वीक ऑपरेटर टोपोलॉजी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(11 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{Short description|Weak topology on function spaces}}
{{Short description|Weak topology on function spaces}}
{{unreferenced|date=June 2008}}
[[कार्यात्मक विश्लेषण]] में वीक ऑपरेटर [[टोपोलॉजी]], अधिकांशतः संक्षिप्त डब्लूओटी [[ हिल्बर्ट अंतरिक्ष |हिल्बर्ट स्पेस]] पर परिबद्ध प्रचालकों के समूह की सबसे वीक टोपोलॉजी है। <math>H</math>, जैसे कि [[ हिल्बर्ट अंतरिक्ष |हिल्बर्ट स्पेस]] में किसी भी सदिश <math>x</math> और <math>y</math> के लिए जटिल संख्या <math>\langle Tx, y\rangle</math> में एक ऑपरेटर <math>T</math> भेजने वाला [[कार्यात्मक (गणित)]] निरंतर है।
[[कार्यात्मक विश्लेषण]] में, कमजोर ऑपरेटर [[टोपोलॉजी]], अधिकांशतः संक्षिप्त डब्लूओटी, [[ हिल्बर्ट अंतरिक्ष ]] पर बंधे ऑपरेटरों के सेट पर सबसे कमजोर टोपोलॉजी है। <math>H</math>, जैसे कि [[कार्यात्मक (गणित)]] एक ऑपरेटर भेज रहा है <math>T</math> जटिल संख्या के लिए <math>\langle Tx, y\rangle</math> किसी भी सदिश के लिए सतत फलन है <math>x</math> और <math>y</math> हिल्बर्ट अंतरिक्ष में।


स्पष्ट रूप से, एक ऑपरेटर के लिए <math>T</math> निम्न प्रकार का पड़ोस आधार है: सदिशों की एक परिमित संख्या चुनें <math>x_i</math>, निरंतर कार्यात्मक <math>y_i</math>, और सकारात्मक वास्तविक स्थिरांक <math>\varepsilon_i</math> एक ही परिमित सेट द्वारा अनुक्रमित <math>I</math>. एक संचालिका <math>S</math> अगर और केवल अगर पड़ोस में है <math>| y_i(T(x_i) - S(x_i))| < \varepsilon_i</math> सभी के लिए <math>i \in I</math>.
स्पष्ट रूप से, एक ऑपरेटर <math>T</math> के लिए निम्न प्रकार के प्रतिवेश का आधार है: एक ही परिमित समूह <math>I</math> द्वारा अनुक्रमित सदिश <math>x_i</math>, निरंतर कार्यात्मक <math>y_i</math>, और सकारात्मक वास्तविक स्थिरांक <math>\varepsilon_i</math> की एक परिमित संख्या चुनी गयी है। यदि और सिर्फ यदि <math>| y_i(T(x_i) - S(x_i))| < \varepsilon_i</math> सभी <math>i \in I</math> के लिए, एक ऑपरेटर <math>S</math> प्रतिवेश में स्थित है।


समतुल्य, एक [[नेट (गणित)]] <math>T_i \subseteq B(H)</math> बाउंडेड ऑपरेटर्स का अभिसरण होता है <math>T \in B(H)</math> डब्लूओटी में अगर सभी के लिए <math> y \in H^*</math> और <math>x \in H</math>, जाल <math>y(T_i x)</math> में विलीन हो जाता है <math> y(T x)</math>.
समतुल्य रूप से, बाध्य ऑपरेटरों का शुद्ध <math>T_i \subseteq B(H)</math> डब्लूओटी में <math>T \in B(H)</math> में परिवर्तित हो जाता है यदि सभी <math> y \in H^*</math> और <math>x \in H</math> के लिए, <math>y(T_i x)</math> जाल , <math> y(T x)</math> में परिवर्तित हो जाता है।


== बी (एच) == पर अन्य टोपोलॉजी के साथ संबंध
== <math>B(H)</math> पर अन्य टोपोलॉजी के साथ संबंध ==
 
हिल्बर्ट स्पेस <math>H</math> पर बंधे हुए ऑपरेटर, डब्लूओटी <math>B(H)</math> पर सभी सामान्य टोपोलॉजी में सबसे वीक है।
हिल्बर्ट स्पेस | टोपोलॉजी पर ऑपरेटरों के सेट पर डब्लूओटी सभी सामान्य टोपोलॉजी में सबसे कमजोर है <math>B(H)</math>, हिल्बर्ट स्पेस पर बंधे हुए ऑपरेटर <math>H</math>.


=== [[मजबूत ऑपरेटर टोपोलॉजी]] ===
=== [[मजबूत ऑपरेटर टोपोलॉजी]] ===


मजबूत ऑपरेटर टोपोलॉजी, या एसओटी, ऑन <math>B(H)</math> बिंदुवार अभिसरण की टोपोलॉजी है। क्योंकि आंतरिक उत्पाद एक सतत कार्य है, SOT डब्लूओटी से अधिक मजबूत है। निम्नलिखित उदाहरण से पता चलता है कि यह समावेश सख्त है। होने देना <math>H = \ell^2(\mathbb N)</math> और क्रम पर विचार करें <math>\{T^n\}</math> एकतरफा पारियों की। कौशी-श्वार्ज़ के एक प्रयोग से यह पता चलता है <math>T^n \to 0</math> डब्लूओटी में। लेकिन स्पष्ट रूप से <math>T^n</math> में नहीं मिलता है <math>0</math> एसओटी में।
<math>B(H)</math> पर मजबूत ऑपरेटर टोपोलॉजी, या एसओटी, बिंदुवार अभिसरण की टोपोलॉजी है, क्योंकि आंतरिक उत्पाद एक सतत कार्य है, एसओटी डब्ल्यूओटी से अधिक मजबूत है। निम्नलिखित उदाहरण से पता चलता है कि यह समावेश सख्त है। मान लीजिए <math>H = \ell^2(\mathbb N)</math> और एकतरफा पारियों के अनुक्रम <math>\{T^n\}</math> पर विचार करें, <math>T^n \to 0</math> डब्ल्यूओटी में कौशी-श्वार्ज़ के एक प्रयोग से यह पता चलता है। एसओटी में <math>0</math> लेकिन स्पष्ट रूप से <math>T^n</math> अभिसरण नहीं करता है।


मजबूत ऑपरेटर टोपोलॉजी में निरंतर हिल्बर्ट स्पेस पर बंधे ऑपरेटरों के सेट पर [[रैखिक कार्यात्मक]] ठीक वही हैं जो डब्ल्यूओटी में निरंतर हैं (वास्तव में, डब्ल्यूओटी सबसे कमजोर ऑपरेटर टोपोलॉजी है जो निरंतर सभी दृढ़ता से निरंतर रैखिक कार्यात्मक छोड़ देता है। तय करना <math>B(H)</math> हिल्बर्ट स्पेस एच पर बंधे ऑपरेटरों की संख्या)। इस तथ्य के कारण, डब्लूओटी में ऑपरेटरों के एक [[उत्तल सेट]] का बंद होना, SOT में उस सेट के बंद होने के समान है।
मजबूत ऑपरेटर टोपोलॉजी में निरंतर हिल्बर्ट स्पेस पर बंधे ऑपरेटरों के समूह पर रैखिक कार्यात्मक ठीक वही हैं जो डब्ल्यूओटी में निरंतर हैं (वास्तव में, डब्ल्यूओटी सबसे वीक ऑपरेटर टोपोलॉजी है, हिल्बर्ट स्पेस एच पर बंधे ऑपरेटरों के समूह <math>B(H)</math> जो निरंतर सभी दृढ़ता से निरंतर रैखिक कार्यात्मक छोड़ देता है। इस तथ्य के कारण, डब्लूओटी में ऑपरेटरों के एक [[उत्तल सेट|उत्तल समूह]] का बंद होना, एसओटी में उस समूह के बंद होने के समान है।


यह [[ध्रुवीकरण पहचान]] से अनुसरण करता है कि एक net <math>\{T_\alpha\}</math> में विलीन हो जाता है <math>0</math> एसओटी में अगर और केवल अगर <math>T_\alpha^* T_\alpha \to 0</math> डब्लूओटी में।
यह [[ध्रुवीकरण पहचान]] के अनुसार होता है कि यदि और सिर्फ यदि <math>T_\alpha^* T_\alpha \to 0</math> डब्लूओटी में एक शुद्ध <math>\{T_\alpha\}</math> एसओटी में <math>0</math> में अभिसरण करता है।


=== कमजोर-स्टार ऑपरेटर टोपोलॉजी ===
=== वीक-स्टार ऑपरेटर टोपोलॉजी ===


बी (एच) का पूर्ववर्ती [[ट्रेस क्लास]] ऑपरेटर सी है<sub>1</sub>(H), और यह B(H) पर w*-टोपोलॉजी उत्पन्न करता है, जिसे [[कमजोर-स्टार ऑपरेटर टोपोलॉजी]] या σ-कमजोर टोपोलॉजी कहा जाता है। कमजोर-ऑपरेटर और σ-कमज़ोर टोपोलॉजी बी(एच) में मानदंड-बद्ध सेट पर सहमत हैं।
<math>B(H)</math> का पूर्ववर्ती [[ट्रेस क्लास]] ऑपरेटर्स C1(H) है, और यह <math>B(H)</math> पर w* -टोपोलॉजी उत्पन्न करता है, जिसे [[कमजोर-स्टार ऑपरेटर टोपोलॉजी|वीक-स्टार ऑपरेटर टोपोलॉजी]] या σ-वीक टोपोलॉजी कहा जाता है। वीक-ऑपरेटर और σ-वीक टोपोलॉजी <math>B(H)</math> में मानदंड-बद्ध समूह पर सहमत हैं।


एक जाल {टी<sub>&alpha;</sub>} ⊂ B(H) डब्लूओटी में T में परिवर्तित होता है यदि और केवल Tr(T<sub>&alpha;</sub>F) सभी [[परिमित-रैंक ऑपरेटर]] F के लिए Tr(TF) में परिवर्तित होता है। चूंकि प्रत्येक परिमित-रैंक ऑपरेटर ट्रेस-क्लास है, इसका तात्पर्य है कि डब्लूओटी σ-कमजोर टोपोलॉजी से कमजोर है। यह देखने के लिए कि दावा सत्य क्यों है, याद रखें कि प्रत्येक परिमित-रैंक ऑपरेटर F एक परिमित योग है
एक शुद्ध {Tα} ⊂ <math>B(H)</math> डब्लूओटी में T में परिवर्तित होता है यदि और सिर्फ Tr(TαF) सभी [[परिमित-रैंक ऑपरेटर]] F के लिए Tr(TF) में परिवर्तित होता है। चूंकि प्रत्येक परिमित-रैंक ऑपरेटर ट्रेस-क्लास है, इसका तात्पर्य है कि डब्लूओटी σ-वीक टोपोलॉजी से वीक है। यह देखने के लिए कि प्रमाणित सत्य क्यों है, याद रखें कि प्रत्येक परिमित-रैंक ऑपरेटर F एक परिमित योग है


:<math> F = \sum_{i=1}^n \lambda_i u_i v_i^*.</math>
:<math> F = \sum_{i=1}^n \lambda_i u_i v_i^*.</math>
तो {टी<sub>&alpha;</sub>} डब्लूओटी साधन में T में परिवर्तित होता है
तो {} डब्लूओटी में T में परिवर्तित हो जाता है


:<math> \text{Tr} \left ( T_{\alpha} F \right )  =  \sum_{i=1}^n \lambda_i v_i^* \left ( T_{\alpha} u_i \right ) \longrightarrow \sum_{i=1}^n \lambda_i v_i^* \left ( T u_i \right ) = \text{Tr} (TF).</math>
:<math> \text{Tr} \left ( T_{\alpha} F \right )  =  \sum_{i=1}^n \lambda_i v_i^* \left ( T_{\alpha} u_i \right ) \longrightarrow \sum_{i=1}^n \lambda_i v_i^* \left ( T u_i \right ) = \text{Tr} (TF).</math>
थोड़ा विस्तार करते हुए, कोई कह सकता है कि कमजोर-संचालक और σ-कमजोर टोपोलॉजी बी (एच) में मानक-बद्ध सेट पर सहमत हैं: प्रत्येक ट्रेस-क्लास ऑपरेटर का रूप है
थोड़ा विस्तार करते हुए, कोई कह सकता है कि वीक-संचालक और σ-वीक टोपोलॉजी <math>B(H)</math> में मानक-बद्ध समूह पर सहमत हैं: प्रत्येक ट्रेस-क्लास ऑपरेटर का रूप है


:<math> S = \sum_i \lambda_i u_i v_i^*,</math>
:<math> S = \sum_i \lambda_i u_i v_i^*,</math>
जहां श्रृंखला <math>\sum\nolimits_i \lambda_i</math> अभिसरण। कल्पना करना <math>\sup\nolimits_{\alpha} \|T_{\alpha} \| = k < \infty,</math> और <math>T_{\alpha} \to T</math> डब्लूओटी में। हर ट्रेस-क्लास S के लिए,
जहाँ श्रृंखला <math>\sum\nolimits_i \lambda_i</math> अभिसरित होती है। मान लीजिए <math>\sup\nolimits_{\alpha} \|T_{\alpha} \| = k < \infty,</math> और <math>T_{\alpha} \to T</math> डब्लूओटी में हर ट्रेस-क्लास S के लिए,


:<math> \text{Tr} \left ( T_{\alpha} S \right )  =  \sum_i \lambda_i v_i^* \left ( T_{\alpha} u_i \right ) \longrightarrow \sum_i \lambda_i v_i^* \left ( T u_i \right ) = \text{Tr} (TS),</math>
:<math> \text{Tr} \left ( T_{\alpha} S \right )  =  \sum_i \lambda_i v_i^* \left ( T_{\alpha} u_i \right ) \longrightarrow \sum_i \lambda_i v_i^* \left ( T u_i \right ) = \text{Tr} (TS),</math>
उदाहरण के लिए, वर्चस्व वाले अभिसरण प्रमेय का आह्वान करके।
उदाहरण के लिए, वर्चस्व वाले अभिसरण प्रमेय का आह्वान करते है।


इसलिए बानाच-अलाग्लु प्रमेय द्वारा डब्लूओटी में प्रत्येक मानदंड-बद्ध सेट कॉम्पैक्ट है।
इसलिए बानाच-अलाग्लु प्रमेय द्वारा डब्लूओटी में प्रत्येक मानदंड-बद्ध सेट कॉम्पैक्ट है।
Line 43: Line 41:
आसन्न ऑपरेशन T → T*, इसकी परिभाषा के तत्काल परिणाम के रूप में, डब्लूओटी में निरंतर है।
आसन्न ऑपरेशन T → T*, इसकी परिभाषा के तत्काल परिणाम के रूप में, डब्लूओटी में निरंतर है।


गुणा संयुक्त रूप से डब्लूओटी में निरंतर नहीं है: फिर से चलो <math>T</math> एकतरफा बदलाव हो। कॉची-श्वार्ज़ से अपील करते हुए, एक ने कहा कि दोनों टी<sup>एन</sup> और टी*<sup>n</sup> डब्लूओटी में 0 में परिवर्तित हो जाता है। लेकिन टी*<sup>एन</sup>टी<sup>n</sup> सभी के लिए आइडेंटिटी ऑपरेटर है <math>n</math>. (क्योंकि डब्लूओटी बंधे हुए सेट पर σ-कमजोर टोपोलॉजी के साथ मेल खाता है, गुणन σ-कमजोर टोपोलॉजी में संयुक्त रूप से निरंतर नहीं है।)
गुणन डब्लूओटी में संयुक्त रूप से निरंतर नहीं है: फिर से <math>T</math> को एकतरफा बदलाव होने दें कॉची-श्वार्ज़ से अपील करते हुए, एक ने कहा कि <math>Tn</math> और <math>T*n</math> दोनों डब्लूओटी में 0 में परिवर्तित हो जाते हैं, लेकिन <math>T*nTn</math> सभी <math>n</math> के लिए आइडेंटिटी ऑपरेटर है। (क्योंकि डब्लूओटी बंधे हुए समूह पर σ-वीक टोपोलॉजी के साथ मेल खाता है, गुणन σ-वीक टोपोलॉजी में संयुक्त रूप से निरंतर नहीं है।)


हालाँकि, एक कमजोर दावा किया जा सकता है: डब्लूओटी में गुणा अलग से निरंतर है। अगर नेट टी<sub>i</sub>→ डब्लूओटी में T, फिर ST<sub>i</sub>→ एसटी और टी<sub>i</sub>डब्लूओटी में S → TS।
चूंकि, एक वीक प्रमाणित किया जा सकता है: यदि डब्लूओटी में एक शुद्ध ''T<sub>i</sub>'' ''T'', तो डब्लूओटी में ''ST<sub>i</sub>'' ''ST'' और ''T<sub>i</sub>S'' ''TS'', गुणा भिन्न से निरंतर है।


== एसओटी और डब्ल्यूओटी बी (एक्स, वाई) पर जब एक्स और वाई मानक स्थान हैं ==
== B(X,Y) पर एसओटी और डब्लूओटी जब X और Y आदर्श स्थान हैं ==


हम SOT और डब्लूओटी की परिभाषाओं को अधिक सामान्य सेटिंग तक बढ़ा सकते हैं जहां X और Y मानक सदिश स्थान हैं और <math>B(X,Y)</math> प्रपत्र के परिबद्ध रेखीय संचालकों का स्थान है <math>T:X\to Y</math>. इस मामले में, प्रत्येक जोड़ी <math>x\in X</math> और <math>y^*\in Y^*</math> एक मानदंड परिभाषित करता है (गणित) <math>\|\cdot\|_{x,y^*}</math> पर <math>B(X,Y)</math> नियम के माध्यम से <math>\|T\|_{x,y^*}=|y^*(Tx)|</math>. सेमिनोर्म्स का परिणामी परिवार कमजोर ऑपरेटर टोपोलॉजी को उत्पन्न करता है <math>B(X,Y)</math>. समान रूप से, डब्लूओटी ऑन <math>B(X,Y)</math> फॉर्म के उन सेटों को [[आधार (टोपोलॉजी)]] मानकर बनाया जाता है
हम एसओटी और डब्ल्यूओटी की परिभाषाओं को और अधिक सामान्य सेटिंग तक बढ़ा सकते हैं जहां X और Y मानक स्थान हैं और <math>B(X,Y)</math> प्रपत्र के सीमित रैखिक ऑपरेटरों <math>T:X\to Y</math> का स्थान है, इस स्थितिे में, प्रत्येक जोड़ी <math>x\in X</math> और <math>y^*\in Y^*</math> नियम <math>\|\cdot\|_{x,y^*}</math> के माध्यम से <math>B(X,Y)</math> पर एक सेमीनॉर्मा <math>\|T\|_{x,y^*}=|y^*(Tx)|</math> परिभाषित करती है। सेमीनॉर्म्स का परिणामी परिवार <math>B(X,Y)</math> पर वीक ऑपरेटर टोपोलॉजी उत्पन्न करता है। समान रूप से, <math>B(X,Y)</math> पर डब्लूओटी फॉर्म के उन समूहों को [[आधार (टोपोलॉजी)]] मानकर बनाया जाता है


:<math>N(T,F,\Lambda,\epsilon):= \left \{S\in B(X,Y): \left |y^*((S-T)x) \right |<\epsilon,x\in F,y^*\in\Lambda \right \},</math>
:<math>N(T,F,\Lambda,\epsilon):= \left \{S\in B(X,Y): \left |y^*((S-T)x) \right |<\epsilon,x\in F,y^*\in\Lambda \right \},</math>
कहाँ <math>T\in B(X,Y), F\subseteq X</math> एक परिमित समुच्चय है, <math>\Lambda\subseteq Y^*</math> एक परिमित समुच्चय भी है, और <math>\epsilon>0</math>. अंतरिक्ष <math>B(X,Y)</math> डब्लूओटी से संपन्न होने पर स्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर स्पेस होता है।
जहां <math>T\in B(X,Y), F\subseteq X</math> एक सीमित समूह है और <math>\epsilon>0</math>, <math>\Lambda\subseteq Y^*</math> भी एक सीमित समूह है, स्पेस <math>B(X,Y)</math> एक स्थानीय रूप से उत्तल स्थलीय सदिश स्पेस है जब डब्ल्यूओटी के साथ संपन्न होता है।


मजबूत ऑपरेटर टोपोलॉजी ऑन <math>B(X,Y)</math> सेमिनोर्म्स के परिवार द्वारा उत्पन्न होता है <math>\|\cdot\|_x, x\in X,</math> नियमों के माध्यम से <math>\|T\|_x=\|Tx\|</math>. इस प्रकार, एसओटी के लिए एक सांस्थितिकीय आधार फॉर्म के खुले पड़ोस द्वारा दिया जाता है
नियमों के माध्यम से <math>\|T\|_x=\|Tx\|</math>, <math>B(X,Y)</math> पर मजबूत ऑपरेटर टोपोलॉजी सेमीनॉर्म्स के परिवार द्वारा उत्पन्न होती है, <math>\|\cdot\|_x, x\in X,</math> इस प्रकार, एसओटी के लिए एक सांस्थितिकीय आधार फॉर्म के ओपन प्रतिवेश द्वारा दिया जाता है


:<math>N(T,F,\epsilon):=\{S\in B(X,Y):\|(S-T)x\|<\epsilon,x\in F\},</math> जहां पहले की तरह <math>T\in B(X,Y), F\subseteq X</math> एक परिमित सेट है, और <math>\epsilon>0.</math>
:<math>N(T,F,\epsilon):=\{S\in B(X,Y):\|(S-T)x\|<\epsilon,x\in F\},</math> जहां पहले का प्रकार <math>T\in B(X,Y), F\subseteq X</math> एक परिमित समूह है, और <math>\epsilon>0.</math>
:


=== B(X,Y) पर विभिन्न टोपोलॉजी के बीच संबंध ===
विभिन्न टोपोलॉजी के लिए भिन्न-भिन्न शब्दावली <math>B(X,Y)</math> कभी-कभी भ्रमित हो सकती है। उदाहरण के लिए, एक मानक स्थान में सदिश के लिए मजबूत अभिसरण कभी-कभी मानदंड-अभिसरण को संदर्भित करता है, जो एसओटी-अभिसरण की तुलना में अधिकांशतः भिन्न (और इससे अधिक मजबूत) होता है जब प्रश्न में <math>B(X,Y)</math> मानक स्थान होता है, एक आदर्श स्थान पर [[कमजोर टोपोलॉजी|वीक टोपोलॉजी]] <math>X</math> सबसे मोटी टोपोलॉजी है जो रैखिक कार्यों को बनाता है <math>X^*</math> निरंतर; जब हम लेते हैं <math>B(X,Y)</math> की जगह <math>X</math>, वीक टोपोलॉजी वीक ऑपरेटर टोपोलॉजी से बहुत भिन्न हो सकती है, और जबकि डब्लूओटी औपचारिक रूप से एसओटी से वीक है, और एसओटी ऑपरेटर मानक टोपोलॉजी से वीक होती है।


=== बी (एक्स, वाई) === पर विभिन्न टोपोलॉजी के बीच संबंध
सामान्यतः, निम्नलिखित समावेशन धारण करते हैं:


विभिन्न टोपोलॉजी के लिए अलग-अलग शब्दावली <math>B(X,Y)</math> कभी-कभी भ्रमित हो सकता है। उदाहरण के लिए, एक मानक स्थान में वैक्टर के लिए मजबूत अभिसरण कभी-कभी मानदंड-अभिसरण को संदर्भित करता है, जो एसओटी-अभिसरण की तुलना में अधिकांशतः अलग (और इससे अधिक मजबूत) होता है जब प्रश्न में मानक स्थान होता है <math>B(X,Y)</math>. एक आदर्श स्थान पर [[कमजोर टोपोलॉजी]] <math>X</math> सबसे मोटे टोपोलॉजी है जो रैखिक कार्यों को बनाता है <math>X^*</math> निरंतर; जब हम लेते हैं <math>B(X,Y)</math> की जगह <math>X</math>, कमजोर टोपोलॉजी कमजोर ऑपरेटर टोपोलॉजी से बहुत अलग हो सकती है। और जबकि डब्लूओटी औपचारिक रूप से SOT से कमजोर है, SOT ऑपरेटर मानक टोपोलॉजी से कमजोर है।
:<math>\{ \text{WOT-open sets in } B(X,Y)\} \subseteq \{\text{SOT-open sets in }B(X,Y)\} \subseteq \{\text{operator-norm-open sets in }B(X,Y)\},</math> और ये <math>X</math> और <math>Y</math> समावेशन विकल्पों के आधार पर सख्त हो सकते हैं या नहीं भी हो सकते हैं।


सामान्य तौर पर, निम्नलिखित समावेशन धारण करते हैं:
<math>B(X,Y)</math> पर डब्लूओटी औपचारिक रूप से एसओटी की तुलना में वीक टोपोलॉजी है, लेकिन फिर भी वे कुछ महत्वपूर्ण गुणों को साझा करते हैं। उदाहरण के लिए,


:<math>\{ \text{WOT-open sets in } B(X,Y)\} \subseteq \{\text{SOT-open sets in }B(X,Y)\} \subseteq \{\text{operator-norm-open sets in }B(X,Y)\},</math> और ये समावेशन विकल्पों के आधार पर सख्त हो सकते हैं या नहीं भी हो सकते हैं <math>X</math> और <math>Y</math>.
:<math>(B(X,Y),\text{SOT})^*=(B(X,Y),\text{WOT})^*.</math>
 
परिणाम स्वरुप, यदि <math>S \subseteq B(X,Y)</math> तब उत्तल है,
डब्लूओटी चालू है <math>B(X,Y)</math> एसओटी की तुलना में औपचारिक रूप से कमजोर टोपोलॉजी है, लेकिन फिर भी वे कुछ महत्वपूर्ण गुणों को साझा करते हैं। उदाहरण के लिए,


:<math>(B(X,Y),\text{SOT})^*=(B(X,Y),\text{WOT})^*.</math>
<math>\overline{S}^\text{SOT}=\overline{S}^\text{WOT},</math>
नतीजतन, अगर <math>S \subseteq B(X,Y)</math> तब उत्तल है


:<math>\overline{S}^\text{SOT}=\overline{S}^\text{WOT},</math> दूसरे शब्दों में, एसओटी-क्लोजर और डब्ल्यूओटी-क्लोजर उत्तल सेट के लिए मेल खाते हैं।
दूसरे शब्दों में, एसओटी-क्लोजर और डब्ल्यूओटी-क्लोजर उत्तल समूह के लिए समानता रखते हैं।


== यह भी देखें ==
== यह भी देखें ==


* {{annotated link|Topologies on the set of operators on a Hilbert space}}
* {{annotated link|हिल्बर्ट स्पेस पर ऑपरेटरों के सेट पर टोपोलॉजी}}
* {{annotated link|Weak topology}}
* {{annotated link|कमजोर टोपोलॉजी}}
* {{annotated link|Weak-star operator topology}}
* {{annotated link|कमजोर सितारा ऑपरेटर टोपोलॉजी}}
 
{{Functional analysis}}
{{Banach spaces}}
{{Hilbert space}}
{{Duality and spaces of linear maps}}
 
श्रेणी:टोपोलॉजिकल वेक्टर स्पेस
श्रेणी:फ़ंक्शन स्पेस की टोपोलॉजी
 


[[Category: Machine Translated Page]]
[[Category:Created On 01/03/2023]]
[[Category:Created On 01/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]

Latest revision as of 12:26, 14 September 2023

कार्यात्मक विश्लेषण में वीक ऑपरेटर टोपोलॉजी, अधिकांशतः संक्षिप्त डब्लूओटी हिल्बर्ट स्पेस पर परिबद्ध प्रचालकों के समूह की सबसे वीक टोपोलॉजी है। , जैसे कि हिल्बर्ट स्पेस में किसी भी सदिश और के लिए जटिल संख्या में एक ऑपरेटर भेजने वाला कार्यात्मक (गणित) निरंतर है।

स्पष्ट रूप से, एक ऑपरेटर के लिए निम्न प्रकार के प्रतिवेश का आधार है: एक ही परिमित समूह द्वारा अनुक्रमित सदिश , निरंतर कार्यात्मक , और सकारात्मक वास्तविक स्थिरांक की एक परिमित संख्या चुनी गयी है। यदि और सिर्फ यदि सभी के लिए, एक ऑपरेटर प्रतिवेश में स्थित है।

समतुल्य रूप से, बाध्य ऑपरेटरों का शुद्ध डब्लूओटी में में परिवर्तित हो जाता है यदि सभी और के लिए, जाल , में परिवर्तित हो जाता है।

पर अन्य टोपोलॉजी के साथ संबंध

हिल्बर्ट स्पेस पर बंधे हुए ऑपरेटर, डब्लूओटी पर सभी सामान्य टोपोलॉजी में सबसे वीक है।

मजबूत ऑपरेटर टोपोलॉजी

पर मजबूत ऑपरेटर टोपोलॉजी, या एसओटी, बिंदुवार अभिसरण की टोपोलॉजी है, क्योंकि आंतरिक उत्पाद एक सतत कार्य है, एसओटी डब्ल्यूओटी से अधिक मजबूत है। निम्नलिखित उदाहरण से पता चलता है कि यह समावेश सख्त है। मान लीजिए और एकतरफा पारियों के अनुक्रम पर विचार करें, डब्ल्यूओटी में कौशी-श्वार्ज़ के एक प्रयोग से यह पता चलता है। एसओटी में लेकिन स्पष्ट रूप से अभिसरण नहीं करता है।

मजबूत ऑपरेटर टोपोलॉजी में निरंतर हिल्बर्ट स्पेस पर बंधे ऑपरेटरों के समूह पर रैखिक कार्यात्मक ठीक वही हैं जो डब्ल्यूओटी में निरंतर हैं (वास्तव में, डब्ल्यूओटी सबसे वीक ऑपरेटर टोपोलॉजी है, हिल्बर्ट स्पेस एच पर बंधे ऑपरेटरों के समूह जो निरंतर सभी दृढ़ता से निरंतर रैखिक कार्यात्मक छोड़ देता है। इस तथ्य के कारण, डब्लूओटी में ऑपरेटरों के एक उत्तल समूह का बंद होना, एसओटी में उस समूह के बंद होने के समान है।

यह ध्रुवीकरण पहचान के अनुसार होता है कि यदि और सिर्फ यदि डब्लूओटी में एक शुद्ध एसओटी में में अभिसरण करता है।

वीक-स्टार ऑपरेटर टोपोलॉजी

का पूर्ववर्ती ट्रेस क्लास ऑपरेटर्स C1(H) है, और यह पर w* -टोपोलॉजी उत्पन्न करता है, जिसे वीक-स्टार ऑपरेटर टोपोलॉजी या σ-वीक टोपोलॉजी कहा जाता है। वीक-ऑपरेटर और σ-वीक टोपोलॉजी में मानदंड-बद्ध समूह पर सहमत हैं।

एक शुद्ध {Tα} ⊂ डब्लूओटी में T में परिवर्तित होता है यदि और सिर्फ Tr(TαF) सभी परिमित-रैंक ऑपरेटर F के लिए Tr(TF) में परिवर्तित होता है। चूंकि प्रत्येक परिमित-रैंक ऑपरेटर ट्रेस-क्लास है, इसका तात्पर्य है कि डब्लूओटी σ-वीक टोपोलॉजी से वीक है। यह देखने के लिए कि प्रमाणित सत्य क्यों है, याद रखें कि प्रत्येक परिमित-रैंक ऑपरेटर F एक परिमित योग है

तो {Tα} डब्लूओटी में T में परिवर्तित हो जाता है

थोड़ा विस्तार करते हुए, कोई कह सकता है कि वीक-संचालक और σ-वीक टोपोलॉजी में मानक-बद्ध समूह पर सहमत हैं: प्रत्येक ट्रेस-क्लास ऑपरेटर का रूप है

जहाँ श्रृंखला अभिसरित होती है। मान लीजिए और डब्लूओटी में हर ट्रेस-क्लास S के लिए,

उदाहरण के लिए, वर्चस्व वाले अभिसरण प्रमेय का आह्वान करते है।

इसलिए बानाच-अलाग्लु प्रमेय द्वारा डब्लूओटी में प्रत्येक मानदंड-बद्ध सेट कॉम्पैक्ट है।

अन्य गुण

आसन्न ऑपरेशन T → T*, इसकी परिभाषा के तत्काल परिणाम के रूप में, डब्लूओटी में निरंतर है।

गुणन डब्लूओटी में संयुक्त रूप से निरंतर नहीं है: फिर से को एकतरफा बदलाव होने दें कॉची-श्वार्ज़ से अपील करते हुए, एक ने कहा कि और दोनों डब्लूओटी में 0 में परिवर्तित हो जाते हैं, लेकिन सभी के लिए आइडेंटिटी ऑपरेटर है। (क्योंकि डब्लूओटी बंधे हुए समूह पर σ-वीक टोपोलॉजी के साथ मेल खाता है, गुणन σ-वीक टोपोलॉजी में संयुक्त रूप से निरंतर नहीं है।)

चूंकि, एक वीक प्रमाणित किया जा सकता है: यदि डब्लूओटी में एक शुद्ध TiT, तो डब्लूओटी में STiST और TiSTS, गुणा भिन्न से निरंतर है।

B(X,Y) पर एसओटी और डब्लूओटी जब X और Y आदर्श स्थान हैं

हम एसओटी और डब्ल्यूओटी की परिभाषाओं को और अधिक सामान्य सेटिंग तक बढ़ा सकते हैं जहां X और Y मानक स्थान हैं और प्रपत्र के सीमित रैखिक ऑपरेटरों का स्थान है, इस स्थितिे में, प्रत्येक जोड़ी और नियम के माध्यम से पर एक सेमीनॉर्मा परिभाषित करती है। सेमीनॉर्म्स का परिणामी परिवार पर वीक ऑपरेटर टोपोलॉजी उत्पन्न करता है। समान रूप से, पर डब्लूओटी फॉर्म के उन समूहों को आधार (टोपोलॉजी) मानकर बनाया जाता है

जहां एक सीमित समूह है और , भी एक सीमित समूह है, स्पेस एक स्थानीय रूप से उत्तल स्थलीय सदिश स्पेस है जब डब्ल्यूओटी के साथ संपन्न होता है।

नियमों के माध्यम से , पर मजबूत ऑपरेटर टोपोलॉजी सेमीनॉर्म्स के परिवार द्वारा उत्पन्न होती है, इस प्रकार, एसओटी के लिए एक सांस्थितिकीय आधार फॉर्म के ओपन प्रतिवेश द्वारा दिया जाता है

जहां पहले का प्रकार एक परिमित समूह है, और

B(X,Y) पर विभिन्न टोपोलॉजी के बीच संबंध

विभिन्न टोपोलॉजी के लिए भिन्न-भिन्न शब्दावली कभी-कभी भ्रमित हो सकती है। उदाहरण के लिए, एक मानक स्थान में सदिश के लिए मजबूत अभिसरण कभी-कभी मानदंड-अभिसरण को संदर्भित करता है, जो एसओटी-अभिसरण की तुलना में अधिकांशतः भिन्न (और इससे अधिक मजबूत) होता है जब प्रश्न में मानक स्थान होता है, एक आदर्श स्थान पर वीक टोपोलॉजी सबसे मोटी टोपोलॉजी है जो रैखिक कार्यों को बनाता है निरंतर; जब हम लेते हैं की जगह , वीक टोपोलॉजी वीक ऑपरेटर टोपोलॉजी से बहुत भिन्न हो सकती है, और जबकि डब्लूओटी औपचारिक रूप से एसओटी से वीक है, और एसओटी ऑपरेटर मानक टोपोलॉजी से वीक होती है।

सामान्यतः, निम्नलिखित समावेशन धारण करते हैं:

और ये और समावेशन विकल्पों के आधार पर सख्त हो सकते हैं या नहीं भी हो सकते हैं।

पर डब्लूओटी औपचारिक रूप से एसओटी की तुलना में वीक टोपोलॉजी है, लेकिन फिर भी वे कुछ महत्वपूर्ण गुणों को साझा करते हैं। उदाहरण के लिए,

परिणाम स्वरुप, यदि तब उत्तल है,

दूसरे शब्दों में, एसओटी-क्लोजर और डब्ल्यूओटी-क्लोजर उत्तल समूह के लिए समानता रखते हैं।

यह भी देखें