अनंत का अभिगृहीत: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Axiom of the Zermelo-Fraenkel set theory}} {{refimprove|date=October 2019}} [[स्वयंसिद्ध सेट सिद्धांत]] औ...")
 
 
(6 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|Axiom of the Zermelo-Fraenkel set theory}}
{{Short description|Axiom of the Zermelo-Fraenkel set theory}}
{{refimprove|date=October 2019}}
[[स्वयंसिद्ध|अभिगृहीतीय समुच्चय सिद्धांत]] और इसका उपयोग करने वाली [[गणित]] एवं [[दर्शन|दर्शनशास्त्र]] की शाखाओं में '''अनंत का अभिगृहीत''', जर्मेलो-फ्रेंकेल समुच्चय सिद्धांत के अभिगृहीतों में से एक है। यह कम से कम एक [[अनंत सेट|अपरिमित समुच्चय]] (अर्थात् [[प्राकृतिक संख्या|प्राकृतिक संख्याओं]] एक समुच्चय) के अस्तित्व का आश्वासन देता है। यह सर्वप्रथम वर्ष 1908 में [[अर्नेस्ट ज़र्मेलो|अर्नस्ट ज़र्मेलो]] द्वारा उनके [[ज़र्मेलो सेट सिद्धांत|समुच्चय सिद्धांत]] के हिस्से के रूप में प्रकाशित किया गया था।<ref>Zermelo: ''Untersuchungen über die Grundlagen der Mengenlehre'', 1907, in: Mathematische Annalen 65 (1908), 261-281; Axiom des Unendlichen p. 266f.</ref>
[[[[स्वयंसिद्ध]] सेट सिद्धांत]] और [[गणित]] और [[दर्शन]] की शाखाओं में जो इसका उपयोग करते हैं, अनंत का स्वयंसिद्ध जर्मेलो-फ्रेंकेल सेट सिद्धांत के सिद्धांतों में से एक है। यह कम से कम एक [[अनंत सेट]] के अस्तित्व की गारंटी देता है, अर्थात् एक सेट जिसमें [[प्राकृतिक संख्या]]एँ होती हैं। यह पहली बार 1908 में अपने [[ज़र्मेलो सेट सिद्धांत]] के हिस्से के रूप में [[अर्नेस्ट ज़र्मेलो]] द्वारा प्रकाशित किया गया था।<ref>Zermelo: ''Untersuchungen über die Grundlagen der Mengenlehre'', 1907, in: Mathematische Annalen 65 (1908), 261-281; Axiom des Unendlichen p. 266f.</ref>
 
 
== औपचारिक वक्तव्य ==
== औपचारिक वक्तव्य ==
ज़र्मेलो-फ्रेंकेल स्वयंसिद्धों की [[औपचारिक भाषा]] में, स्वयंसिद्ध पढ़ता है:
ज़र्मेलो-फ्रेंकेल अभिगृहीतों की [[औपचारिक भाषा]] में, अभिगृहीत इस प्रकार पढ़ा जाता है:
:<math>\exists \mathbf{I} \, ( \empty \in \mathbf{I} \, \land \, \forall x \in \mathbf{I} \, ( \, ( x \cup \{x\} ) \in \mathbf{I} ) ) .</math>
:<math>\exists \mathbf{I} \, ( \empty \in \mathbf{I} \, \land \, \forall x \in \mathbf{I} \, ( \, ( x \cup \{x\} ) \in \mathbf{I} ) ) .</math>
शब्दों में, [[अस्तित्वगत परिमाणीकरण]] एक समुच्चय (गणित) I (वह समुच्चय जो अनंत माना जाता है), जैसे कि रिक्त समुच्चय I में है, और ऐसा कि जब भी कोई ''x'' I का सदस्य होता है, समुच्चय बनता है इसके [[सिंगलटन (गणित)]] के साथ ''x'' के मिलन का अभिगृहीत लेकर {''x''} भी I का एक सदस्य है। ऐसे समुच्चय को कभी-कभी आगमनात्मक समुच्चय कहा जाता है।
शब्दों में, एक ऐसे समुच्चय '''I''' (जिसे अपरिमित माना जाता है) का [[अस्तित्वगत परिमाणीकरण|अस्तित्व]] इस प्रकार है, कि रिक्त समुच्चय, '''I''' में है, और जब भी कोई ''x'', '''I''' का सदस्य होता है, तो ''x'' और इसके [[सिंगलटन (गणित)|एकल समुच्चय]] {x} के संघ से बना समुच्चय भी '''I''' का एक सदस्य होता है। इस प्रकार के समुच्चय को कभी-कभी '''आगमनात्मक समुच्चय''' कहा जाता है।


== व्याख्या और परिणाम ==
== व्याख्या और परिणाम ==
यह स्वयंसिद्ध सेट सिद्धांत में प्राकृतिक संख्या#von_Neumann_ordinals से निकटता से संबंधित है, जिसमें x के उत्तराधिकारी क्रमांक को x ∪ {x} के रूप में परिभाषित किया गया है। यदि x एक समुच्चय है, तो यह समुच्चय सिद्धांत के अन्य अभिगृहीतों से अनुसरण करता है कि यह उत्तराधिकारी भी एक विशिष्ट रूप से परिभाषित समुच्चय है। उत्तराधिकारियों का उपयोग प्राकृतिक संख्याओं के सामान्य सेट-सैद्धांतिक एन्कोडिंग को परिभाषित करने के लिए किया जाता है। इस एन्कोडिंग में शून्य खाली सेट है:
यह अभिगृहीत समुच्चय सिद्धांत में प्राकृतिक संख्याओं के वॉन न्यूमैन निर्माण से निकटता से संबंधित है, जिसमें ''x'' के परवर्ती को ''x'' ∪ {''x''} के रूप में परिभाषित किया गया है। यदि ''x'' एक समुच्चय है, तो यह समुच्चय सिद्धांत के अन्य अभिगृहीतों से अनुसरण करता है कि यह परवर्ती भी एक अद्वितीय रूप से परिभाषित समुच्चय होता है। परवर्तियों का उपयोग प्राकृतिक संख्याओं के सामान्य समुच्चय-सैद्धांतिक कूट-लेखन को परिभाषित करने के लिए किया जाता है। इस कूट-लेखन में शून्य रिक्त समुच्चय होता है:


: 0 = {}
: 0 = {}


नंबर 1 0 का उत्तराधिकारी है:
नंबर 1, 0 का परवर्ती है:


:1 = 0 ∪ {0} = {} ∪ {0} = {0} = {{}}.
:1 = 0 ∪ {0} = {} ∪ {0} = {0} = {{}}.


इसी तरह, 2 1 का उत्तराधिकारी है:
इसी प्रकार, 2, 1 का परवर्ती है:


:2 = 1 ∪ {1} = {0} ∪ {1} = {0,1} = { {}, {{}} },
:2 = 1 ∪ {1} = {0} ∪ {1} = {0,1} = { {}, {{}} },


और इसी तरह:
और इसी प्रकार आगे भी:


:3 = {0,1,2} = { {}, {{}}, {{}, {{}}} };
:3 = {0,1,2} = { {}, {{}}, {{}, {{}}} };
Line 28: Line 25:
:4 = {0,1,2,3} = { {}, {{}}, { {}, {{}} }, { {}, {{}}, {{}, {{}}} } } .
:4 = {0,1,2,3} = { {}, {{}}, { {}, {{}} }, { {}, {{}}, {{}, {{}}} } } .


इस परिभाषा का एक परिणाम यह है कि प्रत्येक प्राकृतिक संख्या पूर्ववर्ती सभी प्राकृतिक संख्याओं के समुच्चय के बराबर होती है। प्रत्येक सेट में तत्वों की गिनती, शीर्ष स्तर पर, प्रतिनिधित्व की गई प्राकृतिक संख्या के समान है, और सबसे गहरे नेस्टेड खाली सेट {} की नेस्टिंग गहराई, जिसमें सेट में इसकी नेस्टिंग शामिल है जो उस संख्या का प्रतिनिधित्व करती है जिसकी वह है एक भाग, उस प्राकृतिक संख्या के बराबर भी होता है जिसका सेट प्रतिनिधित्व करता है।
इस परिभाषा का एक परिणाम यह है कि प्रत्येक प्राकृतिक संख्या, सभी पूर्ववर्ती प्राकृतिक संख्याओं के समुच्चय के बराबर होती है। प्रत्येक समुच्चय में शीर्ष स्तर पर तत्वों की गणना, निरूपित की गई प्राकृतिक संख्या के समान होती है, और सबसे गहन नेस्टेड (नीड़ित) रिक्त समुच्चय {} की नेस्टिंग (नीडन) गहराई भी समुच्चय द्वारा निरूपित की जाने वाली प्राकृतिक संख्या के बराबर होती है, इसमें उस समुच्चय में इसकी नेस्टिंग भी सम्मिलित है, जो उस संख्या का निरूपण करता है जिसका वह एक हिस्सा है।


यह निर्माण प्राकृतिक संख्या बनाता है। हालाँकि, अन्य अभिगृहीत सभी प्राकृतिक संख्याओं के समुच्चय के अस्तित्व को सिद्ध करने के लिए अपर्याप्त हैं, <math>\mathbb{N}_0</math>. इसलिए, इसके अस्तित्व को एक स्वयंसिद्ध के रूप में लिया जाता है - अनंत का स्वयंसिद्ध। यह स्वयंसिद्ध दावा करता है कि एक सेट I है जिसमें 0 है और उत्तराधिकारी लेने के संचालन के तहत क्लोजर (गणित) है; अर्थात्, I के प्रत्येक तत्व के लिए, उस तत्व का उत्तराधिकारी भी I में है।
यह निर्माण प्राकृतिक संख्याओं का निर्माण करता है। हालाँकि, अन्य अभिगृहीत ''सभी'' प्राकृतिक संख्याओं के समुच्चय, <math>\mathbb{N}_0</math> के अस्तित्व को सिद्ध करने के लिए अपर्याप्त हैं। इसलिए, इसके अस्तित्व को एक अभिगृहीत, अनंत का अभिगृहीत, के रूप में लिया जाता है। यह अभिगृहीत दावा करता है कि एक ऐसे समुच्चय I का अस्तित्व है जिसमें 0 को समाहित करता है और परवर्ती लेने की संक्रिया के तहत बंद है; अर्थात्, I के प्रत्येक तत्व के लिए, उस तत्व का परवर्ती भी I में होता है।


इस प्रकार स्वयंसिद्ध का सार है:
इस प्रकार अभिगृहीत का सार है:


: एक समुच्चय है, I, जिसमें सभी प्राकृत संख्याएँ शामिल हैं।
:I, एक ऐसा समुच्चय है, जिसमें सभी प्राकृत संख्याएँ सम्मिलित हैं।


अनंत का स्वयंसिद्ध भी वॉन न्यूमैन-बर्नेज़-गोडेल स्वयंसिद्धों में से एक है।
अनंत का अभिगृहीत भी वॉन न्यूमैन-बर्नेज़-गोडेल अभिगृहीतों में से एक है।


== अनंत सेट == से प्राकृतिक संख्या निकालना
== अनंत समुच्चय से प्राकृतिक संख्या निकालना ==
अनंत समुच्चय I प्राकृतिक संख्याओं का सुपरसेट है। यह दिखाने के लिए कि प्राकृतिक संख्याएं स्वयं एक सेट का गठन करती हैं, सभी प्राकृतिक संख्याओं के सेट एन को छोड़कर, अवांछित तत्वों को हटाने के लिए विनिर्देश के स्वयंसिद्ध स्कीमा को लागू किया जा सकता है। विस्तार के स्वयंसिद्ध द्वारा यह सेट अद्वितीय है।
अपरिमित समुच्चय '''I''' प्राकृतिक संख्याओं का अधिसमुच्चय है। प्राकृतिक संख्याएँ स्वयं एक समुच्चय का गठन करती हैं, यह दर्शाने के लिए सभी प्राकृतिक संख्याओं के समुच्चय '''N''' को छोड़कर, अवांछित तत्वों को हटाने के लिए विशिष्टता की अभिगृहीत रूपरेखा को लागू किया जा सकता है। विस्तार के अभिगृहीत द्वारा यह समुच्चय अद्वितीय है।


प्राकृतिक संख्याएँ निकालने के लिए, हमें यह निर्धारित करने की आवश्यकता है कि कौन से सेट प्राकृतिक संख्याएँ हैं। प्राकृतिक संख्याओं को इस तरह से परिभाषित किया जा सकता है, जो विस्तार के स्वयंसिद्ध और [[एप्सिलॉन-प्रेरण]] को छोड़कर किसी भी स्वयंसिद्ध को नहीं मानता है - एक प्राकृतिक संख्या या तो शून्य या एक उत्तराधिकारी है और इसका प्रत्येक तत्व या तो शून्य है या इसके किसी अन्य का उत्तराधिकारी है। तत्व। औपचारिक भाषा में, परिभाषा कहती है:
प्राकृतिक संख्याएँ निकालने के लिए, हमें यह निर्धारित करने की आवश्यकता है कि कौन से समुच्चय प्राकृतिक संख्याएँ हैं। प्राकृतिक संख्याओं को इस प्रकार परिभाषित किया जा सकता है जो विस्तार के अभिगृहीत और [[एप्सिलॉन-प्रेरण|आगमन]] के अभिगृहीत को छोड़कर किसी भी अभिगृहीत को नहीं मानता है, एक प्राकृतिक संख्या या तो शून्य या एक परवर्ती है और इसका प्रत्येक तत्व या तो शून्य है या इसके किसी अन्य तत्व का परवर्ती है। औपचारिक भाषा में, परिभाषा का कथन है:


:<math>\forall n (n \in \mathbf{N} \iff ([n = \empty \,\,\lor\,\, \exists k ( n = k \cup \{k\} )] \,\,\land\,\, \forall m \in n[m = \empty \,\,\lor\,\, \exists k \in n ( m = k \cup \{k\} )])).</math>
:<math>\forall n (n \in \mathbf{N} \iff ([n = \empty \,\,\lor\,\, \exists k ( n = k \cup \{k\} )] \,\,\land\,\, \forall m \in n[m = \empty \,\,\lor\,\, \exists k \in n ( m = k \cup \{k\} )])).</math>
Line 48: Line 45:
:<math>\forall n (n \in \mathbf{N} \iff ([\forall k (\lnot k \in n) \lor \exists k \forall j (j \in n \iff (j \in k \lor j = k))] \land</math>
:<math>\forall n (n \in \mathbf{N} \iff ([\forall k (\lnot k \in n) \lor \exists k \forall j (j \in n \iff (j \in k \lor j = k))] \land</math>
::<math>\forall m (m \in n \Rightarrow [\forall k (\lnot k \in m) \lor \exists k (k \in n \land \forall j (j \in m \iff (j \in k \lor j = k)))]))).</math>
::<math>\forall m (m \in n \Rightarrow [\forall k (\lnot k \in m) \lor \exists k (k \in n \land \forall j (j \in m \iff (j \in k \lor j = k)))]))).</math>
=== वैकल्पिक विधि ===
एक वैकल्पिक विधि निम्नलिखित है। माना <math>\Phi(x)</math> वह सूत्र है, जो यह कहता है कि "x आगमनात्मक" है; अर्थात्, <math>\Phi(x) = (\emptyset \in x \wedge \forall y(y \in x \to (y \cup \{y\} \in x)))</math>


 
अनौपचारिक रूप से, हम सभी आगमनात्मक समुच्चयों के प्रतिच्छेदन को लेते हैं। अधिक औपचारिक रूप से, हम एक ऐसे अद्वितीय समुच्चय <math>W</math> के अस्तित्व को सिद्ध करना चाहते हैं कि
=== वैकल्पिक विधि ===
एक वैकल्पिक तरीका निम्नलिखित है। होने देना <math>\Phi(x)</math> वह सूत्र बनें जो कहता है कि x आगमनात्मक है; अर्थात। <math>\Phi(x) = (\emptyset \in x \wedge \forall y(y \in x \to (y \cup \{y\} \in x)))</math>. अनौपचारिक रूप से, हम क्या करेंगे सभी आगमनात्मक सेटों के प्रतिच्छेदन को लें। अधिक औपचारिक रूप से, हम एक अद्वितीय सेट के अस्तित्व को सिद्ध करना चाहते हैं <math>W</math> ऐसा है कि


:<math>\forall x(x \in W \leftrightarrow \forall I(\Phi(I) \to x \in I)).</math> (*)
:<math>\forall x(x \in W \leftrightarrow \forall I(\Phi(I) \to x \in I)).</math> (*)


अस्तित्व के लिए, हम विशिष्टता के स्वयंसिद्ध स्कीमा के साथ संयुक्त इन्फिनिटी के स्वयंसिद्ध का उपयोग करेंगे। होने देना <math>I</math> इन्फिनिटी के स्वयंसिद्ध द्वारा गारंटीकृत आगमनात्मक सेट हो। फिर हम अपने सेट को परिभाषित करने के लिए विशिष्टता की स्वयंसिद्ध स्कीमा का उपयोग करते हैं <math>W = \{x \in I:\forall J(\Phi(J) \to x \in J)\}</math> - अर्थात। <math>W</math> के सभी तत्वों का समुच्चय है <math>I</math> जो प्रत्येक दूसरे आगमनात्मक समुच्चय के अवयव भी होते हैं। यह स्पष्ट रूप से (*) की परिकल्पना को संतुष्ट करता है, क्योंकि यदि <math>x \in W</math>, तब <math>x</math> हर आगमनात्मक सेट में है, और अगर <math>x</math> प्रत्येक आगमनात्मक सेट में है, यह विशेष रूप से अंदर है <math>I</math>, तो यह अंदर भी होना चाहिए <math>W</math>.
अस्तित्व के लिए, हम विशिष्टता के अभिगृहीत रूपरेखा के साथ संयुक्त अनंत के अभिगृहीत का उपयोग करते हैं। माना <math>I</math> अनंत के अभिगृहीत द्वारा आश्वस्त आगमनात्मक समुच्चय है। फिर हम अपने समुच्चय <math>W = \{x \in I:\forall J(\Phi(J) \to x \in J)\}</math> को परिभाषित करने के लिए विशिष्टता की अभिगृहीत रूपरेखा का उपयोग करते हैं, अर्थात् <math>W</math>, <math>I</math> के ऐसे सभी तत्वों का समुच्चय है जो प्रत्येक अन्य आगमनात्मक समुच्चय के तत्व भी होते हैं। यह स्पष्ट रूप से (*) की परिकल्पना को संतुष्ट करता है, क्योंकि यदि <math>x \in W</math>, तो <math>x</math> प्रत्येक आगमनात्मक समुच्चय में होता है, और यदि <math>x</math> प्रत्येक आगमनात्मक समुच्चय में है, तो यह विशेष रूप से <math>I</math> में होता है, इसलिए इसे <math>W</math> में भी होना चाहिए।


विशिष्टता के लिए, पहले ध्यान दें कि कोई भी सेट जो संतुष्ट करता है (*) स्वयं आगमनात्मक है, क्योंकि 0 सभी आगमनात्मक सेटों में है, और यदि कोई तत्व <math>x</math> सभी आगमनात्मक सेटों में है, फिर आगमनात्मक संपत्ति द्वारा इसका उत्तराधिकारी भी है। इस प्रकार अगर वहाँ एक और सेट थे <math>W'</math> जो संतुष्ट (*) हमारे पास होगा <math>W' \subseteq W</math> तब से <math>W</math> आगमनात्मक है, और <math>W \subseteq W'</math> तब से <math>W'</math> आगमनात्मक है। इस प्रकार <math>W = W'</math>. होने देना <math>\omega</math> इस अद्वितीय तत्व को निरूपित करें।
अद्वितीयता के लिए, पहले ध्यान दें कि (*) को संतुष्ट करने वाला कोई भी समुच्चय स्वयं आगमनात्मक होता है, क्योंकि 0 सभी आगमनात्मक समुच्चयों में होता है, और यदि कोई तत्व <math>x</math> सभी आगमनात्मक समुच्चयों में है, तो आगमनात्मक गुण द्वारा यह इसका परवर्ती होता है। इस प्रकार यदि <math>W'</math>ऐसा एक अन्य समुच्चय था जो (*) को संतुष्ट करता था, तो हमें निम्न परिणाम प्राप्त होते हैंː <math>W' \subseteq W</math>, क्योंकि <math>W</math> आगमनात्मक है, और <math>W \subseteq W'</math>, क्योंकि <math>W'</math> आगमनात्मक है। इस प्रकार <math>W = W'</math>। माना <math>\omega</math> इस अद्वितीय तत्व को दर्शाता है।


यह परिभाषा सुविधाजनक है क्योंकि गणितीय आगमन तुरंत अनुसरण करता है: यदि <math>I \subseteq \omega</math> आगमनात्मक है, फिर भी <math>\omega \subseteq I</math>, ताकि <math>I = \omega</math>.
यह परिभाषा सुविधाजनक है क्योंकि आगमन का सिद्धांत तत्काल अनुसरण करता है कि यदि <math>I \subseteq \omega</math> आगमनात्मक है, तो <math>\omega \subseteq I</math> भी आगमनात्मक होता है। इस प्रकार <math>I = \omega</math>


ये दोनों विधियाँ ऐसी प्रणालियाँ उत्पन्न करती हैं जो दूसरे क्रम के अंकगणित के स्वयंसिद्धों को संतुष्ट करती हैं, क्योंकि [[शक्ति सेट का स्वयंसिद्ध]] हमें शक्ति सेट पर मात्रा निर्धारित करने की अनुमति देता है <math>\omega</math>दूसरे क्रम के तर्क के रूप में। इस प्रकार वे दोनों पूरी तरह से [[समाकृतिकता]] सिस्टम निर्धारित करते हैं, और चूंकि वे [[पहचान समारोह]] के तहत आइसोमोर्फिक हैं, वे वास्तव में [[समानता (गणित)]] होना चाहिए।
ये दोनों विधियाँ ऐसे निकाय उत्पन्न करती हैं जो द्वितीय-कोटि अंकगणित के अभिगृहीतों को संतुष्ट करते हैं, क्योंकि [[शक्ति सेट का स्वयंसिद्ध|घात समुच्चय का अभिगृहीत]] हमें द्वितीय-कोटि तर्क के समान, <math>\omega</math> के घात समुच्चय पर परिमाण निर्धारित करने की अनुमति देता है। इस प्रकार ये दोनों पूर्णतः [[समाकृतिकता|समरूप]] निकाय निर्धारित करते हैं, और चूँकि ये [[पहचान समारोह|तत्समक प्रतिचित्र]] के तहत समरूप होते हैं, अतः ये वास्तव में [[समानता (गणित)|बराबर]] होने चाहिए।


== स्पष्ट रूप से कमजोर संस्करण ==
== स्पष्ट रूप से कमजोर संस्करण ==
कुछ पुराने ग्रंथ बुद्धि के लिए अनंत के स्वयंसिद्ध के स्पष्ट रूप से कमजोर संस्करण का उपयोग करते हैं:
कुछ पुराने शास्त्र, अनंत के अभिगृहीत के स्पष्ट रूप से कमजोर संस्करण का उपयोग करते हैं, अर्थात्
:<math> \exists x \, ( \exists y \, ( y \in x ) \, \land \, \forall y ( y \in x \, \rightarrow \, \exists z ( z \in x \, \land \, y \subsetneq z ) ) ) \,.</math>
:<math> \exists x \, ( \exists y \, ( y \in x ) \, \land \, \forall y ( y \in x \, \rightarrow \, \exists z ( z \in x \, \land \, y \subsetneq z ) ) ) \,.</math>
यह कहता है कि x में एक तत्व है और x के प्रत्येक तत्व y के लिए x का एक और तत्व है जो y का एक सख्त सुपरसेट है। इसका तात्पर्य है कि x इसकी संरचना के बारे में बहुत कुछ कहे बिना एक अनंत समुच्चय है। हालाँकि, ZF के अन्य अभिगृहीतों की सहायता से, हम दिखा सकते हैं कि यह ω के अस्तित्व को दर्शाता है। सबसे पहले, यदि हम किसी अनंत सेट x का पावरसेट लेते हैं, तो उस पावरसेट में ऐसे तत्व शामिल होंगे जो हर परिमित [[प्रमुखता]] (x के अन्य सबसेट के बीच) के x के सबसेट हैं। उन परिमित उपसमुच्चयों के अस्तित्व को साबित करने के लिए जुदाई के स्वयंसिद्ध या युग्मन और संघ के स्वयंसिद्धों की आवश्यकता हो सकती है। तब हम x के उस पॉवरसेट के प्रत्येक तत्व को समान कार्डिनलिटी के प्रारंभिक क्रमिक क्रमिक संख्या (या शून्य, यदि ऐसा कोई क्रमांक नहीं है) द्वारा प्रतिस्थापित करने के लिए प्रतिस्थापन के स्वयंसिद्ध को लागू कर सकते हैं। परिणाम अध्यादेशों का एक अनंत सेट होगा। फिर हम ω से अधिक या उसके बराबर क्रमसूचक प्राप्त करने के लिए संघ के अभिगृहीत को लागू कर सकते हैं।
इसका कथन है कि ''x'' में एक तत्व है और ''x'' के प्रत्येक तत्व ''y'' के लिए ''x'' का एक और तत्व ऐसा है, जो ''y'' का एक यथार्थ अधिसमुच्चय है। इसका तात्पर्य है कि ''x,'' इसकी संरचना के बारे में बहुत कुछ कहे बिना एक अपरिमित समुच्चय है। हालाँकि, ज़ेडएफ के अन्य अभिगृहीतों की सहायता से हम दर्शा सकते हैं कि यह ω के अस्तित्व को दर्शाता है। सर्वप्रथम, यदि हम किसी अपरिमित समुच्चय ''x'' का घात समुच्चय लेते हैं, तो उस घात समुच्चय में ऐसे तत्व सम्मिलित होते हैं जो प्रत्येक परिमित [[प्रमुखता|गणनांक (कार्डिनैलिटी)]] (''x'' के अन्य उपसमुच्चयों के बीच) के ''x'' के उपसमुच्चय हैं। इन परिमित उपसमुच्चयों के अस्तित्व को सिद्ध करने के लिए विभाजन के अभिगृहीत या युग्मन और संघ के अभिगृहीतों की आवश्यकता हो सकती है। फिर हम ''x'' के उस घातसमुच्चय के प्रत्येक तत्व को समान कार्डिनैलिटी की प्रारंभिक क्रमसूचक संख्या (या शून्य, यदि ऐसा कोई क्रमसूचक नहीं है) द्वारा प्रतिस्थापित करने के लिए प्रतिस्थापन के अभिगृहीत को लागू कर सकते हैं। क्रमसूचकों का एक अपरिमित समुच्चय इसका परिणाम होता है। फिर हम ω से अधिक या उसके बराबर क्रमसूचक प्राप्त करने के लिए संघ के अभिगृहीत को लागू कर सकते हैं।


== स्वतंत्रता ==
== स्वतंत्रता ==
यदि वे सुसंगत हैं तो ZFC के अन्य स्वयंसिद्धों से अनन्तता का स्वयंसिद्ध सिद्ध नहीं किया जा सकता है।
यदि ये सुसंगत हैं तो अनंत के अभिगृहीत को ज़ेडएफसी के अन्य अभिगृहीतों से सिद्ध नहीं किया जा सकता है। (कारण देखने के लिए, ध्यान दें कि ज़ेडएफसी <math>\vdash</math> कॉन(ज़ेडएफसी - अनंत) और गोडेल की दूसरी अपूर्णता प्रमेय का उपयोग करें।)
(क्यों देखने के लिए, ध्यान दें कि ZFC <math>\vdash</math> Con(ZFC - अनंत) और गोडेल के Gödel%27s_incompleteness_theorems का उपयोग करें।)


यदि वे सुसंगत हैं, तो ZFC के बाकी स्वयंसिद्धों से अनन्तता के स्वयंसिद्ध का निषेध नहीं किया जा सकता है। (यह कहने के समान है कि ZFC संगत है, यदि अन्य स्वयंसिद्ध सुसंगत हैं।) हम इसे मानते हैं, लेकिन इसे साबित नहीं कर सकते (यदि यह सच है)।
यदि ये सुसंगत हैं, तो ज़ेडएफसी के शेष अभिगृहीतों से अनंत के अभिगृहीत का निषेध नहीं किया जा सकता है। (यह ये कहने के समान है कि यदि अन्य अभिगृहीत सुसंगत हैं, तो ज़ेडएफसी भी सुसंगत है।) हम इसे मानते हैं, लेकिन सिद्ध नहीं कर सकते (यदि यह सत्य है)।


दरअसल, वॉन न्यूमैन ब्रह्मांड का उपयोग करके, हम जेडएफसी - इन्फिनिटी + (¬इन्फिनिटी) का एक मॉडल बना सकते हैं। यह है <math>V_\omega \!</math>विरासत में मिली सदस्यता संबंध के साथ, वंशानुगत परिमित सेट का वर्ग। ध्यान दें कि यदि रिक्त समुच्चय के स्वयंसिद्ध को इस प्रणाली के एक भाग के रूप में नहीं लिया जाता है (चूंकि इसे ZF + अनंत से प्राप्त किया जा सकता है), तो [[खाली डोमेन]] भी ZFC - अनंत + ¬इन्फिनिटी को संतुष्ट करता है, क्योंकि इसके सभी स्वयंसिद्ध सार्वभौमिक हैं मात्रात्मक, और यदि कोई सेट मौजूद नहीं है तो इस प्रकार तुच्छ रूप से संतुष्ट।
वास्तव में, वॉन न्यूमैन समष्टि का उपयोग करके, हम जेडएफसी - अनंत + (¬अनंत) का एक मॉडल बना सकते हैं। जो कि वंशानुगत सदस्यता संबंध के साथ वंशानुगत रूप से परिमित समुच्चय का वर्ग, <math>V_\omega \!</math> है। ध्यान दें कि यदि रिक्त समुच्चय के अभिगृहीत को इस निकाय के एक भाग के रूप में नहीं लिया जाता है (चूँकि इसे ज़ेडएफ + अनंत से प्राप्त किया जा सकता है), तो [[खाली डोमेन|रिक्त प्रांत]] भी ज़ेडएफसी - अनंत + ¬अनंत को संतुष्ट करता है, क्योंकि इसके सभी अभिगृहीत सार्वभौमिक परिमाणित हैं, और किसी समुच्चय की अनुपस्थिति में यह इस प्रकार तुच्छ रूप से संतुष्ट है।


प्राकृतिक संख्याओं के समुच्चय की प्रमुखता, [[अलेफ नल]] (<math>\aleph_0</math>), एक [[बड़े कार्डिनल स्वयंसिद्ध]] के कई गुण हैं। इस प्रकार अनंत के स्वयंसिद्ध को कभी-कभी पहले बड़े कार्डिनल स्वयंसिद्ध के रूप में माना जाता है, और इसके विपरीत बड़े कार्डिनल स्वयंसिद्धों को कभी-कभी अनंत के मजबूत स्वयंसिद्ध कहा जाता है।
प्राकृतिक संख्याओं के समुच्चय की कार्डिनैलिटी, [[अलेफ नल|एलेफ नल]] (<math>\aleph_0</math>) में एक [[बड़े कार्डिनल स्वयंसिद्ध|बड़े कार्डिनल]] के कई गुण होते हैं। इस प्रकार अनंत के अभिगृहीत को कभी-कभी ''प्रथम बड़े कार्डिनल'' अभिगृहीत के रूप में माना जाता है, और इसके विपरीत बड़े कार्डिनल अभिगृहीतों को कभी-कभी अनंत के प्रबल अभिगृहीत कहा जाता है।


== यह भी देखें ==
== यह भी देखें ==
* पियानो स्वयंसिद्ध
* अभिगृहीत
* [[फिनिटिज्म]]
* [[फिनिटिज्म|परिमितता]]


== संदर्भ ==
== संदर्भ ==
Line 90: Line 86:


{{Infinity}}
{{Infinity}}
{{Set theory}}
[[Category: समुच्चय सिद्धांत के अभिगृहीत]] [[Category: अनंतता]]


[[Category: Machine Translated Page]]
[[Category:Collapse templates]]
[[Category:Created On 03/02/2023]]
[[Category:Created On 03/02/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:अनंतता]]
[[Category:समुच्चय सिद्धांत के अभिगृहीत]]

Latest revision as of 12:12, 13 September 2023

अभिगृहीतीय समुच्चय सिद्धांत और इसका उपयोग करने वाली गणित एवं दर्शनशास्त्र की शाखाओं में अनंत का अभिगृहीत, जर्मेलो-फ्रेंकेल समुच्चय सिद्धांत के अभिगृहीतों में से एक है। यह कम से कम एक अपरिमित समुच्चय (अर्थात् प्राकृतिक संख्याओं एक समुच्चय) के अस्तित्व का आश्वासन देता है। यह सर्वप्रथम वर्ष 1908 में अर्नस्ट ज़र्मेलो द्वारा उनके समुच्चय सिद्धांत के हिस्से के रूप में प्रकाशित किया गया था।[1]

औपचारिक वक्तव्य

ज़र्मेलो-फ्रेंकेल अभिगृहीतों की औपचारिक भाषा में, अभिगृहीत इस प्रकार पढ़ा जाता है:

शब्दों में, एक ऐसे समुच्चय I (जिसे अपरिमित माना जाता है) का अस्तित्व इस प्रकार है, कि रिक्त समुच्चय, I में है, और जब भी कोई x, I का सदस्य होता है, तो x और इसके एकल समुच्चय {x} के संघ से बना समुच्चय भी I का एक सदस्य होता है। इस प्रकार के समुच्चय को कभी-कभी आगमनात्मक समुच्चय कहा जाता है।

व्याख्या और परिणाम

यह अभिगृहीत समुच्चय सिद्धांत में प्राकृतिक संख्याओं के वॉन न्यूमैन निर्माण से निकटता से संबंधित है, जिसमें x के परवर्ती को x ∪ {x} के रूप में परिभाषित किया गया है। यदि x एक समुच्चय है, तो यह समुच्चय सिद्धांत के अन्य अभिगृहीतों से अनुसरण करता है कि यह परवर्ती भी एक अद्वितीय रूप से परिभाषित समुच्चय होता है। परवर्तियों का उपयोग प्राकृतिक संख्याओं के सामान्य समुच्चय-सैद्धांतिक कूट-लेखन को परिभाषित करने के लिए किया जाता है। इस कूट-लेखन में शून्य रिक्त समुच्चय होता है:

0 = {}

नंबर 1, 0 का परवर्ती है:

1 = 0 ∪ {0} = {} ∪ {0} = {0} = {{}}.

इसी प्रकार, 2, 1 का परवर्ती है:

2 = 1 ∪ {1} = {0} ∪ {1} = {0,1} = { {}, {{}} },

और इसी प्रकार आगे भी:

3 = {0,1,2} = { {}, {{}}, {{}, {{}}} };
4 = {0,1,2,3} = { {}, {{}}, { {}, {{}} }, { {}, {{}}, {{}, {{}}} } } .

इस परिभाषा का एक परिणाम यह है कि प्रत्येक प्राकृतिक संख्या, सभी पूर्ववर्ती प्राकृतिक संख्याओं के समुच्चय के बराबर होती है। प्रत्येक समुच्चय में शीर्ष स्तर पर तत्वों की गणना, निरूपित की गई प्राकृतिक संख्या के समान होती है, और सबसे गहन नेस्टेड (नीड़ित) रिक्त समुच्चय {} की नेस्टिंग (नीडन) गहराई भी समुच्चय द्वारा निरूपित की जाने वाली प्राकृतिक संख्या के बराबर होती है, इसमें उस समुच्चय में इसकी नेस्टिंग भी सम्मिलित है, जो उस संख्या का निरूपण करता है जिसका वह एक हिस्सा है।

यह निर्माण प्राकृतिक संख्याओं का निर्माण करता है। हालाँकि, अन्य अभिगृहीत सभी प्राकृतिक संख्याओं के समुच्चय, के अस्तित्व को सिद्ध करने के लिए अपर्याप्त हैं। इसलिए, इसके अस्तित्व को एक अभिगृहीत, अनंत का अभिगृहीत, के रूप में लिया जाता है। यह अभिगृहीत दावा करता है कि एक ऐसे समुच्चय I का अस्तित्व है जिसमें 0 को समाहित करता है और परवर्ती लेने की संक्रिया के तहत बंद है; अर्थात्, I के प्रत्येक तत्व के लिए, उस तत्व का परवर्ती भी I में होता है।

इस प्रकार अभिगृहीत का सार है:

I, एक ऐसा समुच्चय है, जिसमें सभी प्राकृत संख्याएँ सम्मिलित हैं।

अनंत का अभिगृहीत भी वॉन न्यूमैन-बर्नेज़-गोडेल अभिगृहीतों में से एक है।

अनंत समुच्चय से प्राकृतिक संख्या निकालना

अपरिमित समुच्चय I प्राकृतिक संख्याओं का अधिसमुच्चय है। प्राकृतिक संख्याएँ स्वयं एक समुच्चय का गठन करती हैं, यह दर्शाने के लिए सभी प्राकृतिक संख्याओं के समुच्चय N को छोड़कर, अवांछित तत्वों को हटाने के लिए विशिष्टता की अभिगृहीत रूपरेखा को लागू किया जा सकता है। विस्तार के अभिगृहीत द्वारा यह समुच्चय अद्वितीय है।

प्राकृतिक संख्याएँ निकालने के लिए, हमें यह निर्धारित करने की आवश्यकता है कि कौन से समुच्चय प्राकृतिक संख्याएँ हैं। प्राकृतिक संख्याओं को इस प्रकार परिभाषित किया जा सकता है जो विस्तार के अभिगृहीत और आगमन के अभिगृहीत को छोड़कर किसी भी अभिगृहीत को नहीं मानता है, एक प्राकृतिक संख्या या तो शून्य या एक परवर्ती है और इसका प्रत्येक तत्व या तो शून्य है या इसके किसी अन्य तत्व का परवर्ती है। औपचारिक भाषा में, परिभाषा का कथन है:

या, और भी औपचारिक रूप से:

वैकल्पिक विधि

एक वैकल्पिक विधि निम्नलिखित है। माना वह सूत्र है, जो यह कहता है कि "x आगमनात्मक" है; अर्थात्,

अनौपचारिक रूप से, हम सभी आगमनात्मक समुच्चयों के प्रतिच्छेदन को लेते हैं। अधिक औपचारिक रूप से, हम एक ऐसे अद्वितीय समुच्चय के अस्तित्व को सिद्ध करना चाहते हैं कि

(*)

अस्तित्व के लिए, हम विशिष्टता के अभिगृहीत रूपरेखा के साथ संयुक्त अनंत के अभिगृहीत का उपयोग करते हैं। माना अनंत के अभिगृहीत द्वारा आश्वस्त आगमनात्मक समुच्चय है। फिर हम अपने समुच्चय को परिभाषित करने के लिए विशिष्टता की अभिगृहीत रूपरेखा का उपयोग करते हैं, अर्थात् , के ऐसे सभी तत्वों का समुच्चय है जो प्रत्येक अन्य आगमनात्मक समुच्चय के तत्व भी होते हैं। यह स्पष्ट रूप से (*) की परिकल्पना को संतुष्ट करता है, क्योंकि यदि , तो प्रत्येक आगमनात्मक समुच्चय में होता है, और यदि प्रत्येक आगमनात्मक समुच्चय में है, तो यह विशेष रूप से में होता है, इसलिए इसे में भी होना चाहिए।

अद्वितीयता के लिए, पहले ध्यान दें कि (*) को संतुष्ट करने वाला कोई भी समुच्चय स्वयं आगमनात्मक होता है, क्योंकि 0 सभी आगमनात्मक समुच्चयों में होता है, और यदि कोई तत्व सभी आगमनात्मक समुच्चयों में है, तो आगमनात्मक गुण द्वारा यह इसका परवर्ती होता है। इस प्रकार यदि ऐसा एक अन्य समुच्चय था जो (*) को संतुष्ट करता था, तो हमें निम्न परिणाम प्राप्त होते हैंː , क्योंकि आगमनात्मक है, और , क्योंकि आगमनात्मक है। इस प्रकार । माना इस अद्वितीय तत्व को दर्शाता है।

यह परिभाषा सुविधाजनक है क्योंकि आगमन का सिद्धांत तत्काल अनुसरण करता है कि यदि आगमनात्मक है, तो भी आगमनात्मक होता है। इस प्रकार

ये दोनों विधियाँ ऐसे निकाय उत्पन्न करती हैं जो द्वितीय-कोटि अंकगणित के अभिगृहीतों को संतुष्ट करते हैं, क्योंकि घात समुच्चय का अभिगृहीत हमें द्वितीय-कोटि तर्क के समान, के घात समुच्चय पर परिमाण निर्धारित करने की अनुमति देता है। इस प्रकार ये दोनों पूर्णतः समरूप निकाय निर्धारित करते हैं, और चूँकि ये तत्समक प्रतिचित्र के तहत समरूप होते हैं, अतः ये वास्तव में बराबर होने चाहिए।

स्पष्ट रूप से कमजोर संस्करण

कुछ पुराने शास्त्र, अनंत के अभिगृहीत के स्पष्ट रूप से कमजोर संस्करण का उपयोग करते हैं, अर्थात्

इसका कथन है कि x में एक तत्व है और x के प्रत्येक तत्व y के लिए x का एक और तत्व ऐसा है, जो y का एक यथार्थ अधिसमुच्चय है। इसका तात्पर्य है कि x, इसकी संरचना के बारे में बहुत कुछ कहे बिना एक अपरिमित समुच्चय है। हालाँकि, ज़ेडएफ के अन्य अभिगृहीतों की सहायता से हम दर्शा सकते हैं कि यह ω के अस्तित्व को दर्शाता है। सर्वप्रथम, यदि हम किसी अपरिमित समुच्चय x का घात समुच्चय लेते हैं, तो उस घात समुच्चय में ऐसे तत्व सम्मिलित होते हैं जो प्रत्येक परिमित गणनांक (कार्डिनैलिटी) (x के अन्य उपसमुच्चयों के बीच) के x के उपसमुच्चय हैं। इन परिमित उपसमुच्चयों के अस्तित्व को सिद्ध करने के लिए विभाजन के अभिगृहीत या युग्मन और संघ के अभिगृहीतों की आवश्यकता हो सकती है। फिर हम x के उस घातसमुच्चय के प्रत्येक तत्व को समान कार्डिनैलिटी की प्रारंभिक क्रमसूचक संख्या (या शून्य, यदि ऐसा कोई क्रमसूचक नहीं है) द्वारा प्रतिस्थापित करने के लिए प्रतिस्थापन के अभिगृहीत को लागू कर सकते हैं। क्रमसूचकों का एक अपरिमित समुच्चय इसका परिणाम होता है। फिर हम ω से अधिक या उसके बराबर क्रमसूचक प्राप्त करने के लिए संघ के अभिगृहीत को लागू कर सकते हैं।

स्वतंत्रता

यदि ये सुसंगत हैं तो अनंत के अभिगृहीत को ज़ेडएफसी के अन्य अभिगृहीतों से सिद्ध नहीं किया जा सकता है। (कारण देखने के लिए, ध्यान दें कि ज़ेडएफसी कॉन(ज़ेडएफसी - अनंत) और गोडेल की दूसरी अपूर्णता प्रमेय का उपयोग करें।)

यदि ये सुसंगत हैं, तो ज़ेडएफसी के शेष अभिगृहीतों से अनंत के अभिगृहीत का निषेध नहीं किया जा सकता है। (यह ये कहने के समान है कि यदि अन्य अभिगृहीत सुसंगत हैं, तो ज़ेडएफसी भी सुसंगत है।) हम इसे मानते हैं, लेकिन सिद्ध नहीं कर सकते (यदि यह सत्य है)।

वास्तव में, वॉन न्यूमैन समष्टि का उपयोग करके, हम जेडएफसी - अनंत + (¬अनंत) का एक मॉडल बना सकते हैं। जो कि वंशानुगत सदस्यता संबंध के साथ वंशानुगत रूप से परिमित समुच्चय का वर्ग, है। ध्यान दें कि यदि रिक्त समुच्चय के अभिगृहीत को इस निकाय के एक भाग के रूप में नहीं लिया जाता है (चूँकि इसे ज़ेडएफ + अनंत से प्राप्त किया जा सकता है), तो रिक्त प्रांत भी ज़ेडएफसी - अनंत + ¬अनंत को संतुष्ट करता है, क्योंकि इसके सभी अभिगृहीत सार्वभौमिक परिमाणित हैं, और किसी समुच्चय की अनुपस्थिति में यह इस प्रकार तुच्छ रूप से संतुष्ट है।

प्राकृतिक संख्याओं के समुच्चय की कार्डिनैलिटी, एलेफ नल () में एक बड़े कार्डिनल के कई गुण होते हैं। इस प्रकार अनंत के अभिगृहीत को कभी-कभी प्रथम बड़े कार्डिनल अभिगृहीत के रूप में माना जाता है, और इसके विपरीत बड़े कार्डिनल अभिगृहीतों को कभी-कभी अनंत के प्रबल अभिगृहीत कहा जाता है।

यह भी देखें

संदर्भ

  1. Zermelo: Untersuchungen über die Grundlagen der Mengenlehre, 1907, in: Mathematische Annalen 65 (1908), 261-281; Axiom des Unendlichen p. 266f.
  • Paul Halmos (1960) Naive Set Theory. Princeton, NJ: D. Van Nostrand Company. Reprinted 1974 by Springer-Verlag. ISBN 0-387-90092-6.
  • Thomas Jech (2003) Set Theory: The Third Millennium Edition, Revised and Expanded. Springer-Verlag. ISBN 3-540-44085-2.
  • Kenneth Kunen (1980) Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0-444-86839-9.
  • Hrbacek, Karel; Jech, Thomas (1999). Introduction to Set Theory (3 ed.). Marcel Dekker. ISBN 0-8247-7915-0.