मिश्रित मूलांक: Difference between revisions
(Created page with "{{Short description|Type of numeral systems}}{{numeral systems}} {{No footnotes|date=July 2021}} मिश्रित सूत्र अंक सिस्टम गै...") |
(→उदाहरण) |
||
(11 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Type of numeral systems}} | {{Short description|Type of numeral systems}}मिश्रित [[सूत्र]] अंक प्रणाली गैर-मानक स्थितिगत संख्याएँ हैं जिनमें संख्यात्मक मूलांक स्थिति से स्थिति में भिन्न होता है।इस तरह का संख्यात्मक प्रतिनिधित्व तब प्रयुक्त होता है जब एक मात्रा में इकाइयों के अनुक्रम का उपयोग करके मात्रा व्यक्त की जाती है जो प्रत्येक अगले छोटे से एक से अधिक होती है, किन्तु कारक द्वारा नहीं।इस तरह की इकाइयाँ समय को मापने में उदाहरण के लिए सामान्य हैं;32 सप्ताह, 5 दिन, 7 घंटे, 45 मिनट, 15 सेकंड, और 500 मिलीसेकंड का समय मिश्रित-मूलांक संकेतन में कई मिनटों के रूप में व्यक्त किया जा सकता है: | ||
मिश्रित [[सूत्र]] अंक | |||
... 32, 5, 7, 45;15, 500 | ... 32, 5, 7, 45;15, 500 | ||
...,, 7, 24, 60;60, 1000 | ...,, 7, 24, 60;60, 1000 | ||
या | या निर्देशानुसार | ||
: | :32<sub>∞</sub>5<sub>7</sub>7<sub>24</sub>45<sub>60</sub>.15<sub>60</sub>500<sub>1000</sub> | ||
सारणीबद्ध प्रारूप में, अंक उनके आधार के ऊपर लिखे गए हैं, और | सारणीबद्ध प्रारूप में, अंक उनके आधार के ऊपर लिखे गए हैं, और अर्धविराम मूलांक बिंदु को दर्शाता है।अंक प्रारूप में, प्रत्येक अंक में अपना संबद्ध आधार सबस्क्रिप्ट के रूप में जुड़ा हुआ है, और मूलांक बिंदु को [[पूर्ण विराम]] द्वारा चिह्नित किया गया है।प्रत्येक अंक के लिए आधार इसी इकाइयों की संख्या है जो अगली बड़ी इकाई को बनाते हैं।परिणामस्वरूप पहले (सबसे महत्वपूर्ण) अंक के लिए कोई आधार नहीं है ((के रूप में) नहीं लिखा गया है, क्योंकि यहां अगली बड़ी इकाई उपस्थित नहीं है (और ध्यान दें कि कोई भी यूनिट्स के अनुक्रम में महीने या वर्ष की बड़ी इकाई नहीं जोड़ सकता है, क्योंकि वे सप्ताह के पूर्णांक गुणक नहीं हैं)। | ||
== उदाहरण == | == उदाहरण == | ||
मिश्रित | मिश्रित मूलांक प्रणाली का सबसे परिचित उदाहरण टाइमकीपिंग और कैलेंडर में है।पश्चिमी समय के गुणों में [[दशमलव]] शताब्दियों, दशकों और वर्षों के साथ -साथ [[डुओडेसिमल]] महीने, [[त्रिशंकु]] (और अप्रत्यक्ष और (फरवरी के लिए) ऑक्टोविगिसिमल और एननेविगिसिमल) दिन सम्मिलित हैं, जो ड्यूक्विनक्वेज़िमल हफ्तों और [[सात का]] दिनों के साथ ओवरलैप किए गए हैं।एक वैरिएंट बेस 13 महीने, [[चतुष्कोपरक संख्या प्रणाली]] वीक्स और सेप्टेनरी डेज़ का उपयोग करता है।समय को आगे 24 घंटे, [[साठवाँ]] मिनट और सेकंड से विभाजित किया जाता है,फिर उसके दशमलव अंश है। | ||
तारीखों के लिए | तारीखों के लिए मानक रूप 2021-04-10 16:31:15 है जो इस परिभाषा में मिश्रित मूलांक नंबर होगा, किन्तु अलग है क्योंकि एक महीने में दिनों की संख्या प्रत्येक महीने और अधिवर्ष में भिन्न होती है। | ||
एक मिश्रित | एक मिश्रित मूलांक अंक प्रणाली अधिकांशतः सारणीबद्ध सारांश से लाभान्वित हो सकती है।रविवार की आधी रात से प्रारंभ होने वाले सप्ताह के 604800 सेकंड का वर्णन करने के लिए प्रणाली निम्नानुसार चलता है: | ||
{| class="wikitable" style="text-align:right;" | {| class="wikitable" style="text-align:right;" | ||
! {{rh}} | | ! {{rh}} | मूलांक | ||
| 7 || 24 || 60 || 60 | | 7 || 24 || 60 || 60 | ||
|- | |- | ||
! {{rh}} | | ! {{rh}} | मूल्यवर्ग | ||
| | | दिन || घण्टा || मिनट || सेकंड | ||
|- | |- | ||
! {{rh}} | | ! {{rh}} | स्थानीय मान (सेकंड) | ||
| 86400 || 3600 || 60 || 1 | | 86400 || 3600 || 60 || 1 | ||
|} | |} | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ डिजिट ट्रांसलेशन… | ||
|- | |- | ||
! {{rh}} | | ! {{rh}} | दिन | ||
| colspan=5 | 0= | | colspan=5 | 0=रविवार, 1=सोमवार, 2=मंगलवार, 3=बुधवार, 4=गुरुवार, 5=शुक्रवार, 6=शनिवार | ||
|- | |- | ||
! {{rh}} | | ! {{rh}} | घण्टा | ||
| colspan=5 | 0 to 23 | | colspan=5 | 0 to 23 | ||
|} | |} | ||
इस अंक प्रणाली में, मिश्रित | इस अंक प्रणाली में, मिश्रित मूलांक अंक 3<sub>7</sub>17<sub>24</sub>51<sub>60</sub>57<sub>60</sub> सेकंड की व्याख्या बुधवार को 17:51:57 और 0 के रूप में की जाएगी <sub>7</sub>0<sub>24</sub>02<sub>60</sub>24<sub>60</sub> रविवार को 00:02:24 होगा।मिश्रित मूलांक अंक प्रणाली के लिए तदर्थ नोटेशन सामान्य हैं। | ||
[[माया कैलेंडर]] में विभिन्न गुणकों के कई अतिव्यापी चक्र होते हैं।एक छोटी गिनती | [[माया कैलेंडर]] में विभिन्न गुणकों के कई अतिव्यापी चक्र होते हैं।एक छोटी गिनती टीजोल्क'इन आधार 13 गिने दिनों के साथ दिनों के नाम पर विजिटल को ओवरलैप करती है।एक हब 'में विजिटल डेज़, [[अष्टकोणीय]] महीने और बेस -52 साल होते हैं जो दौर बनाते हैं।इसके अतिरिक्त, विजिटल दिनों की लंबी गिनती, ऑक्टोडेसिमल वाइनल, फिर [[विजय]] ट्यून, काटुन, बी'क'टुन, आदि ऐतिहासिक तिथियों को ट्रैक करता है। | ||
वर्तमान उपयोग में | वर्तमान उपयोग में मिश्रित मूलांक अंक प्रणाली का दूसरा उदाहरण [[मुद्रा]] के डिजाइन और उपयोग में है, जहां संप्रदायों का सीमित सेट मुद्रित होता है या किसी भी मौद्रिक मात्रा का प्रतिनिधित्व करने में सक्षम होने के उद्देश्य से खनन किया जाता है;धन की राशि को तब प्रत्येक संप्रदाय के सिक्कों या [[बैंक नोट|बैंक नोट्स]] की संख्या से दर्शाया जाता है।यह तय करते समय कि कौन से संप्रदायों को बनाने के लिए (और इसलिए मिश्रण करने के लिए कौन से पता चलता है), समझौता अलग -अलग संप्रदायों की न्यूनतम संख्या के बीच का उद्देश्य है, और विशिष्ट मात्रा का प्रतिनिधित्व करने के लिए आवश्यक [[सिक्के]] के व्यक्तिगत टुकड़ों की न्यूनतम संख्या।तो, उदाहरण के लिए, यूके में, बैंक नोट्स £ 50, £ 20, £ 10 और £ 5 के लिए मुद्रित किया जाता है, और सिक्के £ 2, £ 1, 50p, 20p, 10p, 5p, 2p और 1p के लिए खनन किए जाते हैं।पसंदीदा मान या 1-2-5 श्रृंखला | पसंदीदा मूल्यों की 1-2-5 श्रृंखला। | ||
पाउंड स्टर्लिंग | पाउंड स्टर्लिंग या दशमलव से पहले, यूके में मौद्रिक मात्रा को पाउंड, शिलिंग और पेंस के संदर्भ में वर्णित किया गया था, जिसमें 12 पेंस प्रति शिलिंग और 20 शिलिंग प्रति पाउंड, जिससे £ 1 7s 6d, उदाहरण के लिए, मिश्रित के अनुरूप हो-मूलांक अंक 1<sub>∞</sub>7<sub>20</sub>6<sub>12</sub>। | ||
[[यूनाइटेड स्टेट्स कस्टमरी यूनिट्स]] | [[यूनाइटेड स्टेट्स कस्टमरी यूनिट्स]] सामान्यतः मिश्रित-मूलांक प्रणाली होते हैं, जिसमें मल्टीप्लायर आकार की इकाई से अगले तरीके से उसी तरह से भिन्न होते हैं जो समय की इकाइयाँ करती हैं। | ||
मिश्रित- | मिश्रित-मूलांक प्रतिनिधित्व कुली-तुकेय एफएफटी एल्गोरिथ्म के मिश्रित-मूलांक संस्करणों के लिए भी प्रासंगिक है, जिसमें मिश्रित-मूलांक प्रतिनिधित्व में इनपुट मूल्यों के सूचकांकों का विस्तार किया जाता है, आउटपुट मानों के सूचकांकों को समान मिश्रित में विस्तारित किया जाता है-आधारों और अंकों के क्रम के साथ मूलांक प्रतिनिधित्व उलट, और प्रत्येक उपप्रकार को शेष अंकों के सभी मूल्यों के लिए अंक में फूरियर रूपांतरण के रूप में माना जा सकता है। | ||
== | == परिवर्तित(मैनीपुलेशन) == | ||
एक ही आधार के मिश्रित- | एक ही आधार के मिश्रित-मूलांक संख्या को मैनुअल अंकगणित एल्गोरिदम के सामान्यीकरण का उपयोग करके परिवर्तित किया जा सकता है।एक मिश्रित आधार से दूसरे में मूल्यों का रूपांतरण पहले प्रणाली के स्थान मूल्यों को दूसरे में परिवर्तित करके आसानी से पूरा किया जाता है, और फिर इन के विरुद्ध प्रणाली से अंकों को प्रयुक्त करता है। | ||
[[एपीएल प्रोग्रामिंग भाषा]] और [[जे प्रोग्रामिंग भाषा]] में मिश्रित- | [[एपीएल प्रोग्रामिंग भाषा]] और [[जे प्रोग्रामिंग भाषा]] में मिश्रित-मूलांक प्रणाली से और में कन्वर्ट करने के लिए ऑपरेटर सम्मिलित हैं। | ||
== | == भाज्य नंबर सिस्टम == | ||
{{main| | {{main|क्रमगुणित संख्या प्रणाली}} | ||
एक अन्य प्रस्ताव | एक अन्य प्रस्ताव कथित [[कारख़ाने का]] नंबर प्रणाली है: | ||
{| class="wikitable" style="text-align:right;" | {| class="wikitable" style="text-align:right;" | ||
|- | |- | ||
! {{rh}} | | ! {{rh}} | मूलांक | ||
| 8 || 7 || 6 || 5 || 4 || 3 || 2 || 1 | | 8 || 7 || 6 || 5 || 4 || 3 || 2 || 1 | ||
|- | |- | ||
! {{rh}} | | ! {{rh}} | स्थानीय मान | ||
| 7! || 6! || 5! || 4! || 3! || 2! || 1! || 0! | | 7! || 6! || 5! || 4! || 3! || 2! || 1! || 0! | ||
|- | |- | ||
! {{rh}} | | ! {{rh}} | दशमलव में स्थान मान | ||
| 5040 || 720 || 120 || 24 || 6 || 2 || 1 || 1 | | 5040 || 720 || 120 || 24 || 6 || 2 || 1 || 1 | ||
|- | |- | ||
! {{rh}} | | ! {{rh}} | उच्चतम अंक की अनुमति है | ||
| 7 || 6 || 5 || 4 || 3 || 2 || 1 || 0 | | 7 || 6 || 5 || 4 || 3 || 2 || 1 || 0 | ||
|} | |} | ||
उदाहरण के लिए, सबसे बड़ी संख्या जिसे छह अंकों के साथ दर्शाया जा सकता है, वह 543210 होगी जो दशमलव में 719 के बराबर है: 5 और बार; 5!+ 4 और बार; 4!+ 3 और बार; 3!+ 2 और बार; 2!+ 1 और बार; 1!यह पहली नजर में स्पष्ट नहीं हो सकता है, | उदाहरण के लिए, सबसे बड़ी संख्या जिसे छह अंकों के साथ दर्शाया जा सकता है, वह 543210 होगी जो दशमलव में 719 के बराबर है: 5 और बार; 5!+ 4 और बार; 4!+ 3 और बार; 3!+ 2 और बार; 2!+ 1 और बार; 1! यह पहली नजर में स्पष्ट नहीं हो सकता है, किन्तु भाज्य आधारित नंबरिंग प्रणाली असंदिग्ध और पूर्ण है। प्रत्येक संख्या को और केवल एक ही तरीके से दर्शाया जा सकता है क्योंकि सूचकांक द्वारा गुणा किए गए संबंधित भाज्य्स का योग सदैव अगला भाज्य माइनस होता है: | ||
: <math> \sum_{i=0}^{n} (([i+1]+1)-1) \cdot ([i]+1)! = ([n+1]+1)! - 1 </math> | : <math> \sum_{i=0}^{n} (([i+1]+1)-1) \cdot ([i]+1)! = ([n+1]+1)! - 1 </math> | ||
पूर्णांक 0, ..., n | पूर्णांक 0, ..., n के बीच एक प्राकृतिक मानचित्रण होता है; − 1 और लेक्सिकोग्राफ़िक क्रम में n तत्वों के क्रमपरिवर्तन, जो पूर्णांक के भाज्य निरूपण का उपयोग करता है, जिसके बाद लेहमर कोड के रूप में व्याख्या की जाती है। | ||
उपरोक्त समीकरण किसी भी | उपरोक्त समीकरण किसी भी मूलांक (या तो मानक या मिश्रित) आधार प्रतिनिधित्व के लिए निम्नलिखित सामान्य नियम का विशेष मामला है जो इस तथ्य को व्यक्त करता है कि कोई भी मूलांक (या तो मानक या मिश्रित) आधार प्रतिनिधित्व असंदिग्ध और पूर्ण है।प्रत्येक संख्या को और केवल एक ही तरीके से दर्शाया जा सकता है क्योंकि सूचकांक द्वारा गुणा किए गए संबंधित भार का योग सदैव अगले प्रभाव वाले माइनस होता है: | ||
: <math> \sum_{i=0}^{n} (m_{i+1} - 1) \cdot M_i = M_{n+1} - 1 </math>, कहाँ पे <math>M_i = \prod_{j=1}^{i} m_j, m_j > 1, M_0 = 1 </math>, | : <math> \sum_{i=0}^{n} (m_{i+1} - 1) \cdot M_i = M_{n+1} - 1 </math>, कहाँ पे <math>M_i = \prod_{j=1}^{i} m_j, m_j > 1, M_0 = 1 </math>, | ||
जिसे आसानी से गणितीय प्रेरण के साथ | जिसे आसानी से गणितीय प्रेरण के साथ सिद्ध किया जा सकता है। | ||
==संदर्भ== | ==संदर्भ== | ||
Line 90: | Line 88: | ||
== बाहरी कड़ियाँ == | == बाहरी कड़ियाँ == | ||
* [https://csharpcodewhisperer.blogspot.com/2015/10/mixed-radix-numeral-system-class-and.html Mixed Radix Calculator] — Mixed Radix Calculator in C# | * [https://csharpcodewhisperer.blogspot.com/2015/10/mixed-radix-numeral-system-class-and.html Mixed Radix Calculator] — Mixed Radix Calculator in C# | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category: | |||
[[Category:Created On 28/01/2023]] | [[Category:Created On 28/01/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:गैर-मानक स्थिति संख्या प्रणाली]] |
Latest revision as of 12:41, 13 September 2023
मिश्रित सूत्र अंक प्रणाली गैर-मानक स्थितिगत संख्याएँ हैं जिनमें संख्यात्मक मूलांक स्थिति से स्थिति में भिन्न होता है।इस तरह का संख्यात्मक प्रतिनिधित्व तब प्रयुक्त होता है जब एक मात्रा में इकाइयों के अनुक्रम का उपयोग करके मात्रा व्यक्त की जाती है जो प्रत्येक अगले छोटे से एक से अधिक होती है, किन्तु कारक द्वारा नहीं।इस तरह की इकाइयाँ समय को मापने में उदाहरण के लिए सामान्य हैं;32 सप्ताह, 5 दिन, 7 घंटे, 45 मिनट, 15 सेकंड, और 500 मिलीसेकंड का समय मिश्रित-मूलांक संकेतन में कई मिनटों के रूप में व्यक्त किया जा सकता है:
... 32, 5, 7, 45;15, 500 ...,, 7, 24, 60;60, 1000
या निर्देशानुसार
- 32∞577244560.15605001000
सारणीबद्ध प्रारूप में, अंक उनके आधार के ऊपर लिखे गए हैं, और अर्धविराम मूलांक बिंदु को दर्शाता है।अंक प्रारूप में, प्रत्येक अंक में अपना संबद्ध आधार सबस्क्रिप्ट के रूप में जुड़ा हुआ है, और मूलांक बिंदु को पूर्ण विराम द्वारा चिह्नित किया गया है।प्रत्येक अंक के लिए आधार इसी इकाइयों की संख्या है जो अगली बड़ी इकाई को बनाते हैं।परिणामस्वरूप पहले (सबसे महत्वपूर्ण) अंक के लिए कोई आधार नहीं है ((के रूप में) नहीं लिखा गया है, क्योंकि यहां अगली बड़ी इकाई उपस्थित नहीं है (और ध्यान दें कि कोई भी यूनिट्स के अनुक्रम में महीने या वर्ष की बड़ी इकाई नहीं जोड़ सकता है, क्योंकि वे सप्ताह के पूर्णांक गुणक नहीं हैं)।
उदाहरण
मिश्रित मूलांक प्रणाली का सबसे परिचित उदाहरण टाइमकीपिंग और कैलेंडर में है।पश्चिमी समय के गुणों में दशमलव शताब्दियों, दशकों और वर्षों के साथ -साथ डुओडेसिमल महीने, त्रिशंकु (और अप्रत्यक्ष और (फरवरी के लिए) ऑक्टोविगिसिमल और एननेविगिसिमल) दिन सम्मिलित हैं, जो ड्यूक्विनक्वेज़िमल हफ्तों और सात का दिनों के साथ ओवरलैप किए गए हैं।एक वैरिएंट बेस 13 महीने, चतुष्कोपरक संख्या प्रणाली वीक्स और सेप्टेनरी डेज़ का उपयोग करता है।समय को आगे 24 घंटे, साठवाँ मिनट और सेकंड से विभाजित किया जाता है,फिर उसके दशमलव अंश है।
तारीखों के लिए मानक रूप 2021-04-10 16:31:15 है जो इस परिभाषा में मिश्रित मूलांक नंबर होगा, किन्तु अलग है क्योंकि एक महीने में दिनों की संख्या प्रत्येक महीने और अधिवर्ष में भिन्न होती है।
एक मिश्रित मूलांक अंक प्रणाली अधिकांशतः सारणीबद्ध सारांश से लाभान्वित हो सकती है।रविवार की आधी रात से प्रारंभ होने वाले सप्ताह के 604800 सेकंड का वर्णन करने के लिए प्रणाली निम्नानुसार चलता है:
मूलांक | 7 | 24 | 60 | 60 |
---|---|---|---|---|
मूल्यवर्ग | दिन | घण्टा | मिनट | सेकंड |
स्थानीय मान (सेकंड) | 86400 | 3600 | 60 | 1 |
दिन | 0=रविवार, 1=सोमवार, 2=मंगलवार, 3=बुधवार, 4=गुरुवार, 5=शुक्रवार, 6=शनिवार | ||||
---|---|---|---|---|---|
घण्टा | 0 to 23 |
इस अंक प्रणाली में, मिश्रित मूलांक अंक 37172451605760 सेकंड की व्याख्या बुधवार को 17:51:57 और 0 के रूप में की जाएगी 702402602460 रविवार को 00:02:24 होगा।मिश्रित मूलांक अंक प्रणाली के लिए तदर्थ नोटेशन सामान्य हैं।
माया कैलेंडर में विभिन्न गुणकों के कई अतिव्यापी चक्र होते हैं।एक छोटी गिनती टीजोल्क'इन आधार 13 गिने दिनों के साथ दिनों के नाम पर विजिटल को ओवरलैप करती है।एक हब 'में विजिटल डेज़, अष्टकोणीय महीने और बेस -52 साल होते हैं जो दौर बनाते हैं।इसके अतिरिक्त, विजिटल दिनों की लंबी गिनती, ऑक्टोडेसिमल वाइनल, फिर विजय ट्यून, काटुन, बी'क'टुन, आदि ऐतिहासिक तिथियों को ट्रैक करता है।
वर्तमान उपयोग में मिश्रित मूलांक अंक प्रणाली का दूसरा उदाहरण मुद्रा के डिजाइन और उपयोग में है, जहां संप्रदायों का सीमित सेट मुद्रित होता है या किसी भी मौद्रिक मात्रा का प्रतिनिधित्व करने में सक्षम होने के उद्देश्य से खनन किया जाता है;धन की राशि को तब प्रत्येक संप्रदाय के सिक्कों या बैंक नोट्स की संख्या से दर्शाया जाता है।यह तय करते समय कि कौन से संप्रदायों को बनाने के लिए (और इसलिए मिश्रण करने के लिए कौन से पता चलता है), समझौता अलग -अलग संप्रदायों की न्यूनतम संख्या के बीच का उद्देश्य है, और विशिष्ट मात्रा का प्रतिनिधित्व करने के लिए आवश्यक सिक्के के व्यक्तिगत टुकड़ों की न्यूनतम संख्या।तो, उदाहरण के लिए, यूके में, बैंक नोट्स £ 50, £ 20, £ 10 और £ 5 के लिए मुद्रित किया जाता है, और सिक्के £ 2, £ 1, 50p, 20p, 10p, 5p, 2p और 1p के लिए खनन किए जाते हैं।पसंदीदा मान या 1-2-5 श्रृंखला | पसंदीदा मूल्यों की 1-2-5 श्रृंखला।
पाउंड स्टर्लिंग या दशमलव से पहले, यूके में मौद्रिक मात्रा को पाउंड, शिलिंग और पेंस के संदर्भ में वर्णित किया गया था, जिसमें 12 पेंस प्रति शिलिंग और 20 शिलिंग प्रति पाउंड, जिससे £ 1 7s 6d, उदाहरण के लिए, मिश्रित के अनुरूप हो-मूलांक अंक 1∞720612।
यूनाइटेड स्टेट्स कस्टमरी यूनिट्स सामान्यतः मिश्रित-मूलांक प्रणाली होते हैं, जिसमें मल्टीप्लायर आकार की इकाई से अगले तरीके से उसी तरह से भिन्न होते हैं जो समय की इकाइयाँ करती हैं।
मिश्रित-मूलांक प्रतिनिधित्व कुली-तुकेय एफएफटी एल्गोरिथ्म के मिश्रित-मूलांक संस्करणों के लिए भी प्रासंगिक है, जिसमें मिश्रित-मूलांक प्रतिनिधित्व में इनपुट मूल्यों के सूचकांकों का विस्तार किया जाता है, आउटपुट मानों के सूचकांकों को समान मिश्रित में विस्तारित किया जाता है-आधारों और अंकों के क्रम के साथ मूलांक प्रतिनिधित्व उलट, और प्रत्येक उपप्रकार को शेष अंकों के सभी मूल्यों के लिए अंक में फूरियर रूपांतरण के रूप में माना जा सकता है।
परिवर्तित(मैनीपुलेशन)
एक ही आधार के मिश्रित-मूलांक संख्या को मैनुअल अंकगणित एल्गोरिदम के सामान्यीकरण का उपयोग करके परिवर्तित किया जा सकता है।एक मिश्रित आधार से दूसरे में मूल्यों का रूपांतरण पहले प्रणाली के स्थान मूल्यों को दूसरे में परिवर्तित करके आसानी से पूरा किया जाता है, और फिर इन के विरुद्ध प्रणाली से अंकों को प्रयुक्त करता है।
एपीएल प्रोग्रामिंग भाषा और जे प्रोग्रामिंग भाषा में मिश्रित-मूलांक प्रणाली से और में कन्वर्ट करने के लिए ऑपरेटर सम्मिलित हैं।
भाज्य नंबर सिस्टम
एक अन्य प्रस्ताव कथित कारख़ाने का नंबर प्रणाली है:
मूलांक | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
---|---|---|---|---|---|---|---|---|
स्थानीय मान | 7! | 6! | 5! | 4! | 3! | 2! | 1! | 0! |
दशमलव में स्थान मान | 5040 | 720 | 120 | 24 | 6 | 2 | 1 | 1 |
उच्चतम अंक की अनुमति है | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
उदाहरण के लिए, सबसे बड़ी संख्या जिसे छह अंकों के साथ दर्शाया जा सकता है, वह 543210 होगी जो दशमलव में 719 के बराबर है: 5 और बार; 5!+ 4 और बार; 4!+ 3 और बार; 3!+ 2 और बार; 2!+ 1 और बार; 1! यह पहली नजर में स्पष्ट नहीं हो सकता है, किन्तु भाज्य आधारित नंबरिंग प्रणाली असंदिग्ध और पूर्ण है। प्रत्येक संख्या को और केवल एक ही तरीके से दर्शाया जा सकता है क्योंकि सूचकांक द्वारा गुणा किए गए संबंधित भाज्य्स का योग सदैव अगला भाज्य माइनस होता है:
पूर्णांक 0, ..., n के बीच एक प्राकृतिक मानचित्रण होता है; − 1 और लेक्सिकोग्राफ़िक क्रम में n तत्वों के क्रमपरिवर्तन, जो पूर्णांक के भाज्य निरूपण का उपयोग करता है, जिसके बाद लेहमर कोड के रूप में व्याख्या की जाती है।
उपरोक्त समीकरण किसी भी मूलांक (या तो मानक या मिश्रित) आधार प्रतिनिधित्व के लिए निम्नलिखित सामान्य नियम का विशेष मामला है जो इस तथ्य को व्यक्त करता है कि कोई भी मूलांक (या तो मानक या मिश्रित) आधार प्रतिनिधित्व असंदिग्ध और पूर्ण है।प्रत्येक संख्या को और केवल एक ही तरीके से दर्शाया जा सकता है क्योंकि सूचकांक द्वारा गुणा किए गए संबंधित भार का योग सदैव अगले प्रभाव वाले माइनस होता है:
- , कहाँ पे ,
जिसे आसानी से गणितीय प्रेरण के साथ सिद्ध किया जा सकता है।
संदर्भ
- Donald Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms, Third Edition. Addison-Wesley, 1997. ISBN 0-201-89684-2. Pages 65–66, 208–209, and 290.
- Georg Cantor. Über einfache Zahlensysteme, Zeitschrift für Math. und Physik 14(1869), 121–128.
बाहरी कड़ियाँ
- Mixed Radix Calculator — Mixed Radix Calculator in C#