तंतु वक्र: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(5 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Fabrication technique using strength fibres in a binding matrix}}
{{Short description|Fabrication technique using strength fibres in a binding matrix}}
तंतु वक्र एक विनिर्माण विधि है जिसका उपयोग मुख्य रूप से खुले (सिलेंडर) या बंद अंत संरचनाओं (दबाव वाहिकाओं या टैंकों) के निर्माण के लिए किया जाता है। इस प्रक्रिया में घूमने वाले [[ खराद का धुरा |खराद का धुरा]] पर तनाव के तहत घुमावदार तंतु सम्मिलित हैं। मैंड्रेल धुरा (अक्ष 1 या एक्स: धुरा) के चारों [[चप्पू]] घूमता है, जबकि परिवहन (अक्ष 2 या वाई: क्षैतिज) पर डिलीवरी आई, घूर्णन मैंड्रेल की धुरी के साथ क्षैतिज रूप से घूमती है, जो वांछित प्रारूप या कोण में घूर्णी धुरी पर फाइबर बिछाती है। सबसे सामान्य तंतु [[फाइबर ग्लास]] या [[कार्बन फाइबर]] होते हैं और स्नान के माध्यम से राल के साथ संसेचित होते हैं क्योंकि वे खराद पर घाव होते हैं। एक बार मैंड्रेल पूरी तरह से वांछित मोटाई से ढक जाता है, तो राल ठीक हो जाता है। राल प्रणाली और इसकी उपचार विशेषताओं के आधार पर, अधिकांश मैंड्रेल को [[ आटोक्लेव |आटोक्लेव]] किया जाता है या ओवन में गर्म किया जाता है या रेडिएंट हीटर के नीचे घुमाया जाता है जब तक कि भाग ठीक न हो जाए। एक बार राल के ठीक हो जाने के बाद, खोखला अंतिम उत्पाद छोड़कर मैंड्रेल को हटा दिया जाता है या निकाला जाता है। गैस की बोतलों जैसे कुछ उत्पादों के लिए, 'मैंड्रेल' तैयार उत्पाद का एक स्थायी भाग है जो गैस रिसाव को रोकने के लिए एक लाइनर बनाता है या तरल पदार्थ से संमिश्र को बचाने के लिए बाधा के रूप में संग्रहीत किया जाता है।
'''तंतु वक्र''' एक विनिर्माण विधि है जिसका उपयोग मुख्य रूप से खुले (सिलेंडर) या बंद अंत संरचनाओं (दबाव वाहिकाओं या टैंकों) के निर्माण के लिए किया जाता है। इस प्रक्रिया में घूमने वाले [[ खराद का धुरा |मैंड्रेल]] पर तनाव के अनुसार घुमावदार तंतु सम्मिलित हैं। मैंड्रेल धुरा (अक्ष 1 या एक्स: धुरा) के चारों [[चप्पू]] घूमता है, जबकि परिवहन (अक्ष 2 या वाई: क्षैतिज) पर डिलीवरी आई, घूर्णन मैंड्रेल की धुरी के साथ क्षैतिज रूप से घूमती है, जो वांछित प्रारूप या कोण में घूर्णी धुरी पर फाइबर बिछाती है। सबसे सामान्य तंतु [[फाइबर ग्लास]] या [[कार्बन फाइबर]] होते हैं और स्नान के माध्यम से रेजिन के साथ संसेचित होते हैं क्योंकि वे खराद पर घाव होते हैं। एक बार मैंड्रेल पूरी तरह से वांछित मोटाई से ढक जाता है, तो रेजिन ठीक हो जाता है। रेजिन प्रणाली और इसकी उपचार विशेषताओं के आधार पर, अधिकांश मैंड्रेल को [[ आटोक्लेव |आटोक्लेव]] किया जाता है या ओवन में गर्म किया जाता है या रेडिएंट हीटर के नीचे घुमाया जाता है जब तक कि भाग ठीक न हो जाए। एक बार रेजिन के ठीक हो जाने के बाद, खोखला अंतिम उत्पाद छोड़कर मैंड्रेल को हटा दिया जाता है या निकाला जाता है। गैस की बोतलों जैसे कुछ उत्पादों के लिए, 'मैंड्रेल' तैयार उत्पाद का एक स्थायी भाग है जो गैस रिसाव को रोकने के लिए एक लाइनर बनाता है या तरल पदार्थ से संमिश्र को बचाने के लिए बाधा के रूप में संग्रहीत किया जाता है।


तंतु वक्र स्वचालन के लिए अच्छी तरह से अनुकूल है, और इसके कई अनुप्रयोग हैं, जैसे कि पाइप और छोटे [[दबाव पोत]] जो बिना किसी मानवीय हस्तक्षेप के घाव और ठीक हो जाते हैं। घुमावदार के लिए नियंत्रित चर फाइबर प्रकार, राल सामग्री, पवन कोण, टो या बैंडविड्थ और फाइबर बंडल की मोटाई हैं। जिस कोण पर फाइबर लपेटा जाता है उसका अंतिम उत्पाद के गुणों पर प्रभाव पड़ता है। उच्च कोण घेरा परिधि शक्ति प्रदान करेगा, जबकि निचले कोण प्रारूप (या तो ध्रुवीय या पेचदार) अधिक अनुदैर्ध्य / अक्षीय तन्य शक्ति प्रदान करता हैं।
तंतु वक्र स्वचालन के लिए अच्छी तरह से अनुकूल है, और इसके कई अनुप्रयोग हैं, जैसे कि पाइप और छोटे [[दबाव पोत]] जो बिना किसी मानवीय हस्तक्षेप के घाव और ठीक हो जाते हैं। घुमावदार के लिए नियंत्रित चर फाइबर प्रकार, रेजिन सामग्री, पवन कोण, टो या बैंडविड्थ और फाइबर बंडल की मोटाई हैं। जिस कोण पर फाइबर लपेटा जाता है उसका अंतिम उत्पाद के गुणों पर प्रभाव पड़ता है। उच्च कोण घेरा परिधि शक्ति प्रदान करेगा, जबकि निचले कोण प्रारूप (या तो ध्रुवीय या पेचदार) अधिक अनुदैर्ध्य / अक्षीय तन्य शक्ति प्रदान करता हैं।


वर्तमान में इस तकनीक का उपयोग करके उत्पादित किए जा रहे उत्पादों में [[ पाइपलाइन |पाइपलाइन]] , [[गोल्फ क्लब]], [[विपरीत परासरण]] झिल्ली आवास, पतवार, साइकिल फोर्क्स, [[वेलोसाइट बाइक]], विद्युत और पारेषण पोल, दबाव वाहिकाओं, [[मिसाइल]] केसिंग, [[ हवाई जहाज |हवाई जहाज]] फ़्यूज़लेज, लैंप पोस्ट और यॉट स्पार्स (नौकायन) सम्मिलित हैं।
वर्तमान में इस तकनीक का उपयोग करके उत्पादित किए जा रहे उत्पादों में [[ पाइपलाइन |पाइपलाइन]] , [[गोल्फ क्लब]], [[विपरीत परासरण]] झिल्ली आवास, पतवार, साइकिल फोर्क्स, [[वेलोसाइट बाइक]], विद्युत और पारेषण पोल, दबाव वाहिकाओं, [[मिसाइल]] केसिंग, [[ हवाई जहाज |हवाई जहाज]] फ़्यूज़लेज, लैंप पोस्ट और यॉट स्पार्स (नौकायन) सम्मिलित हैं।
Line 32: Line 32:
=== शीसे रेशा संसेचन ===
=== शीसे रेशा संसेचन ===


शीसे रेशा प्रत्यक्ष रोविंग्स को राल स्नान में डुबोया जाता है जहां वे राल प्रणाली के साथ लेपित होते हैं। फाइबरग्लास रोविंग में प्रत्येक स्ट्रैंड को आकार देने वाले रसायन के साथ लेपित किया जाता है जो फाइबरग्लास स्ट्रैंड और राल के बीच द्वितीयक संबंध प्रदान करता है। आकार एकल राल प्रणाली संगत हो सकता है (जैसे पॉलिएस्टर संगत या एपॉक्सी संगत) या बहु-प्रणाली संगत (पॉलिएस्टर + एपॉक्सी + पॉलीयूरेथेन संगत)। पॉलीयुरेथेन रेजिन प्रणाली के स्थिति को छोड़कर राल और फाइबर के बीच बंधन सुनिश्चित करने के लिए आकार देने की संगतता महत्वपूर्ण है, जहां राल सीधे कांच के साथ-साथ समान रूप से अच्छी तरह से बंधता है। पारंपरिक राल संसेचन प्रणाली डब्ल्यू डिप बाथ या डॉक्टरिंग रोल डिज़ाइन हैं, चूंकि नवीन में अपशिष्ट को कम करने, राल संसेचन प्रभावशीलता को अधिकतम करने और समग्र मैट्रिक्स गुणों में सुधार करने के लिए संसेचन स्नान में प्रमुख प्रगति हुई है।<ref>[http://www.urethanecomposites.com Urethane Composites Group LLC]</ref> इसका परिणाम पारंपरिक स्नान की तुलना में कहीं अधिक उत्तम संसेचन और राल से ग्लास अनुपात नियंत्रण में होता है।
शीसे रेशा प्रत्यक्ष रोविंग्स को रेजिन स्नान में डुबोया जाता है जहां वे रेजिन प्रणाली के साथ लेपित होते हैं। फाइबरग्लास रोविंग में प्रत्येक स्ट्रैंड को आकार देने वाले रसायन के साथ लेपित किया जाता है जो फाइबरग्लास स्ट्रैंड और रेजिन के बीच द्वितीयक संबंध प्रदान करता है। आकार एकल रेजिन प्रणाली संगत हो सकता है (जैसे पॉलिएस्टर संगत या एपॉक्सी संगत) या बहु-प्रणाली संगत (पॉलिएस्टर + एपॉक्सी + पॉलीयूरेथेन संगत)। पॉलीयुरेथेन रेजिन प्रणाली के स्थिति को छोड़कर रेजिन और फाइबर के बीच बंधन सुनिश्चित करने के लिए आकार देने की संगतता महत्वपूर्ण है, जहां रेजिन सीधे कांच के साथ-साथ समान रूप से अच्छी तरह से बंधता है। पारंपरिक रेजिन संसेचन प्रणाली डब्ल्यू डिप बाथ या डॉक्टरिंग रोल डिज़ाइन हैं, चूंकि नवीन में अपशिष्ट को कम करने, रेजिन संसेचन प्रभावशीलता को अधिकतम करने और समग्र मैट्रिक्स गुणों में सुधार करने के लिए संसेचन स्नान में प्रमुख प्रगति हुई है।<ref>[http://www.urethanecomposites.com Urethane Composites Group LLC]</ref> इसका परिणाम पारंपरिक स्नान की तुलना में कहीं अधिक उत्तम संसेचन और रेजिन से ग्लास अनुपात नियंत्रण में होता है।


तत्पश्चात् संसेचित टो वास्तव में भाग के आकार को बनाने के लिए नियंत्रित प्रारूप में मैंड्रेल (मोल्ड कोर) के चारों ओर लपेटे जाते हैं। वक्र के बाद, रेजिन को ठीक किया जाता है, सामान्यतः गर्मी का उपयोग करके। मोल्ड कोर को हटाया जा सकता है या भाग (रोसाटो, डीवी) के अभिन्न अंग के रूप में छोड़ा जा सकता है। यह प्रक्रिया मुख्य रूप से खोखले, आम तौर पर गोलाकार या अंडाकार खंडों वाले घटकों, जैसे पाइप और टैंकों के लिए उपयोग की जाती है। दबाव वाहिकाओं, पाइप और ड्राइव शाफ्ट सभी को तंतु वक्र का उपयोग करके निर्मित किया गया है। इसे अन्य फाइबर अनुप्रयोग विधियों के साथ जोड़ा गया है जैसे कि हैंड लेअप, [[pultrusion]] और ब्रेडिंग। संघनन फाइबर तनाव के माध्यम से होता है और राल सामग्री मुख्य रूप से मापी जाती है। तंतुओं को घुमावदार (गीली घुमावदार), पूर्व-गर्भवती (शुष्क घुमाव) या पोस्ट-गर्भवती होने से पहले राल के साथ लगाया जा सकता है। वेट वक्र में लंबे भंडारण जीवन और कम चिपचिपाहट के साथ सबसे कम लागत वाली सामग्री का उपयोग करने के लाभ हैं। पूर्व-गर्भवती प्रणालियां अधिक सुसंगत राल सामग्री वाले भागों का उत्पादन करती हैं और अधिकांश तेजी से घाव हो सकती हैं।
तत्पश्चात् संसेचित टो वास्तव में भाग के आकार को बनाने के लिए एक नियंत्रित पैटर्न में मैंड्रेल (मोल्ड कोर) के चारों ओर लपेटे जाते हैं। रेजिन को घुमाने के बाद सामान्यतः गर्मी का उपयोग करके ठीक किया जाता है। मोल्ड कोर को हटाया जा सकता है या भाग (रोसाटो, डीवी) के अभिन्न अंग के रूप में छोड़ा जा सकता है। यह प्रक्रिया मुख्य रूप से खोखले, सामान्यतः गोलाकार या अंडाकार खंडों वाले घटकों, जैसे पाइप और टैंकों के लिए उपयोग की जाती है। दबाव वाहिकाओं, पाइप और ड्राइव शाफ्ट सभी को तंतु वक्र का उपयोग करके निर्मित किया गया है। इसे अन्य फाइबर अनुप्रयोग विधियों के साथ जोड़ा गया है जैसे कि हैंड लेअप, [[pultrusion|पुल्ट्रूजन]] और ब्रेडिंग। संघनन फाइबर तनाव के माध्यम से होता है और रेजिन सामग्री मुख्य रूप से मापी जाती है। तंतुओं को घुमावदार (गीली घुमावदार), पूर्व-गर्भवती (शुष्क घुमाव) या पोस्ट-गर्भवती होने से पहले रेजिन के साथ लगाया जा सकता है। वेट वक्र में लंबे भंडारण जीवन और कम चिपचिपाहट के साथ सबसे कम लागत वाली सामग्री का उपयोग करने के लाभ हैं। पूर्व-गर्भवती प्रणालियां अधिक सुसंगत रेजिन सामग्री वाले भागों का उत्पादन करती हैं और अधिकांश तेजी से घाव हो सकती हैं।


=== फाइबरग्लास टेंशनर ===
=== फाइबरग्लास टेंशनर ===
Line 44: Line 44:
ग्लास फाइबर वह फाइबर है जिसका उपयोग अधिकांश तंतु वक्र कार्बन के लिए किया जाता है, और अरिमिड फाइबर का भी उपयोग किया जाता है। अधिकांश उच्च शक्ति वाली महत्वपूर्ण एयरोस्पेस संरचनाएं एपॉक्सी या पॉलीयुरेथेन रेजिन के साथ उत्पादित की जाती हैं, जिनमें से अधिकांश अन्य अनुप्रयोगों के लिए एपॉक्सी, पॉलीयुरेथेन या सस्ते पॉलिएस्टर रेजिन निर्दिष्ट किए जाते हैं। बिना किसी ब्रेक या जॉइन के निरंतर सुदृढीकरण का उपयोग करने की क्षमता निश्चित लाभ है, जैसा कि उच्च फाइबर वॉल्यूम अंश है जो लगभग 60% से 80% तक प्राप्त करने योग्य है। जब तक बाहरी सतह पर द्वितीयक ऑपरेशन नहीं किया जाता है, तब तक तंतु घाव की संरचना की केवल आंतरिक सतह चिकनी होगी। मंडल को हटाने से पहले घटक सामान्य रूप से उच्च तापमान पर ठीक हो जाता है। यांत्रिक या ग्राइंडिंग जैसे फिनिशिंग ऑपरेशन सामान्य रूप से आवश्यक (फर्नेस, जे., एज़ॉम डॉट कॉम) नहीं होते हैं।
ग्लास फाइबर वह फाइबर है जिसका उपयोग अधिकांश तंतु वक्र कार्बन के लिए किया जाता है, और अरिमिड फाइबर का भी उपयोग किया जाता है। अधिकांश उच्च शक्ति वाली महत्वपूर्ण एयरोस्पेस संरचनाएं एपॉक्सी या पॉलीयुरेथेन रेजिन के साथ उत्पादित की जाती हैं, जिनमें से अधिकांश अन्य अनुप्रयोगों के लिए एपॉक्सी, पॉलीयुरेथेन या सस्ते पॉलिएस्टर रेजिन निर्दिष्ट किए जाते हैं। बिना किसी ब्रेक या जॉइन के निरंतर सुदृढीकरण का उपयोग करने की क्षमता निश्चित लाभ है, जैसा कि उच्च फाइबर वॉल्यूम अंश है जो लगभग 60% से 80% तक प्राप्त करने योग्य है। जब तक बाहरी सतह पर द्वितीयक ऑपरेशन नहीं किया जाता है, तब तक तंतु घाव की संरचना की केवल आंतरिक सतह चिकनी होगी। मंडल को हटाने से पहले घटक सामान्य रूप से उच्च तापमान पर ठीक हो जाता है। यांत्रिक या ग्राइंडिंग जैसे फिनिशिंग ऑपरेशन सामान्य रूप से आवश्यक (फर्नेस, जे., एज़ॉम डॉट कॉम) नहीं होते हैं।


* रेजिन: कोई भी, उदाहरण के लिये [[epoxy|एपॉक्सी]], [[ polyurethane |पॉलीयुरेथेन]] , [[पॉलिएस्टर]], [[vinylester|विनाइलस्टर]], [[फेनोलिक राल]], [[ खुला |फुरान]], [[polyimide|पॉलीमाइड्स]]
* रेजिन: कोई भी, उदाहरण के लिये [[epoxy|एपॉक्सी]], [[ polyurethane |पॉलीयुरेथेन]] , [[पॉलिएस्टर]], [[vinylester|विनाइलस्टर]], [[फेनोलिक राल|फेनोलिक रेजिन]], [[ खुला |फुरान]], [[polyimide|पॉलीमाइड्स]]
* फाइबर: ग्लास, धातु, कार्बन और [[बोरॉन फाइबर]]। रेशों का उपयोग सीधे [[क्रेल (कपड़ा)]] से किया जाता है और कपड़े के रूप में बुना या सिला नहीं जाता है।
* फाइबर: ग्लास, धातु, कार्बन और [[बोरॉन फाइबर]]। रेशों का उपयोग सीधे [[क्रेल (कपड़ा)]] से किया जाता है और कपड़े के रूप में बुना या सिला नहीं जाता है।
* कोर: कोई भी, चूंकि घटक सामान्यतः एकल त्वचा होते हैं।
* कोर: कोई भी, चूंकि घटक सामान्यतः एकल त्वचा होते हैं।
Line 51: Line 51:


=== उत्सर्जन ===
=== उत्सर्जन ===
पॉलिएस्टर और [[विनाइल एस्टर राल]] प्रणाली का उपयोग करने वाले फाइबरग्लास निर्माण प्रक्रियाओं में कर्मचारी कई जोखिमों - [[स्टाइरीन]] के उच्च स्तर के संपर्क में हैं।<ref>http://www.doli.state.mn.us/pdf/fiberglass.pdf {{Bare URL PDF|date=March 2022}}</ref> जैसे-जैसे स्टाइरीन उत्सर्जन नियंत्रण और सीमाएं सख्त होती जा रही हैं, उद्योग धीरे-धीरे [[पॉलीयुरेथेनेस]] जैसी राल प्रणालियों की ओर बढ़ रहा है जिनमें वाष्पशील विलायक नहीं होते हैं।((cn))
पॉलिएस्टर और [[विनाइल एस्टर राल|विनाइल एस्टर रेजिन]] प्रणाली का उपयोग करने वाले फाइबरग्लास निर्माण प्रक्रियाओं में कर्मचारी कई जोखिमों - [[स्टाइरीन]] के उच्च स्तर के संपर्क में हैं।<ref>http://www.doli.state.mn.us/pdf/fiberglass.pdf {{Bare URL PDF|date=March 2022}}</ref> जैसे-जैसे स्टाइरीन उत्सर्जन नियंत्रण और सीमाएं सख्त होती जा रही हैं, उद्योग धीरे-धीरे [[पॉलीयुरेथेनेस]] जैसी रेजिन प्रणालियों की ओर बढ़ रहा है जिनमें वाष्पशील विलायक नहीं होते हैं।((cn))


=== [[बिसफेनोल ए]] ===
=== [[बिसफेनोल ए]] ===
बिस्फेनॉल ए (बीपीए) एपॉक्सी राल प्रणाली का प्रमुख घटक है। बीपीए संदिग्ध [[एंडोक्राइन डिसरप्टर]] है और कई देशों में इसे बेबी बोतल जैसे उत्पादों में उपयोग करने पर प्रतिबंध लगा दिया गया है। क्योंकि बीपीए पशु अध्ययन में प्रजनन, विकासात्मक और प्रणालीगत विषाक्त है और कमजोर रूप से एस्ट्रोजेनिक है, विशेष रूप से बच्चों के स्वास्थ्य और पर्यावरण पर इसके संभावित प्रभाव के बारे में प्रश्न हैं।
बिस्फेनॉल ए (बीपीए) एपॉक्सी रेजिन प्रणाली का प्रमुख घटक है। बीपीए संदिग्ध [[एंडोक्राइन डिसरप्टर]] है और कई देशों में इसे बेबी बोतल जैसे उत्पादों में उपयोग करने पर प्रतिबंध लगा दिया गया है। क्योंकि बीपीए पशु अध्ययन में प्रजनन, विकासात्मक और प्रणालीगत विषाक्त है और कमजोर रूप से एस्ट्रोजेनिक है, विशेष रूप से बच्चों के स्वास्थ्य और पर्यावरण पर इसके संभावित प्रभाव के बारे में प्रश्न हैं।


यूएस-ईपीए बीपीए आधारित सामग्री लाइनिंग वॉटर और वेस्ट वॉटर पाइप में बीपीए के लिए वैकल्पिक विश्लेषण प्रारंभ करने का विश्वाश रखता है क्योंकि इस एप्लिकेशन में मानव और पर्यावरणीय जोखिम की संभावना हो सकती है।<ref>[http://www.epa.gov/oppt/existingchemicals/pubs/actionplans/bpa.html BPA Action Plan - US EPA]</ref>
यूएस-ईपीए बीपीए आधारित सामग्री लाइनिंग वॉटर और वेस्ट वॉटर पाइप में बीपीए के लिए वैकल्पिक विश्लेषण प्रारंभ करने का विश्वाश रखता है क्योंकि इस एप्लिकेशन में मानव और पर्यावरणीय जोखिम की संभावना हो सकती है।<ref>[http://www.epa.gov/oppt/existingchemicals/pubs/actionplans/bpa.html BPA Action Plan - US EPA]</ref>
Line 69: Line 69:
* [http://www.autonational.com Autonational]
* [http://www.autonational.com Autonational]


{{Plastics}}
[[Category:All articles with bare URLs for citations]]
[[Category: समग्र सामग्री निर्माण तकनीक]]  
[[Category:Articles with PDF format bare URLs for citations]]
 
[[Category:Articles with bare URLs for citations from March 2022]]
 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category:Collapse templates]]
[[Category: Machine Translated Page]]
[[Category:Created On 21/03/2023]]
[[Category:Created On 21/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:समग्र सामग्री निर्माण तकनीक]]

Latest revision as of 15:48, 13 September 2023

तंतु वक्र एक विनिर्माण विधि है जिसका उपयोग मुख्य रूप से खुले (सिलेंडर) या बंद अंत संरचनाओं (दबाव वाहिकाओं या टैंकों) के निर्माण के लिए किया जाता है। इस प्रक्रिया में घूमने वाले मैंड्रेल पर तनाव के अनुसार घुमावदार तंतु सम्मिलित हैं। मैंड्रेल धुरा (अक्ष 1 या एक्स: धुरा) के चारों चप्पू घूमता है, जबकि परिवहन (अक्ष 2 या वाई: क्षैतिज) पर डिलीवरी आई, घूर्णन मैंड्रेल की धुरी के साथ क्षैतिज रूप से घूमती है, जो वांछित प्रारूप या कोण में घूर्णी धुरी पर फाइबर बिछाती है। सबसे सामान्य तंतु फाइबर ग्लास या कार्बन फाइबर होते हैं और स्नान के माध्यम से रेजिन के साथ संसेचित होते हैं क्योंकि वे खराद पर घाव होते हैं। एक बार मैंड्रेल पूरी तरह से वांछित मोटाई से ढक जाता है, तो रेजिन ठीक हो जाता है। रेजिन प्रणाली और इसकी उपचार विशेषताओं के आधार पर, अधिकांश मैंड्रेल को आटोक्लेव किया जाता है या ओवन में गर्म किया जाता है या रेडिएंट हीटर के नीचे घुमाया जाता है जब तक कि भाग ठीक न हो जाए। एक बार रेजिन के ठीक हो जाने के बाद, खोखला अंतिम उत्पाद छोड़कर मैंड्रेल को हटा दिया जाता है या निकाला जाता है। गैस की बोतलों जैसे कुछ उत्पादों के लिए, 'मैंड्रेल' तैयार उत्पाद का एक स्थायी भाग है जो गैस रिसाव को रोकने के लिए एक लाइनर बनाता है या तरल पदार्थ से संमिश्र को बचाने के लिए बाधा के रूप में संग्रहीत किया जाता है।

तंतु वक्र स्वचालन के लिए अच्छी तरह से अनुकूल है, और इसके कई अनुप्रयोग हैं, जैसे कि पाइप और छोटे दबाव पोत जो बिना किसी मानवीय हस्तक्षेप के घाव और ठीक हो जाते हैं। घुमावदार के लिए नियंत्रित चर फाइबर प्रकार, रेजिन सामग्री, पवन कोण, टो या बैंडविड्थ और फाइबर बंडल की मोटाई हैं। जिस कोण पर फाइबर लपेटा जाता है उसका अंतिम उत्पाद के गुणों पर प्रभाव पड़ता है। उच्च कोण घेरा परिधि शक्ति प्रदान करेगा, जबकि निचले कोण प्रारूप (या तो ध्रुवीय या पेचदार) अधिक अनुदैर्ध्य / अक्षीय तन्य शक्ति प्रदान करता हैं।

वर्तमान में इस तकनीक का उपयोग करके उत्पादित किए जा रहे उत्पादों में पाइपलाइन , गोल्फ क्लब, विपरीत परासरण झिल्ली आवास, पतवार, साइकिल फोर्क्स, वेलोसाइट बाइक, विद्युत और पारेषण पोल, दबाव वाहिकाओं, मिसाइल केसिंग, हवाई जहाज फ़्यूज़लेज, लैंप पोस्ट और यॉट स्पार्स (नौकायन) सम्मिलित हैं।

तंतु वक्र यंत्र

सबसे सरल वक्र यंत्रों में गति के दो अक्ष, मैंड्रेल घूर्णन और कैरेज ट्रेवल (सामान्यतः क्षैतिज) होते हैं। दो अक्ष यंत्रें केवल पाइपों के निर्माण के लिए सबसे उपयुक्त हैं। एलपीजी या सीएनजी कंटेनर जैसे दबाव वाहिकाओं के लिए (उदाहरण के लिए) चार अक्ष घुमावदार यंत्र होना सामान्य है। एक चार अक्ष वाली यंत्र में परिवहन यात्रा के लिए लंबवत रेडियल (क्रॉस-फीड) अक्ष होता है और क्रॉस-फीड अक्ष पर घूर्णन फाइबर पेआउट हेड लगा होता है। पेआउट हेड घूर्णन का उपयोग फाइबर बैंड को घुमाने से रोकने के लिए किया जा सकता है और इस प्रकार वक्र के समय चौड़ाई में भिन्नता होती है।

चार से अधिक अक्षों वाली यंत्रों का उपयोग उन्नत अनुप्रयोगों के लिए किया जा सकता है, छह-अक्ष घुमावदार यंत्रों में सामान्यतः 3 रैखिक और 3 घूर्णन अक्ष होते हैं। गति के 2 से अधिक अक्षों वाली यंत्रों में कंप्यूटर/सीएनसी नियंत्रण होता है, चूंकि इन दिनों नई 2-अक्ष यंत्रों में अधिकतर संख्यात्मक नियंत्रण होता है। कंप्यूटर नियंत्रित तंतु वक्र यंत्रों को वक्र प्रारूप और यंत्र पथ उत्पन्न करने के लिए सॉफ्टवेयर के उपयोग की आवश्यकता होती है, ऐसे सॉफ्टवेयर को सामान्यतः तंतु वक्र यंत्र निर्माताओं द्वारा या कैडफिल जैसे स्वतंत्र उत्पादों का उपयोग करके प्रदान किया जा सकता है।[1] या कैडविंड,[2] CNC यंत्रों के लिए प्रोग्रामिंग विधिों की समीक्षा में पाया जा सकता है।[3] ऐसी वक्र प्रक्रिया का उदाहरण पूरे वेब में पाया जा सकता है।

प्रक्रिया

तंतु वक्र की प्रक्रिया;

  • फाइबर स्ट्रैंड / रोविंग (जिसे प्रत्यक्ष एकल अंत रोविंग कहा जाता है), या टेप की निरंतर लंबाई का उपयोग करता है
  • समग्र मैट्रिक्स में कांच के उच्च प्रतिशत (70-80%) के कारण उच्च शक्ति-से-भार अनुपात वाली सामग्री के खोल में परिणाम
  • प्रारूप अनुदैर्ध्य, परिधि, पेचदार या ध्रुवीय हो सकते हैं [4]
  • ज्यादातर वर्कपीस के थर्मल उपचार की आवश्यकता होती है

तंतु वक्र प्रक्रिया या तो निरंतर या असंतुलित प्रकार की हो सकती है।

सतत घुमावदार प्रक्रिया

निरंतर घुमावदार प्रक्रियाओं का उपयोग कम दबाव, छोटे से बहुत बड़े व्यास के पाइपों के निर्माण के लिए किया जाता है, जो अंतहीन बैंड (सामान्यतः ड्रोस्टोहोम प्रक्रिया के रूप में जाना जाता है) से बने मैंड्रेल पर होता है। इस प्रक्रिया के माध्यम से निर्मित पाइप मुख्य रूप से मीडिया (पानी, सीवेज, अपशिष्ट-जल) के संचरण/वितरण नेटवर्क के लिए उपयोग किए जाते हैं। निरंतर रेशा घुमावदार यंत्र सामान्यतः 2 अक्ष वाली यंत्रें होती हैं जो सतत घेरा प्रारूप में फाइबर, फाइबरग्लास कपड़ा, घूंघट बिछाने में सक्षम होती हैं। ये यंत्रें सामान्यतः कई हेलिकॉप्टर मोटर्स (भाग पर बहु ​​दिशात्मक फाइबर प्लेसमेंट प्रदान करने के लिए) और सैंड हॉपर (भाग पर रेत गिराने और संरचनात्मक रूप से शक्तिशाली कोर प्रदान करने के लिए) से लैस होती हैं।

असंतुलित घुमावदार प्रक्रिया

उच्च दबाव वाले भागों, पाइपों, दबाव वाहिकाओं और जटिल घटकों के निर्माण के लिए असंतुलित घुमावदार प्रक्रिया का उपयोग किया जाता है। शीसे रेशा बैंड के लिए बिछाने के कोण को अनुकूलित करने के लिए बहु अक्ष यंत्र का उपयोग किया जाता है।

अन्य तंतु वक्र उपकरण

शीसे रेशा संसेचन

शीसे रेशा प्रत्यक्ष रोविंग्स को रेजिन स्नान में डुबोया जाता है जहां वे रेजिन प्रणाली के साथ लेपित होते हैं। फाइबरग्लास रोविंग में प्रत्येक स्ट्रैंड को आकार देने वाले रसायन के साथ लेपित किया जाता है जो फाइबरग्लास स्ट्रैंड और रेजिन के बीच द्वितीयक संबंध प्रदान करता है। आकार एकल रेजिन प्रणाली संगत हो सकता है (जैसे पॉलिएस्टर संगत या एपॉक्सी संगत) या बहु-प्रणाली संगत (पॉलिएस्टर + एपॉक्सी + पॉलीयूरेथेन संगत)। पॉलीयुरेथेन रेजिन प्रणाली के स्थिति को छोड़कर रेजिन और फाइबर के बीच बंधन सुनिश्चित करने के लिए आकार देने की संगतता महत्वपूर्ण है, जहां रेजिन सीधे कांच के साथ-साथ समान रूप से अच्छी तरह से बंधता है। पारंपरिक रेजिन संसेचन प्रणाली डब्ल्यू डिप बाथ या डॉक्टरिंग रोल डिज़ाइन हैं, चूंकि नवीन में अपशिष्ट को कम करने, रेजिन संसेचन प्रभावशीलता को अधिकतम करने और समग्र मैट्रिक्स गुणों में सुधार करने के लिए संसेचन स्नान में प्रमुख प्रगति हुई है।[5] इसका परिणाम पारंपरिक स्नान की तुलना में कहीं अधिक उत्तम संसेचन और रेजिन से ग्लास अनुपात नियंत्रण में होता है।

तत्पश्चात् संसेचित टो वास्तव में भाग के आकार को बनाने के लिए एक नियंत्रित पैटर्न में मैंड्रेल (मोल्ड कोर) के चारों ओर लपेटे जाते हैं। रेजिन को घुमाने के बाद सामान्यतः गर्मी का उपयोग करके ठीक किया जाता है। मोल्ड कोर को हटाया जा सकता है या भाग (रोसाटो, डीवी) के अभिन्न अंग के रूप में छोड़ा जा सकता है। यह प्रक्रिया मुख्य रूप से खोखले, सामान्यतः गोलाकार या अंडाकार खंडों वाले घटकों, जैसे पाइप और टैंकों के लिए उपयोग की जाती है। दबाव वाहिकाओं, पाइप और ड्राइव शाफ्ट सभी को तंतु वक्र का उपयोग करके निर्मित किया गया है। इसे अन्य फाइबर अनुप्रयोग विधियों के साथ जोड़ा गया है जैसे कि हैंड लेअप, पुल्ट्रूजन और ब्रेडिंग। संघनन फाइबर तनाव के माध्यम से होता है और रेजिन सामग्री मुख्य रूप से मापी जाती है। तंतुओं को घुमावदार (गीली घुमावदार), पूर्व-गर्भवती (शुष्क घुमाव) या पोस्ट-गर्भवती होने से पहले रेजिन के साथ लगाया जा सकता है। वेट वक्र में लंबे भंडारण जीवन और कम चिपचिपाहट के साथ सबसे कम लागत वाली सामग्री का उपयोग करने के लाभ हैं। पूर्व-गर्भवती प्रणालियां अधिक सुसंगत रेजिन सामग्री वाले भागों का उत्पादन करती हैं और अधिकांश तेजी से घाव हो सकती हैं।

फाइबरग्लास टेंशनर

समग्र संरचनाओं के निर्माण में फाइबर तनाव एक महत्वपूर्ण तत्व है। यदि स्ट्रैंड पर तनाव बहुत कम है, तो कंपोजिट लेमिनेट संरचना में कम यांत्रिक शक्ति और प्रदर्शन होगा। यदि तनाव बहुत अधिक है, तो स्ट्रैंड्स स्टैंड या फ़ज़ बिल्डअप के टूटने का अनुभव कर सकते हैं। अत्यधिक तनाव के कारण, लैमिनेट में रेज़िन-ग्लास अनुपात भी स्वीकार्य सीमा से अधिक बढ़ सकता है, जिसके परिणामस्वरूप लैमिनेट्स ऐसे अनुप्रयोगों में अनुपयुक्त होते हैं जो मीडिया और तरल पदार्थों को ट्रांसपोर्ट करते हैं।

शीसे रेशा टेंशनर शीसे रेशा प्रकार के संसेचन से पहले या बाद में, इसके स्थान के आधार पर सूखा या गीला तनाव प्रदान कर सकता है।

सामग्री

ग्लास फाइबर वह फाइबर है जिसका उपयोग अधिकांश तंतु वक्र कार्बन के लिए किया जाता है, और अरिमिड फाइबर का भी उपयोग किया जाता है। अधिकांश उच्च शक्ति वाली महत्वपूर्ण एयरोस्पेस संरचनाएं एपॉक्सी या पॉलीयुरेथेन रेजिन के साथ उत्पादित की जाती हैं, जिनमें से अधिकांश अन्य अनुप्रयोगों के लिए एपॉक्सी, पॉलीयुरेथेन या सस्ते पॉलिएस्टर रेजिन निर्दिष्ट किए जाते हैं। बिना किसी ब्रेक या जॉइन के निरंतर सुदृढीकरण का उपयोग करने की क्षमता निश्चित लाभ है, जैसा कि उच्च फाइबर वॉल्यूम अंश है जो लगभग 60% से 80% तक प्राप्त करने योग्य है। जब तक बाहरी सतह पर द्वितीयक ऑपरेशन नहीं किया जाता है, तब तक तंतु घाव की संरचना की केवल आंतरिक सतह चिकनी होगी। मंडल को हटाने से पहले घटक सामान्य रूप से उच्च तापमान पर ठीक हो जाता है। यांत्रिक या ग्राइंडिंग जैसे फिनिशिंग ऑपरेशन सामान्य रूप से आवश्यक (फर्नेस, जे., एज़ॉम डॉट कॉम) नहीं होते हैं।

खतरे

उत्सर्जन

पॉलिएस्टर और विनाइल एस्टर रेजिन प्रणाली का उपयोग करने वाले फाइबरग्लास निर्माण प्रक्रियाओं में कर्मचारी कई जोखिमों - स्टाइरीन के उच्च स्तर के संपर्क में हैं।[6] जैसे-जैसे स्टाइरीन उत्सर्जन नियंत्रण और सीमाएं सख्त होती जा रही हैं, उद्योग धीरे-धीरे पॉलीयुरेथेनेस जैसी रेजिन प्रणालियों की ओर बढ़ रहा है जिनमें वाष्पशील विलायक नहीं होते हैं।((cn))

बिसफेनोल ए

बिस्फेनॉल ए (बीपीए) एपॉक्सी रेजिन प्रणाली का प्रमुख घटक है। बीपीए संदिग्ध एंडोक्राइन डिसरप्टर है और कई देशों में इसे बेबी बोतल जैसे उत्पादों में उपयोग करने पर प्रतिबंध लगा दिया गया है। क्योंकि बीपीए पशु अध्ययन में प्रजनन, विकासात्मक और प्रणालीगत विषाक्त है और कमजोर रूप से एस्ट्रोजेनिक है, विशेष रूप से बच्चों के स्वास्थ्य और पर्यावरण पर इसके संभावित प्रभाव के बारे में प्रश्न हैं।

यूएस-ईपीए बीपीए आधारित सामग्री लाइनिंग वॉटर और वेस्ट वॉटर पाइप में बीपीए के लिए वैकल्पिक विश्लेषण प्रारंभ करने का विश्वाश रखता है क्योंकि इस एप्लिकेशन में मानव और पर्यावरणीय जोखिम की संभावना हो सकती है।[7]

पाइप जैसे एपॉक्सी-आधारित मिश्रित उत्पादों से बीपीए ऊंचा तापमान के अधीन होने पर द्रव माध्यम (पानी) में निकल सकता है और यह चिंता का कारण है।

संदर्भ

  1. Advanced Filament winding software
  2. Cadwind filament winding software
  3. Stan Peters, "Composite Filament Winding", 2011 , ch 4, ISBN 1615037225
  4. Todd, Robert H. "Manufacturing Processes Reference Guide." Industrial Press Inc. New York. 1994. Pg. 228
  5. Urethane Composites Group LLC
  6. http://www.doli.state.mn.us/pdf/fiberglass.pdf[bare URL PDF]
  7. BPA Action Plan - US EPA


बाहरी संबंध