वृत्ताकार माध्य: Difference between revisions

From Vigyanwiki
 
(2 intermediate revisions by 2 users not shown)
Line 112: Line 112:
==बाहरी संबंध==
==बाहरी संबंध==
* [https://www.codeproject.com/Articles/190833/Circular-Values-Math-and-Statistics-with-Cplusplus Circular Values Math and Statistics with C++11], A C++11 infrastructure for circular values (angles, time-of-day, etc.) mathematics and statistics
* [https://www.codeproject.com/Articles/190833/Circular-Values-Math-and-Statistics-with-Cplusplus Circular Values Math and Statistics with C++11], A C++11 infrastructure for circular values (angles, time-of-day, etc.) mathematics and statistics
[[Category: साधन]] [[Category: दिशात्मक आँकड़े]]


 
[[Category:Articles with broken excerpts]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 20/06/2023]]
[[Category:Created On 20/06/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia fully protected templates|Excerpt]]
[[Category:Wikipedia page-section templates]]
[[Category:दिशात्मक आँकड़े]]
[[Category:साधन]]

Latest revision as of 11:22, 13 September 2023

गणित और सांख्यिकी में, वृत्ताकार माध्य या कोणीय माध्य कोणों और समान चक्रीय मात्राओं, जैसे दिन के समय और वास्तविक संख्याओं के भिन्नात्मक भागों के लिए डिज़ाइन किया गया माध्य है।

यह आवश्यक है क्योंकि अधिकांश सामान्य साधन कोण जैसी मात्राओं पर उपयुक्त नहीं हो सकते हैं। उदाहरण के लिए, 0° और 360° का अंकगणितीय माध्य 180° है, जो भ्रामक है क्योंकि 360° 0° मॉडुलो एक पूर्ण चक्र के बराबर है।[1] एक अन्य उदाहरण के रूप में, रात्रि 11 बजे से 1 पूर्वाह्न के बीच का औसत समय या तो आधी रात या दोपहर है, यह इस बात पर निर्भर करता है कि दोनों समय एक ही रात का हिस्सा हैं या एक कैलेंडर दिन का हिस्सा हैं।

वृत्तीय माध्य दिशात्मक सांख्यिकी और गैर-यूक्लिडियन रिक्त स्थान के सांख्यिकी के सबसे सरल उदाहरणों में से एक है। यह संगणना अंकगणितीय माध्य की तुलना में एक अलग परिणाम उत्पन्न करती है, जब कोण व्यापक रूप से वितरित किए जाते हैं तो अंतर अधिक होता है। उदाहरण के लिए, तीन कोणों 0°, 0°, और 90° का अंकगणितीय माध्य (0° + 0° + 90°) / 3 = 30° है, लेकिन सदिश माध्य है आर्कटान (1/2) = 26.565°. इसके अलावा, अंकगणित माध्य के साथ वृत्ताकार विचरण केवल ±180° परिभाषित किया गया है।

परिभाषा

चूंकि अंकगणित माध्य हमेशा कोणों के लिए उपयुक्त नहीं होता है, निम्न विधि का उपयोग कोणों के विचरण के लिए माध्य मान और माप दोनों प्राप्त करने के लिए किया जा सकता है:

यूनिट सर्कल पर सभी कोणों को संगत बिंदुओं में बदलें, उदाहरण के लिए, को . यही है, ध्रुवीय निर्देशांक को कार्टेशियन निर्देशांक में परिवर्तित करें। फिर इन बिंदुओं के अंकगणितीय माध्य की गणना करें। परिणामी बिंदु यूनिट डिस्क के भीतर होगा लेकिन सामान्यतः यूनिट सर्कल पर नहीं होगा। उस बिंदु को वापस ध्रुवीय निर्देशांक में बदलें। कोण इनपुट कोणों का एक उचित माध्य है। परिणामी त्रिज्या 1 होगी यदि सभी कोण बराबर हों। यदि कोण समान रूप से वृत्त पर वितरित किए जाते हैं, तो परिणामी त्रिज्या 0 होगी, और कोई वृत्तीय माध्य नहीं है। (वास्तव में, वृत्त पर एक सतत माध्य संक्रिया को परिभाषित करना असंभव है।) दूसरे शब्दों में, त्रिज्या कोणों की सघनता को मापता है।

कोणों को देखते हुए चापस्पर्शज्या फलन के atan2 संस्करण का उपयोग करते हुए माध्य का एक सामान्य सूत्र है

सम्मिश्र अंकगणित का उपयोग

सम्मिश्र संख्याओं का उपयोग करके एक समतुल्य परिभाषा तैयार की जा सकती है:

.

अंकों के अंकगणितीय साधनों का उपयोग करके उपरोक्त व्युत्पत्ति का मिलान करने के लिए, योग को विभाजित करना होगा . हालांकि, स्केलिंग के लिए कोई फर्क नहीं पड़ता और , इस प्रकार इसे छोड़ा जा सकता है।

यह अधिक संक्षेप में कहा जा सकता है कि दिशात्मक डेटा वास्तव में इकाई लंबाई के सदिश हैं। एक आयामी डेटा के स्थिति में, इन डेटा बिंदुओं को इकाई परिमाण की सम्मिश्र संख्या के रूप में आसानी से प्रदर्शित किया जा सकता है , जहाँ मापा कोण है। नमूने के लिए माध्य समांतर चतुर्भुज नियम तब है:

नमूना माध्य कोण तब माध्य परिणाम का तर्क (सम्मिश्र विश्लेषण) होता है:

नमूना माध्य परिणामी सदिश की लंबाई है:

और इसका मान 0 और 1 के बीच होगा। इस प्रकार नमूना माध्य परिणामी सदिश को इस प्रकार दर्शाया जा सकता है:

इसी तरह की गणनाओं का उपयोग दिशात्मक आँकड़ों को परिभाषित करने के लिए भी किया जाता है स्थान और प्रसार के उपाय।

गुण

वृत्तीय मध्य,

  • वॉन माइस वितरण के औसत पैरामीटर की संभावना को अधिकतम करता है और
  • वृत्त पर एक निश्चित दूरी के योग को कम करता है, और अधिक सटीक
दूरी से जुड़े यूनिट सर्कल पर दो बिंदुओं के बीच वर्ग यूक्लिडियन दूरी के आधे के बराबर है और .

उदाहरण

कोणों की एक श्रृंखला के माध्य की गणना करने का एक सरल तरीका (अंतराल [0°, 360°) में) प्रत्येक कोण के कोज्या और ज्या के माध्य की गणना करना है, और कोण को प्राप्त करना है व्युत्क्रम स्पर्शरेखा की गणना। उदाहरण के तौर पर निम्नलिखित तीन कोणों पर विचार करें: 10, 20 और 30 डिग्री। सहज रूप से, माध्य की गणना करने में इन तीन कोणों को एक साथ जोड़ना और 3 से विभाजित करना सम्मिलित होगा, इस स्थिति में वास्तव में 20 डिग्री का सही माध्य कोण होता है। इस प्रणाली को घड़ी की विपरीत दिशा में 15 डिग्री घुमाने पर तीनों कोण 355 डिग्री, 5 डिग्री और 15 डिग्री हो जाते हैं। अंकगणितीय माध्य अब 125 डिग्री है, जो गलत उत्तर है, क्योंकि यह 5 डिग्री होना चाहिए। सदिश मतलब माध्य साइन का उपयोग करके निम्नलिखित तरीके से गणना की जा सकती है और औसत कोसाइन :

कार्यान्वयन

इस पाइथन कोड में हम दिन के घंटे का उपयोग करते हैं ताकि उनमें से वृत्तीय औसत का पता लगाया जा सके:

import math

def circular_mean(hours):
    # Convert hours to radians
    # What is the 15?! (24*15=360)
    radians = [math.radians(hour * 15) for hour in hours]

    # Calculate the sum of sin and cos values
    sin_sum = sum([math.sin(rad) for rad in radians])
    cos_sum = sum([math.cos(rad) for rad in radians])

    # Calculate the circular mean using arctan2
    mean_rad = math.atan2(sin_sum, cos_sum)

    # Convert the mean back to hours
    mean_hour = (math.degrees(mean_rad) / 15) % 24

    return mean_hour

# Example usage:
hours = [0, 12,18]
mean_hour = circular_mean(hours)
print("First Circular mean:", round(mean_hour, 2))

hours = [0, 12]
mean_hour = circular_mean(hours)
print("Second Circular mean:", round(mean_hour, 2))

hours = [0, 0, 12, 12, 24]
mean_hour = circular_mean(hours)
print("Third Circular mean:", round(mean_hour, 2))

सामान्यीकरण

गोलाकार माध्य

Page 'वॉन मिसेस-फिशर वितरण' not found

भारित गोलाकार माध्य

भारित गोलाकार माध्य को गोलाकार रेखीय प्रक्षेप के आधार पर परिभाषित किया जा सकता है।[2]

यह भी देखें

संदर्भ

  1. Christopher M. Bishop: Pattern Recognition and Machine Learning (Information Science and Statistics), ISBN 0-387-31073-8
  2. Buss, Samuel R.; Fillmore, Jay P. (2001). "गोलीय औसत और गोलीय splines और प्रक्षेप के लिए आवेदन". ACM Transactions on Graphics. Association for Computing Machinery (ACM). 20 (2): 95–126. doi:10.1145/502122.502124. ISSN 0730-0301.

अग्रिम पठन

बाहरी संबंध