name/mat/u-u/en/differential_equations_intro.htm Introduction to modeling via differential equations], with critical remarks. | ||
* [http://plus.maths.org/issue44/package/index.html Plus teacher and student package: Mathematical Modelling.] Brings together all articles on mathematical modeling from '' | * [http://plus.maths.org/issue44/package/index.html Plus teacher and student package: Mathematical Modelling.] Brings together all articles on mathematical modeling from ''Plus Magazine'', the online mathematics magazine produced by the Millennium Mathematics Project at the University of Cambridge. | ||
; Philosophical | ; Philosophical | ||
Line 199: | Line 198: | ||
* Griffiths, E. C. (2010) [https://sites.google.com/a/ncsu.edu/emily-griffiths/whatisamodel.pdf What is a model?] | * Griffiths, E. C. (2010) [https://sites.google.com/a/ncsu.edu/emily-griffiths/whatisamodel.pdf What is a model?] | ||
{{DEFAULTSORT:Mathematical Model}} | |||
[[Category:Machine Translated Page]] | |||
{{DEFAULTSORT:Mathematical Model}} | |||
] | |||
] | |||
[[Category:AC with 0 elements|Mathematical Model]] | [[Category:AC with 0 elements|Mathematical Model]] | ||
[[Category:All articles needing additional references|Mathematical Model]] | |||
[[Category:All articles with unsourced statements|Mathematical Model]] | [[Category:All articles with unsourced statements|Mathematical Model]] | ||
[[Category:Articles needing additional references from May 2008|Mathematical Model]] | |||
[[Category:Articles with hatnote templates targeting a nonexistent page|Mathematical Model]] | [[Category:Articles with hatnote templates targeting a nonexistent page|Mathematical Model]] | ||
[[Category:Articles with invalid date parameter in template|Mathematical Model]] | [[Category:Articles with invalid date parameter in template|Mathematical Model]] | ||
[[Category:Articles with short description|Mathematical Model]] | [[Category:Articles with short description|Mathematical Model]] | ||
[[Category:Articles with unsourced statements from September 2017|Mathematical Model]] | [[Category:Articles with unsourced statements from September 2017|Mathematical Model]] | ||
[[Category:CS1]] | [[Category:CS1|Mathematical Model]] | ||
[[Category:CS1 maint | [[Category:CS1 maint|Mathematical Model]] | ||
[[Category:Pages with empty portal template|Mathematical Model]] | [[Category:Pages with empty portal template|Mathematical Model]] | ||
[[Category:Portal templates with redlinked portals|Mathematical Model]] | |||
[[Category:Short description with empty Wikidata description|Mathematical Model]] |
Latest revision as of 13:05, 12 September 2023
गणितीय मॉडल, गणितीय अवधारणाओं और भाषा का उपयोग करने वाली एक प्रणाली का विवरण है। गणितीय मॉडल को विकसित करने की प्रक्रिया को गणितीय मॉडलिंग कहा जाता है। गणितीय मॉडल प्राकृतिक विज्ञान (जैसे भौतिकी, जीव विज्ञान, पृथ्वी विज्ञान, रसायन विज्ञान) और इंजीनियरिंग विषयों (जैसे कंप्यूटर विज्ञान, इलेक्ट्रिकल इंजीनियरिंग) के साथ-साथ गैर-भौतिक प्रणालियों जैसे सामाजिक विज्ञान (जैसे अर्थशास्त्र, मनोविज्ञान, समाजशास्त्र, राजनीति विज्ञान) में उपयोग किए जाते हैं। व्यवसाय या सैन्य संचालन में समस्याओं को हल करने के लिए गणितीय मॉडल का उपयोग संचालन अनुसंधान के क्षेत्र का एक बड़ा हिस्सा है। गणितीय मॉडल का उपयोग संगीत ,[1]भाषा विज्ञान,[2]तथा दर्शन में भी किया जाता हैl (उदाहरण के लिए, विश्लेषणात्मक दर्शन में गहन रूप से किया जाता हैl)
मॉडल किसी प्रणाली को समझाने और विभिन्न घटकों के प्रभावों का अध्ययन करने और व्यवहार के बारे में पूर्वाकलन को करने में मदद कर सकता है।
एक गणितीय मॉडल के तत्व
गणितीय मॉडल कई रूप ले सकते हैं, जिसमें डायनेमिक सिस्टम (गतिशील प्रणाली), सांख्यिकीय मॉडल, अंतर समीकरण या गेम थियोरेटिक(खेल-सैद्धांतिक) मॉडल शामिल हैं। ये और अन्य प्रकार के मॉडल ओवरलैप(अतिव्यापन) कर सकते हैं, एक दिए गए मॉडल के साथ विभिन्न प्रकार के अमूर्त संरचनाएं शामिल हैं। सामान्य तौर पर, गणितीय मॉडल में तार्किक मॉडल शामिल हो सकते हैं। कई मामलों में, एक वैज्ञानिक क्षेत्र की गुणवत्ता इस बात पर निर्भर करती है, कि सैद्धांतिक पक्ष पर गणितीय मॉडल कितनी अच्छी तरह से विकसित किए गए हैं जो दोहराए जाने वाले प्रयोगों के परिणामों से सहमत हैं। सैद्धांतिक गणितीय मॉडल और प्रयोगात्मक माप के बीच अनुबंध की कमी अक्सर महत्वपूर्ण प्रगति की ओर जाता है क्योंकि बेहतर सिद्धांत विकसित होते हैं।
भौतिक विज्ञान में, एक पारंपरिक गणितीय मॉडल में निम्नलिखित तत्वों में से अधिकांश शामिल हैं:
- समीकरणों का संचालन
- पूरक उप-मॉडल
- समीकरणों को परिभाषित करना
- संवैधानिक समीकरण
- मान्यताएं और प्रतिबंध
- प्रारंभिक और सीमा की स्थिति
- शास्त्रीय बाधाओं और गतिज समीकरण
वर्गीकरण
गणितीय मॉडल विभिन्न प्रकार के हैं:
- रैखिक बनाम अरैखिक: यदि एक गणितीय मॉडल में सभी ऑपरेटर रैखिकता का प्रदर्शन करते हैं, तो परिणामी गणितीय मॉडल को रैखिक के रूप में परिभाषित किया जाता है, अन्यथा एक मॉडल को अरैखिक माना जाता है। रैखिकता और अरैखिकता की परिभाषा संदर्भ पर निर्भर है, और रैखिक मॉडल में उनमें अरैखिकता अभिव्यक्ति हो सकती है। उदाहरण के लिए, एक सांख्यिकीय रैखिक मॉडल में, यह माना जाता है कि एक संबंध मापदंडों में रैखिक है, लेकिन यह प्रेडिक्टर वैरिएबल(एक स्वतंत्र वैरिएबल को दिया गया नाम है जिसका इस्तेमाल रिग्रेशन एनालिसिस में किया जाता है) में अरैखिक हो सकता है। इसी तरह, एक अवकल समीकरण को रैखिक कहा जाता है यदि इसे रैखिक अवकल संकारक के साथ लिखा जा सकता है, लेकिन अभी भी इसमें अरैखिकता हो सकती है। एक गणितीय प्रोग्रामिंग मॉडल में, यदि उद्देश्य फलन और बाधाओं (एक अनुकूलन समस्या की स्थिति है जिसे समाधान को संतुष्ट करना चाहिए) को पूरी तरह से रैखिक समीकरणों द्वारा दर्शाया जाता है, तो मॉडल को एक रैखिक मॉडल के रूप में माना जाता है। यदि एक या अधिक उद्देश्य कार्यों या बाधाओं को एक अरैखिक समीकरण के साथ दर्शाया जाता है, तो मॉडल को एक अरैखिक मॉडल के रूप में जाना जाता है।
रैखिक संरचना का तात्पर्य है कि एक समस्या को सरल भागों में विघटित किया जा सकता है जिसका स्वतंत्र रूप से इलाज किया जा सकता है और/या एक अलग पैमाने पर विश्लेषण किया जा सकता है और प्राप्त परिणाम प्रारंभिक समस्या के लिए मान्य रहेंगे जब पुन: संयोजित और पुनर्विक्रय किया जाएगा। हालांकि अपवाद हैं, अरैखिक सिस्टम और मॉडल रैखिक लोगों की तुलना में अध्ययन करना अधिक कठिन होते हैं। अरैखिक समस्याओं के लिए एक सामान्य दृष्टिकोण रैखिककरण है, लेकिन यह समस्याग्रस्त हो सकता है यदि कोई अपरिवर्तनीयता जैसे पहलुओं का अध्ययन करने की कोशिश कर रहा है, जो कि दृढ़ता से अरैखिकता से बंधे हैं। - स्टेटिक बनाम डायनामिक(स्थिर बनाम गतिशील):एक गतिशील मॉडल प्रणाली की स्थिति में परिवर्तन समय पर निर्भर है, जबकि एक स्टेटिक (या स्थिर अवस्था) मॉडल इक्विलिब्रियम(संतुलन) में सिस्टम की गणना करता है, और इस प्रकार समय अपरिवर्तनीय है। गतिशील मॉडल आमतौर पर अवकल समीकरण या अंतर समीकरणों द्वारा दर्शाया जाता है।
- स्पष्ट बनाम निहित: यदि समग्र मॉडल के सभी आगत पैरामीटर ज्ञात हैं, और निर्गत मापदंडों की गणना एक परिमित श्रृंखला द्वारा की जा सकती है, तो मॉडल को 'स्पष्ट' 'कहा जाता है। लेकिन कभी -कभी यह निर्गत पैरामीटर होता है जो ज्ञात होते हैं, और इसी आदानों को एक पुनरावृत्त प्रक्रिया द्वारा हल किया जाना चाहिए, जैसे कि न्यूटन की विधि या ब्रायडेन की विधि। ऐसे मामले में मॉडल को निहित कहा जाता है। उदाहरण के लिए, एक जेट इंजन के भौतिक गुणों जैसे टरबाइन और नोजल कंठ के क्षेत्रों को स्पष्ट रूप से गणना की जा सकती है, एक विशिष्ट उड़ान स्थिति और बिजली की स्थापना पर एक डिजाइन ऊष्मागतिकी चक्र (वायु और ईंधन प्रवाह दर, दबाव और तापमान) को देखते हुए, लेकिन इंजन के ऑपरेटिंग चक्रों पर अन्य उड़ान स्थितियों और बिजली सेटिंग्स पर स्पष्ट रूप से निरंतर भौतिक गुणों से गणना नहीं की जा सकती है।
- असतत बनाम निरंतर: एक असतत मॉडल वस्तुओं को असतत मानता है, जैसे कि आणविक मॉडल में कण या सांख्यिकीय मॉडल में अवस्थाओ, जबकि एक निरंतर मॉडल एक निरंतर तरीके से वस्तुओं का प्रतिनिधित्व करता है, जैसे कि पाइप प्रवाह में द्रव का वेग क्षेत्र, एक ठोस और विद्युत क्षेत्र में तापमान और तनाव जो एक बिंदु चार्ज के कारण पूरे मॉडल पर लगातार लागू होता है।
- नियतात्मक बनाम संभाव्य (स्टोकेस्टिक): एक नियतात्मक मॉडल वह है जिसमें चर राज्यों के प्रत्येक सेट को मॉडल में मापदंडों द्वारा और इन चर के पिछले अवस्थाओ के सेट द्वारा निर्धारित किया जाता है; इसलिए, एक नियतात्मक मॉडल हमेशा प्रारंभिक स्थितियों के दिए गए सेट के लिए उसी तरह करता है। इसके विपरीत, एक स्टोकेस्टिक मॉडल में - जिसे आमतौर पर एक सांख्यिकीय मॉडल कहा जाता है -डोमनेस मौजूद है, और चर राज्यों को अद्वितीय मूल्यों द्वारा वर्णित नहीं किया जाता है, बल्कि संभावना वितरण द्वारा किया जाता है।
- डिडक्टिव (आगमन), इंडक्टिव(निगमन), या फ्लोटिंग: आगमनात्मक मॉडल एक सिद्धांत पर आधारित एक तार्किक संरचना है। एक प्रेरक मॉडल प्रयोगसिद्ध निष्कर्षों और उनसे सामान्यीकरण से उत्पन्न होता है।फ्लोटिंग मॉडल न तो सिद्धांत पर टिकी हुई है और न ही अवलोकन, लेकिन केवल अपेक्षित संरचना का आह्वान है।अर्थशास्त्र के बाहर सामाजिक विज्ञान में गणित के अनुप्रयोग को निराधार मॉडल के लिए आलोचना की गई है।[3]विज्ञान में आपदा सिद्धांत के अनुप्रयोग को एक फ्लोटिंग मॉडल के रूप में चित्रित किया गया है।[4]
- गेम थ्योरी में उपयोग किए जाने वाले रणनीतिक बनाम गैर-रणनीतिक मॉडल इस अर्थ में अलग-अलग हैं कि वे असंगत प्रोत्साहन के साथ एजेंटों को मॉडल करते हैं, जैसे कि प्रतिस्पर्धी प्रजातियों या नीलामी में बोली लगाने वाले। रणनीतिक मॉडल यह मानते हैं कि खिलाड़ी स्वायत्त निर्णय निर्माता हैं जो तर्कसंगत रूप से उन कार्यों का चयन करते हैं जो उनके उद्देश्य कार्य को अधिकतम करते हैं। रणनीतिक मॉडल का उपयोग करने की एक महत्वपूर्ण चुनौती नैश इक्विलिब्रियम (नैस का संतुलन) जैसे समाधान अवधारणाओं को परिभाषित और अभिकलन है।रणनीतिक मॉडल की एक दिलचस्प विशेषता यह है कि वे खिलाड़ियों के व्यवहार से खेल के नियमों के बारे में तर्क करते हैं।[5]
निर्माण
व्यवसाय और इंजीनियरिंग में, एक निश्चित निर्गत को अधिकतम करने के लिए गणितीय मॉडल का उपयोग किया जा सकता है। विचाराधीन सिस्टम को कुछ आगत की आवश्यकता होगी। निर्गत से संबंधित आगत से संबंधित सिस्टम अन्य चर पर भी निर्भर करता है: निर्णय चर, अवस्था चर, बहिर्जात चर और यादृच्छिक चर।
निर्णय चर को कभी -कभी स्वतंत्र चर के रूप में जाना जाता है। बहिर्जात चर को कभी -कभी मापदंडों या स्थिरांक के रूप में जाना जाता है।चर एक दूसरे से स्वतंत्र नहीं हैं क्योंकि राज्य चर निर्णय, इनपुट, यादृच्छिक और बहिर्जात चर पर निर्भर हैं। इसके अलावा, निर्गत चर सिस्टम की स्थिति (अवस्था चर द्वारा दर्शाया गया) पर निर्भर हैं।
सिस्टम और उसके उपयोगकर्ताओं के उद्देश्य और बाधाओं को निर्गत चर या अवस्था चर के कार्यों के रूप में दर्शाया जा सकता है। उद्देश्य कार्य मॉडल के उपयोगकर्ता के परिप्रेक्ष्य पर निर्भर करेगा। संदर्भ के आधार पर, एक उद्देश्य फ़ंक्शन को प्रदर्शन के सूचकांक के रूप में भी जाना जाता है, क्योंकि यह उपयोगकर्ता के लिए रुचि के कुछ उपाय है। यद्यपि किसी मॉडल के उद्देश्य कार्यों और बाधाओं की संख्या की कोई सीमा नहीं है, एक मॉडल का उपयोग करना या अनुकूलित करना संख्या बढ़ने के साथ मॉडल को अधिक शामिल (कम्प्यूटेशनल) हो सकता है।
उदाहरण के लिए, अर्थशास्त्री अक्सर आगत-निर्गत मॉडल का उपयोग करते समय रैखिक बीजगणित लागू करते हैं। जटिल गणितीय मॉडल जिनमें कई चर होते हैं, वे वैक्टर के उपयोग से समेकित हो सकते हैं जहां एक प्रतीक कई चर का प्रतिनिधित्व करता है।
एक प्राथमिक जानकारी
गणितीय मॉडलिंग समस्याओं को अक्सर ब्लैक बॉक्स या व्हाइट बॉक्स मॉडल में वर्गीकृत किया जाता है, इस आधार पर कि सिस्टम पर एक प्राथमिक जानकारी कितनी उपलब्ध है। एक ब्लैक-बॉक्स मॉडल एक ऐसी प्रणाली है जिसमें कोई प्राथमिक जानकारी उपलब्ध नहीं है। एक व्हाइट-बॉक्स मॉडल (जिसे ग्लास बॉक्स या क्लियर बॉक्स भी कहा जाता है) एक ऐसी प्रणाली है जहां सभी आवश्यक जानकारी उपलब्ध है। व्यावहारिक रूप से सभी सिस्टम ब्लैक-बॉक्स और व्हाइट-बॉक्स मॉडल के बीच कहीं हैं, इसलिए यह अवधारणा केवल यह तय करने के लिए एक सहज ज्ञान युक्त मार्गदर्शिका के रूप में उपयोगी है कि कौन सी पद्धति लेना है।
आमतौर पर, मॉडल को अधिक सटीक बनाने के लिए जितना संभव हो उतना प्राथमिकता की जानकारी का उपयोग करना बेहतर होता है। इसलिए, व्हाइट-बॉक्स मॉडल को आमतौर पर आसान माना जाता है, क्योंकि यदि आपने जानकारी का सही उपयोग किया है, तो मॉडल सही तरीके से व्यवहार करेगा। अक्सर एक प्राथमिकता की जानकारी विभिन्न चर से संबंधित कार्यों के प्रकार को जानने के रूपों में आती है। उदाहरण के लिए, यदि हम एक मॉडल बनाते हैं कि एक मानव प्रणाली में एक दवा कैसे काम करती है, तो हम जानते हैं कि आमतौर पर रक्त में दवा की मात्रा एक घातीय क्षय कार्य है। लेकिन हम अभी भी कई अज्ञात मापदंडों के साथ छोड़ दिए गए हैं; दवा की मात्रा कितनी तेजी से क्षय करती है, और रक्त में दवा की प्रारंभिक मात्रा क्या है?इसलिए यह उदाहरण पूरी तरह से सफेद-बॉक्स मॉडल नहीं है। मॉडल का उपयोग करने से पहले इन मापदंडों का अनुमान कुछ साधनों के माध्यम से किया जाना चाहिए।
ब्लैक-बॉक्स मॉडल में, उन कार्यों में चर और संख्यात्मक मापदंडों के बीच संबंधों के कार्यात्मक रूप दोनों का अनुमान लगाने की कोशिश करता है। एक प्राथमिक जानकारी का उपयोग करके हम समाप्त कर सकते हैं, उदाहरण के लिए, कार्यों के एक सेट के साथ जो संभवतः सिस्टम का पर्याप्त रूप से वर्णन कर सकता है। यदि कोई प्राथमिक जानकारी नहीं है, तो हम सभी अलग-अलग मॉडलों को कवर करने के लिए कार्यों को सामान्य रूप से उपयोग करने का प्रयास करेंगे। ब्लैक-बॉक्स मॉडल के लिए अक्सर इस्तेमाल किया जाने वाला दृष्टिकोण तंत्रिका नेटवर्क हैं जो आमतौर पर आने वाले डेटा के बारे में धारणा नहीं बनाते हैं। वैकल्पिक रूप से NARMAX (अरैखिक ऑटोरेग्रेसिव मूविंग एवरेज मॉडल विद एक्सोजेनस इनपुट्स) एल्गोरिदम जो कि अरैखिक सिस्टम पहचान के हिस्से के रूप में विकसित किए गए थे[6]मॉडल की शर्तों का चयन करने, मॉडल संरचना का निर्धारण करने के लिए उपयोग किया जा सकता है, और सहसंबद्ध और शोर की उपस्थिति में अज्ञात मापदंडों का अनुमान लगाया जा सकता है।तंत्रिका नेटवर्क की तुलना में NARMAX मॉडल का लाभ यह है कि NARMAX ऐसे मॉडल का उत्पादन करता है जो नीचे लिखे जा सकते हैं और अंतर्निहित प्रक्रिया से संबंधित हैं, जबकि तंत्रिका नेटवर्क एक सन्निकटन का उत्पादन करते हैं जो अपारदर्शी है।
व्यक्तिपरक जानकारी
कभी -कभी यह एक गणितीय मॉडल में व्यक्तिपरक जानकारी को शामिल करना उपयोगी होता है। यह अंतर्ज्ञान, अनुभव या विशेषज्ञ की राय के आधार पर, या गणितीय रूप की सुविधा के आधार पर किया जा सकता है। बायेसियन सांख्यिकी इस तरह की विषयवस्तु को एक कठोर विश्लेषण में शामिल करने के लिए एक सैद्धांतिक रूपरेखा प्रदान करता है, हम एक पूर्व संभावना वितरण (जो व्यक्तिपरक हो सकते हैं) निर्दिष्ट करते हैं, और फिर अनुभवजन्य डेटा के आधार पर इस वितरण को अपडेट करते हैं।
इस तरह के दृष्टिकोण को आवश्यक होने का एक उदाहरण एक ऐसी स्थिति है जिसमें एक प्रयोगकर्ता एक सिक्के को थोड़ा झुकाता है और इसे एक बार उछालता है, यह रिकॉर्ड करता है कि क्या यह ऊपर आता है, और फिर इस संभावना की भविष्यवाणी करने का कार्य दिया जाता है कि अगला फ्लिप सिर ऊपर आता है। सिक्के को झुकने के बाद, सच संभावना है कि सिक्का ऊपर आ जाएगा अज्ञात है, तो प्रयोगकर्ता को एक निर्णय लेने की आवश्यकता होगी (शायद सिक्के के आकार को देखकर) के बारे में कि पूर्व वितरण का उपयोग क्या है। इस तरह की व्यक्तिपरक जानकारी को शामिल करना संभावना का सटीक अनुमान प्राप्त करने के लिए महत्वपूर्ण हो सकता है।
जटिलता
सामान्य तौर पर, मॉडल जटिलता में मॉडल की सादगी और सटीकता के बीच एक समझौताकारी समन्वयन शामिल है। ओकैम का रेजर एक सिद्धांत है जो विशेष रूप से मॉडलिंग के लिए प्रासंगिक है, इसका आवश्यक विचार यह है कि लगभग समान पूर्वानुमान शक्ति वाले मॉडल के बीच, सबसे सरल सबसे वांछनीय है।जबकि अतिरिक्त जटिलता आमतौर पर एक मॉडल के यथार्थवाद में सुधार करती है, यह मॉडल को समझने और विश्लेषण करने में मुश्किल बना सकता है, और संख्यात्मक अस्थिरता सहित संगणनात्मक समस्याओं को भी बना सकता है।थॉमस कुह्न का तर्क है कि जैसे-जैसे विज्ञान आगे बढ़ता है, व्याख्याएं अधिक जटिल हो जाती हैं, इससे पहले कि एक प्रतिमान बदलाव कट्टरपंथी सरलीकरण प्रदान करता है।[7]
उदाहरण के लिए, जब एक विमान की उड़ान की मॉडलिंग करते हैं, तो हम विमान के प्रत्येक यांत्रिक भाग को अपने मॉडल में सन्निहित कर सकते हैं और इस प्रकार सिस्टम के लगभग सफेद-बॉक्स मॉडल का अधिग्रहण करेंगे। हालांकि, इतनी बड़ी मात्रा में विस्तार को जोड़ने की कम्प्यूटेशनल(संगणनात्मक) लागत प्रभावी रूप से इस तरह के मॉडल के उपयोग को बाधित करेगी। इसके अतिरिक्त, एक अत्यधिक जटिल प्रणाली के कारण अनिश्चितता बढ़ जाएगी, क्योंकि प्रत्येक अलग भाग मॉडल में कुछ मात्रा में विचरण को प्रेरित करता है। इसलिए आमतौर पर मॉडल को एक प्रत्यक्ष आकार में कम करने के लिए कुछ अनुमान लगाना उचित है। अधिक मजबूत और सरल मॉडल प्राप्त करने के लिए इंजीनियर अक्सर कुछ अनुमानों को स्वीकार कर सकते हैं। उदाहरण के लिए, न्यूटन का शास्त्रीय यांत्रिकी वास्तविक दुनिया का एक अनुमानित मॉडल है। फिर भी, न्यूटन का मॉडल अधिकांश साधारण जीवन की स्थितियों के लिए काफी पर्याप्त है, अर्थात्, जब तक कि कण गति प्रकाश की गति से काफी कम है, और हम केवल मैक्रो-कणों का अध्ययन करते हैं।
ध्यान दें कि बेहतर सटीकता जरूरी नहीं कि एक बेहतर मॉडल हो। सांख्यिकीय मॉडल ओवरफिटिंग के लिए प्रवण हैं, जिसका अर्थ है कि एक मॉडल को डेटा के लिए बहुत अधिक फिट किया गया है और इसने उन नई घटनाओं के लिए सामान्यीकरण करने की अपनी क्षमता खो दी है जो पहले नहीं देखी गई थीं।
प्रशिक्षण और ट्यूनिंग
कोई भी मॉडल जो शुद्ध व्हाइट-बॉक्स नहीं है, उसमें कुछ पैरामीटर होते हैं जिनका उपयोग मॉडल को उस सिस्टम के लिए फिट करने के लिए किया जा सकता है जिसका उपयोग इसका वर्णन करने के लिए किया गया है।यदि मॉडलिंग एक कृत्रिम तंत्रिका नेटवर्क या अन्य मशीन लर्निंग द्वारा किया जाता है, तो मापदंडों के अनुकूलन को प्रशिक्षण कहा जाता है, जबकि मॉडल हाइपरपैरामीटर के अनुकूलन को ट्यूनिंग कहा जाता है और अक्सर क्रॉस-वैलिडेशन (सांख्यिकी) का उपयोग करता है। क्रॉस-वैलिडेशन।[8] स्पष्ट रूप से दिए गए गणितीय कार्यों के माध्यम से अधिक पारंपरिक मॉडलिंग में, पैरामीटर अक्सर वक्र फिटिंग द्वारा निर्धारित किए जाते हैं[citation needed]।
मॉडल मूल्यांकन =
मॉडलिंग प्रक्रिया का एक महत्वपूर्ण हिस्सा यह है कि किसी दिए गए गणितीय मॉडल का सही वर्णन है या नहीं, इसका मूल्यांकन है। इस प्रश्न का उत्तर देना मुश्किल हो सकता है क्योंकि इसमें कई अलग -अलग प्रकार के मूल्यांकन शामिल हैं।
अनुभवजन्य डेटा के लिए फिट
आमतौर पर, मॉडल मूल्यांकन का सबसे आसान हिस्सा यह जांचना है कि क्या एक मॉडल प्रयोगात्मक माप या अन्य अनुभवजन्य डेटा फिट बैठता है। मापदंडों वाले मॉडल में, इस फिट का परीक्षण करने के लिए एक सामान्य दृष्टिकोण डेटा को दो अलग-अलग सबसेट में विभाजित करना है: प्रशिक्षण डेटा और सत्यापन डेटा। प्रशिक्षण डेटा का उपयोग मॉडल मापदंडों का अनुमान लगाने के लिए किया जाता है। एक सटीक मॉडल सत्यापन डेटा से निकटता से मेल खाएगा, भले ही इन डेटा का उपयोग मॉडल के मापदंडों को सेट करने के लिए नहीं किया गया था। इस अभ्यास को क्रॉस-वैलिडेशन (सांख्यिकी) के रूप में संदर्भित किया जाता है।
अवलोकन और अनुमानित डेटा के बीच दूरी को मापने के लिए एक मीट्रिक को परिभाषित करना मॉडल फिट का आकलन करने के लिए एक उपयोगी उपकरण है। सांख्यिकी, निर्णय सिद्धांत और कुछ आर्थिक मॉडल में, एक हानि फलन एक समान भूमिका निभाता है।
हालांकि यह मापदंडों की उपयुक्तता का परीक्षण करने के लिए सीधा है, एक मॉडल के सामान्य गणितीय रूप की वैधता का परीक्षण करना अधिक कठिन हो सकता है। सामान्य तौर पर, अवकल समीकरणों से जुड़े मॉडल की तुलना में सांख्यिकीय मॉडल के फिट का परीक्षण करने के लिए अधिक गणितीय उपकरण विकसित किए गए हैं। गैर-पैरामीट्रिक आँकड़ों के उपकरणों का उपयोग कभी -कभी यह मूल्यांकन करने के लिए किया जा सकता है कि डेटा एक ज्ञात वितरण को कितनी अच्छी तरह से फिट करता है या एक सामान्य मॉडल के साथ आता है जो मॉडल के गणितीय रूप के बारे में केवल न्यूनतम धारणाएं बनाता है।
मॉडल का दायरा
एक मॉडल के दायरे का आकलन करना, अर्थात् यह निर्धारित करना कि मॉडल किन स्थितियों पर कम स्पष्ट हो सकता है। यदि मॉडल का निर्माण डेटा के एक सेट के आधार पर किया गया था, तो यह निर्धारित करना होगा कि ज्ञात डेटा किस सिस्टम या स्थितियों के लिए डेटा का एक विशिष्ट सेट है।
यह सवाल कि क्या मॉडल अच्छी तरह से वर्णन करता है कि डेटा बिंदुओं के बीच सिस्टम के गुणों को अच्छी तरह से वर्णन करता है इसे अंतर्वेशन(इंटरपोलेशन) कहा जाता है, और डेटा के बाहर की घटनाओं या डेटा बिंदुओं के लिए इसको बहिर्वेशन (एक्सट्रपलेशन) कहा जाता है।
एक मॉडल के दायरे की विशिष्ट सीमाओं के एक उदाहरण के रूप में हम ध्यान दे सकते हैं कि न्यूटन के शास्त्रीय यांत्रिकी का मूल्यांकन करने में, न्यूटन ने उन्नत उपकरणों के बिना माप कि थी, इसलिए वह प्रकाश की गति के करीब यात्रा करने वाले कणों कि गति के गुणों को नहीं माप सके थे। इसी तरह, उन्होंने अणुओं और अन्य छोटे कणों के आंदोलनों को नहीं मापा, लेकिन केवल मैक्रो कण। तब यह आश्चर्य की बात नहीं है कि उनका मॉडल इन डोमेन में अच्छी तरह से एक्सट्रपलेशन (बहिर्वेशन) नहीं करता है, भले ही उनका मॉडल सामान्य जीवन भौतिकी के लिए काफी पर्याप्त है।
दार्शनिक विचार
कई प्रकार के मॉडलिंग में निहित रूप से कार्य-कारण के बारे में दावे शामिल हैं। यह आमतौर पर (लेकिन हमेशा नहीं) अवकल समीकरणों से जुड़े मॉडलों के लिए सही होता है।जैसा कि मॉडलिंग का उद्देश्य दुनिया के बारे मे हमारी समझ को बढ़ाना है, एक मॉडल की वैधता न केवल अनुभवजन्य टिप्पणियों के लिए अपने फिट पर टिकी हुई है, बल्कि मूल रूप से मॉडल में वर्णित स्थितियों से परे या डेटा को एक्सट्रपलेशन(बहिर्वेशन) करने की क्षमता पर भी है। कोई इसे गुणात्मक और मात्रात्मक भविष्यवाणियों के बीच भेदभाव के रूप में सोच सकता है। कोई यह भी तर्क दे सकता है कि एक मॉडल बेकार है जब तक कि यह कुछ अंतर्दृष्टि प्रदान नहीं करता है जो पहले से ही उस घटना की प्रत्यक्ष जांच से जाना जाता है जो अध्ययन किया जा रहा है।
इस तरह की आलोचना का एक उदाहरण यह तर्क है कि इष्टतम फोर्जिंग थ्योरी के गणितीय मॉडल उन अंतर्दृष्टि की पेशकश नहीं करते हैं जो विकास के सामान्य ज्ञान के निष्कर्ष और पारिस्थितिकी के अन्य बुनियादी सिद्धांतों से परे हैं।[9]
प्राकृतिक विज्ञान में महत्व
प्राकृतिक विज्ञान में विशेष रूप से भौतिकी में गणितीय मॉडल बहुत महत्व रखते हैं। गणितीय मॉडल का उपयोग करके भौतिक सिद्धांतों को लगभग हमेशा व्यक्त किया जाता है।
पूरे इतिहास में, अधिक से अधिक सटीक गणितीय मॉडल विकसित किए गए हैं। न्यूटन के नियम रोज़मर्रा की कई घटनाओं का सटीक वर्णन करते हैं, लेकिन कुछ सीमाओं पर सापेक्षता और क्वांटम यांत्रिकी के सिद्धांत का उपयोग किया जाना चाहिए।
चीजों को सरल बनाने के लिए भौतिकी में आदर्शित मॉडल का उपयोग करना आम बात है। एक बॉक्स में द्रव्यमान रहित रस्सियों, बिंदु कणों, आदर्श गैसों और कण भौतिकी में उपयोग किए जाने वाले कई सरलीकृत मॉडल में से हैं। भौतिकी के नियमों को न्यूटन के कानूनों, मैक्सवेल के समीकरणों और श्रोडिंगर समीकरण जैसे सरल समीकरणों के साथ दर्शाया गया है। ये कानून वास्तविक स्थितियों के गणितीय मॉडल बनाने के लिए एक आधार हैं। कई वास्तविक स्थितियां बहुत जटिल हैं और इस प्रकार एक कंप्यूटर पर अनुमानित मॉडलिंग की जाती है, एक मॉडल जो गणना करने के लिए कम्प्यूटेशनल रूप से संभव है, मूल नियमो से या मूल नियमो से बने अनुमानित मॉडल से बनाया जाता है। उदाहरण के लिए, अणुओं को आणविक कक्षीय मॉडल द्वारा मॉडलिंग किया जा सकता है जो श्रोडिंगर समीकरण के अनुमानित समाधान हैं। इंजीनियरिंग में, भौतिकी मॉडल अक्सर गणितीय तरीकों जैसे परिमित तत्व विश्लेषण द्वारा बनाए जाते हैं।
विभिन्न गणितीय मॉडल विभिन्न ज्यामिति का उपयोग करते हैं जो जरूरी नहीं कि ब्रह्मांड की ज्यामिति के सटीक विवरण हों। यूक्लिड कि ज्यामिति का उपयोग शास्त्रीय भौतिकी में किया जाता है, जबकि विशेष सापेक्षता और सामान्य सापेक्षता उन सिद्धांतों के उदाहरण हैं जो ज्यामिति का उपयोग करते हैं जो यूक्लिडियन नहीं हैं।
कुछ अनुप्रयोग
अक्सर जब इंजीनियर नियंत्रित या अनुकूलित होने के लिए एक प्रणाली का विश्लेषण करते हैं, तो वे एक गणितीय मॉडल का उपयोग करते हैं।विश्लेषण में, इंजीनियर सिस्टम के एक वर्णनात्मक मॉडल का निर्माण कर सकते हैं कि सिस्टम कैसे काम कर सकता है, या यह अनुमान लगाने की कोशिश कर सकता है कि एक अप्रत्याशित घटना प्रणाली को कैसे प्रभावित कर सकती है। इसी तरह, एक प्रणाली के नियंत्रण में, इंजीनियर सिमुलेशन में विभिन्न नियंत्रण दृष्टिकोणों को आज़मा सकते हैं।
एक गणितीय मॉडल आमतौर पर चर के एक सेट और समीकरणों के एक सेट द्वारा एक प्रणाली का वर्णन करता है जो चर के बीच संबंधों को स्थापित करता है।चर कई प्रकार के हो सकते हैं, उदाहरण के लिए वास्तविक या पूर्णांक संख्या, बूलियन मान या तार। चर सिस्टम के कुछ गुणों का प्रतिनिधित्व करते हैं, उदाहरण के लिए, मापा गया सिस्टम आउटपुट अक्सर संकेतों, समय डेटा, काउंटरों और घटना की घटना के रूप में होता है।वास्तविक मॉडल उन कार्यों का सेट है जो विभिन्न चर के बीच संबंधों का वर्णन करते हैं।
उदाहरण
- कंप्यूटर विज्ञान में लोकप्रिय उदाहरणों में से एक विभिन्न मशीनों का गणितीय मॉडल है, एक उदाहरण नियतात्मक परिमित ऑटोमेटन डेटर्मीनिस्टिक फिनिट ऑटोमाटों(डीएफए) है जिसे एक अमूर्त गणितीय अवधारणा के रूप में परिभाषित किया गया है, लेकिन डीएफए की नियतात्मक प्रकृति के कारण, इसे हार्डवेयर में लागू किया जा सकता है और विभिन्न विशिष्ट समस्याओं को हल करने के लिए सॉफ्टवेयर मे।उदाहरण के लिए, निम्नलिखित एक बाइनरी वर्णमाला के साथ एक DFA m है, जिसके लिए आवश्यक है कि इनपुट में 0s की एक सम संख्या है:
- M = (q, σ, d, q0,F) कहाँ
- q = {s1, S2},
- σ = {0, 1},
- q0 = S1
- f = {s1}, तथा
- δ निम्नलिखित अवस्था संक्रमण सारणी द्वारा परिभाषित किया गया है:
- M = (q, σ, d, q0,F) कहाँ
0 1 S1 S2 S1 S2 S1 S2
- अवस्था S1 दर्शाती है कि अब तक इनपुट में 0 की सम संख्या रही है, जबकि S2 एक विषम संख्या को दर्शाता है। इनपुट में A 1 ऑटोमेटन की स्थिति को नहीं बदलता है। जब इनपुट समाप्त हो जाता है, तो अवस्था यह दिखाएगी कि इनपुट में 0 की संख्या भी है या नहीं। यदि इनपुट में 0s की एक सम संख्या होती है, तो M राज्य S1 में समाप्त हो जाएगा, एक स्वीकार्य स्थिति, इसलिए इनपुट स्ट्रिंग स्वीकार की जाएगीl
- M द्वारा मान्यता प्राप्त भाषा नियमित अभिव्यक्ति 1*(0 (1*) 0 (1*))*द्वारा दी गई नियमित भाषा है, जहां*क्लेन स्टार है, जैसे, 1*किसी भी गैर-नकारात्मक संख्या को दर्शाता है (संभवतःशून्य) प्रतीकों का 1।
- बिना सोचे -समझे कई रोजमर्रा की गतिविधियाँ गणितीय मॉडल के उपयोग हैं।एक छोटे, विमान की सतह पर पृथ्वी के एक क्षेत्र का एक भौगोलिक मानचित्र प्रक्षेपण एक मॉडल है जिसका उपयोग कई उद्देश्यों जैसे कि योजना यात्रा जैसे कई उद्देश्यों के लिए किया जा सकता है।[10]* एक अन्य सरल गतिविधि अपनी प्रारंभिक स्थिति, दिशा और यात्रा की गति से एक वाहन की स्थिति की भविष्यवाणी कर रही है, जिस समीकरण की यात्रा की गई वह समीकरण का उपयोग करके समय और गति का उत्पाद है।यह औपचारिक रूप से अधिक उपयोग किए जाने पर मृत रेकनिंग के रूप में जाना जाता है।इस तरह से गणितीय मॉडलिंग के लिए औपचारिक गणित की आवश्यकता नहीं है;जानवरों को मृत रेकनिंग का उपयोग करने के लिए दिखाया गया है।[11][12]* जनसंख्या वृद्धि।जनसंख्या वृद्धि का एक सरल (हालांकि अनुमानित) मॉडल माल्थुसियन विकास मॉडल है।थोड़ा अधिक यथार्थवादी और बड़े पैमाने पर उपयोग किए जाने वाले जनसंख्या वृद्धि मॉडल लॉजिस्टिक फ़ंक्शन और इसके एक्सटेंशन हैं।
- एक संभावित क्षेत्र में एक कण का मॉडल।इस मॉडल में हम एक कण को द्रव्यमान का एक बिंदु मानते हैं जो अंतरिक्ष में एक प्रक्षेपवक्र का वर्णन करता है जो एक फ़ंक्शन द्वारा मॉडल किया जाता है जो समय के एक समारोह के रूप में अंतरिक्ष में अपने निर्देशांक देता है।संभावित क्षेत्र एक फ़ंक्शन द्वारा दिया जाता है और प्रक्षेपवक्र, यह एक फ़ंक्शन है , अंतर समीकरण का समाधान है:
- यह भी लिखा जा सकता है:
- ध्यान दें कि यह मॉडल कि मानता है कि कण एक बिंदु द्रव्यमान है, जो निश्चित रूप से कई मामलों में गलत माना जाता है जिसमें हम इस मॉडल का उपयोग करते हैं, उदाहरण के लिए, ग्रह गति के एक मॉडल के रूप में।
- एक उपभोक्ता के लिए तर्कसंगत व्यवहार का मॉडल। इस मॉडल में हम मानते हैं कि एक उपभोक्ता को 1,2,...,n लेबल वाली n वस्तुओं के विकल्प उपस्थित है, जिनमें से प्रत्येक का बाजार मूल्य p1, p2,..., pn होता है। यह माना जाता है कि उपभोक्ता के पास एक क्रमिक उपयोगिता फलन U है (इस अर्थ में क्रमिक है कि केवल दो उपयोगिताओं के बीच अंतर का संकेत है, न कि प्रत्येक उपयोगिता का स्तर सार्थक है), वस्तुओं की मात्रा x1, x2 पर निर्भर करता है। .., xn का सेवन किया। मॉडल आगे मानता है कि उपभोक्ता के पास एक बजट M है जिसका उपयोग वेक्टर x1, x2,..., xn को इस तरह से खरीदने के लिए किया जाता है कि U(x1, x2,..., xn) को अधिकतम किया जा सके। इस मॉडल में तर्कसंगत व्यवहार की समस्या तब गणितीय अनुकूलन समस्या बन जाती है, जो है:
- का विषय है:
- इस मॉडल का उपयोग विभिन्न प्रकार के आर्थिक संदर्भों में विस्तृत विविधता में किया गया है, जैसे कि सामान्य संतुलन सिद्धांत में अस्तित्व और आर्थिक संतुलन की परतो दक्षता दिखाने के लिए।
- नेबर-सेंसिंग मॉडल एक मॉडल है जो शुरू में अराजक कवक नेटवर्क से मशरूम के गठन की व्याख्या करता है।
- कंप्यूटर विज्ञान में, कंप्यूटर नेटवर्क का अनुकरण करने के लिए गणितीय मॉडल का उपयोग किया जा सकता है।
- यांत्रिकी में, गणितीय मॉडल का उपयोग रॉकेट मॉडल की गति का विश्लेषण करने के लिए किया जा सकता है।
यह भी देखें
- एजेंट-आधारित मॉडल
- सभी मॉडल गलत हैं
- क्लियोडायनामिक्स
- कंप्यूटर सिमुलेशन
- संकल्पनात्मक निदर्श
- निर्णय अभियांत्रिकी
- ग्रे बॉक्स मॉडल
- अंतर्राष्ट्रीय गणितीय मॉडलिंग चुनौती
- गणितीय जीव विज्ञान
- गणितीय आरेख
- गणितीय अर्थशास्त्र
- संक्रामक रोग का गणितीय मॉडलिंग
- गणितीय वित्त
- गणितीय मनोविज्ञान
- गणितीय समाजशास्त्र
- माइक्रोस्केल और मैक्रोस्केल मॉडल
- मॉडल उलटा
- वैज्ञानिक मॉडल
- संवेदनशीलता का विश्लेषण
- सांख्यिकीय मॉडल
- सिस्टम पहचान
- टीके सॉल्वर - नियम -आधारित मॉडलिंग
संदर्भ
- ↑ D. Tymoczko, A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice (Oxford Studies in Music Theory), Oxford University Press; Illustrated Edition (March 21, 2011), ISBN 978-0195336672
- ↑ Andras Kornai, Mathematical Linguistics (Advanced Information and Knowledge Processing),Springer, ISBN 978-1849966948
- ↑ Andreski, Stanislav (1972). Social Sciences as Sorcery. St. Martin’s Press. ISBN 0-14-021816-5.
- ↑ Truesdell, Clifford (1984). An Idiot's Fugitive Essays on Science. Springer. pp. 121–7. ISBN 3-540-90703-3.
- ↑ Li, C., Xing, Y., He, F., & Cheng, D. (2018). A Strategic Learning Algorithm for State-based Games. ArXiv.
- ↑ Billings S.A. (2013), Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains, Wiley.
- ↑ "Thomas Kuhn". Stanford Encyclopedia of Philosophy. 13 August 2004. Retrieved 15 January 2019.
- ↑ Thornton, Chris. "Machine Learning Lecture". Retrieved 2019-02-06.
- ↑ Pyke, G. H. (1984). "Optimal Foraging Theory: A Critical Review". Annual Review of Ecology and Systematics. 15: 523–575. doi:10.1146/annurev.es.15.110184.002515.
- ↑ "GIS Definitions of Terminology M-P". LAND INFO Worldwide Mapping. Retrieved January 27, 2020.
- ↑ Gallistel (1990). The Organization of Learning. Cambridge: The MIT Press. ISBN 0-262-07113-4.
- ↑ Whishaw, I. Q.; Hines, D. J.; Wallace, D. G. (2001). "Dead reckoning (path integration) requires the hippocampal formation: Evidence from spontaneous exploration and spatial learning tasks in light (allothetic) and dark (idiothetic) tests". Behavioural Brain Research. 127 (1–2): 49–69. doi:10.1016/S0166-4328(01)00359-X. PMID 11718884. S2CID 7897256.
अग्रिम पठन
पुस्तकें
- आरिस, रदरफोर्ड [1978] (1994)।गणितीय मॉडलिंग तकनीक, न्यूयॉर्क: डोवर। ISBN 0-486-68131-9
- बेंडर, ई.ए.[1978] (2000)।गणितीय मॉडलिंग के लिए एक परिचय, न्यूयॉर्क: डोवर। ISBN 0-486-41180-X
- गैरी चार्ट्रैंड (1977) गणितीय मॉडल, प्रिंडल, वेबर और श्मिट के रूप में ग्राफ़ ISBN 0871502364
- डुबोइस, जी। (2018) मॉडलिंग और सिमुलेशन, टेलर एंड फ्रांसिस, सीआरसी प्रेस।
- गेर्शेनफेल्ड, एन। (1998) द नेचर ऑफ मैथमेटिकल मॉडलिंग, कैम्ब्रिज यूनिवर्सिटी प्रेस ISBN 0-521-57095-6 ।
- लिन, सी.सी.और सेगेल, एल.ए. (1988)।प्राकृतिक विज्ञान, फिलाडेल्फिया में नियतात्मक समस्याओं पर लागू गणित: सियाम। ISBN 0-89871-229-7
विशिष्ट अनुप्रयोग
- पापादिमित्रीउ, फिवोस।(2010)।स्थानिक-पारिस्थितिक जटिल प्रणालियों का गणितीय मॉडलिंग: एक मूल्यांकन।भूगोल, पर्यावरण, स्थिरता 1 (3), 67-80। doi:10.24057/2071-9388-2010-3-1-67-80
- Peierls, R. (1980). "Model-making in physics". Contemporary Physics. 21: 3–17. Bibcode:1980ConPh..21....3P. doi:10.1080/00107518008210938.
- संक्रामक रोग मॉडलिंग के लिए एक परिचय एमिलिया विनेनकी और रिचर्ड जी व्हाइट द्वारा।
बाहरी संबंध
- General reference
- Patrone, F. Introduction to modeling via differential equations, with critical remarks.
- Plus teacher and student package: Mathematical Modelling. Brings together all articles on mathematical modeling from Plus Magazine, the online mathematics magazine produced by the Millennium Mathematics Project at the University of Cambridge.
- Philosophical
- Frigg, R. and S. Hartmann, Models in Science, in: The Stanford Encyclopedia of Philosophy, (Spring 2006 Edition)
- Griffiths, E. C. (2010) What is a model?