नेगल बिंदु: Difference between revisions
m (Neeraja moved page नागल बिंदु to नेगल बिंदु without leaving a redirect) |
No edit summary |
||
Line 4: | Line 4: | ||
{{legend-line|solid orange|[[Excircle]]s, tangent to the sides of {{math|△''ABC''}} at {{mvar|T{{sub|A}}, T{{sub|B}}, T{{sub|C}}}}}} | {{legend-line|solid orange|[[Excircle]]s, tangent to the sides of {{math|△''ABC''}} at {{mvar|T{{sub|A}}, T{{sub|B}}, T{{sub|C}}}}}} | ||
{{legend-line|solid red|[[Extouch triangle]] {{math|△''T{{sub|A}}T{{sub|B}}T{{sub|C}}''}}}} | {{legend-line|solid red|[[Extouch triangle]] {{math|△''T{{sub|A}}T{{sub|B}}T{{sub|C}}''}}}} | ||
{{legend-line|solid #1e90ff|Splitters of the perimeter {{mvar|{{overline|AT}}{{sub|A}}, {{overline|BT}}{{sub|B}}, {{overline|CT}}{{sub|C}}}}; intersect at the '''Nagel point''' {{mvar|N}}}}]][[ज्यामिति]] में, | {{legend-line|solid #1e90ff|Splitters of the perimeter {{mvar|{{overline|AT}}{{sub|A}}, {{overline|BT}}{{sub|B}}, {{overline|CT}}{{sub|C}}}}; intersect at the '''Nagel point''' {{mvar|N}}}}]][[ज्यामिति]] में, नेगल बिंदु (ईसाई हेनरिक वॉन नेगल के नाम पर) एक त्रिभुज केंद्र है, जो दिए गए [[त्रिकोण]] से जुड़े बिंदुओं में से एक है, जिसकी परिभाषा त्रिभुज के स्थान या मापदंड पर निर्भर नहीं करती है। यह त्रिभुज के तीनों विखंडन (ज्यामिति) की समवर्ती रेखाओं का बिंदु है। | ||
== निर्माण == | == निर्माण == | ||
एक त्रिकोण {{math|△''ABC''}} दिया, होने देना {{mvar|T{{sub|A}}, T{{sub|B}}, T{{sub|C}}}} [[एक्सटच त्रिकोण]] है जिसमें द {{mvar|A}}-[[excircle|बाह्यवृत्त]] रेखा {{mvar|BC}} से मिलता है, {{mvar|B}}-[[excircle|बाह्यवृत्त]] रेखा {{mvar|CA}} से मिलता है , और यह {{mvar|C}}-बाह्यवृत्त क्रमशः रेखा {{mvar|AB}}, मिलता है । रेखाएं {{mvar|AT{{sub|A}}, BT{{sub|B}}, CT{{sub|C}}}} त्रिभुज {{math|△''ABC''}} के | एक त्रिकोण {{math|△''ABC''}} दिया, होने देना {{mvar|T{{sub|A}}, T{{sub|B}}, T{{sub|C}}}} [[एक्सटच त्रिकोण]] है जिसमें द {{mvar|A}}-[[excircle|बाह्यवृत्त]] रेखा {{mvar|BC}} से मिलता है, {{mvar|B}}-[[excircle|बाह्यवृत्त]] रेखा {{mvar|CA}} से मिलता है , और यह {{mvar|C}}-बाह्यवृत्त क्रमशः रेखा {{mvar|AB}}, मिलता है । रेखाएं {{mvar|AT{{sub|A}}, BT{{sub|B}}, CT{{sub|C}}}} त्रिभुज {{math|△''ABC''}} के नेगल बिंदु {{mvar|N}} में मिलती हैं | ||
बिंदु {{mvar|T{{sub|A}}}} का एक और निर्माण {{mvar|A}} को प्रारंभ करना है और त्रिकोण {{math|△''ABC''}} के चारों ओर इसकी परिधि का पता लगाना है, और इसी तरह {{mvar|T{{sub|B}}}} और {{mvar|T{{sub|C}}}} के लिए इस निर्माण के कारण, | बिंदु {{mvar|T{{sub|A}}}} का एक और निर्माण {{mvar|A}} को प्रारंभ करना है और त्रिकोण {{math|△''ABC''}} के चारों ओर इसकी परिधि का पता लगाना है, और इसी तरह {{mvar|T{{sub|B}}}} और {{mvar|T{{sub|C}}}} के लिए इस निर्माण के कारण, नेगल बिंदु को कभी-कभी समद्विभाजित परिधि बिंदु और खंड भी कहा जाता है {{mvar|{{overline|AT}}{{sub|A}}, {{overline|BT}}{{sub|B}}, {{overline|CT}}{{sub|C}}}} को त्रिभुज का विभाजक (ज्यामिति) कहा जाता है। | ||
नेगल बिंदु का एक आसान निर्माण उपथित है। एक त्रिभुज के प्रत्येक शीर्ष से प्रारंभ होकर, यह विपरीत किनारे की लंबाई से दोगुनी लंबाई ले जाने के लिए पर्याप्त है। हम तीन रेखाएँ प्राप्त करते हैं जो नेगल बिंदु पर मिलती हैं।<ref>{{Cite web|title=नागल बिंदु का प्रारंभिक निर्माण|url=https://hal.archives-ouvertes.fr/hal-02558108|last=Dussau|first=Xavier|date=|website=HAL|url-status=live|archive-url=|archive-date=|access-date=}}</ref> | |||
<br /> | <br /> | ||
[[File:Easynagel.gif|center|thumb|485x485px| | [[File:Easynagel.gif|center|thumb|485x485px|नेगल बिंदु का आसान निर्माण]] | ||
== अन्य त्रिकोण केन्द्रों से संबंध == | == अन्य त्रिकोण केन्द्रों से संबंध == | ||
नेगल बिंदु [[गेरगोन बिंदु]] का [[समस्थानिक संयुग्म]] है। नेगल बिंदु, [[केन्द्रक]] और अंतःकेंद्र एक रेखा पर संरेख होते हैं जिसे नेगल रेखा कहा जाता है। मध्य [[मध्य त्रिकोण]] का नेगल बिंदु है;<ref name="Anonymous">{{cite journal | |||
| author = Anonymous | | author = Anonymous | ||
| title = Problem 73 | | title = Problem 73 | ||
Line 27: | Line 27: | ||
| year = 1896 | | year = 1896 | ||
| doi = 10.2307/2970994 | | doi = 10.2307/2970994 | ||
| jstor = 2970994}}</ref><ref>{{cite web|url=http://polymathematics.typepad.com/polymath/why-is-the-incenter-the-nagel-point-of-the-medial-triangle.html|title=Why is the Incenter the Nagel Point of the Medial Triangle?|website=Polymathematics}}</ref> समतुल्य रूप से, | | jstor = 2970994}}</ref><ref>{{cite web|url=http://polymathematics.typepad.com/polymath/why-is-the-incenter-the-nagel-point-of-the-medial-triangle.html|title=Why is the Incenter the Nagel Point of the Medial Triangle?|website=Polymathematics}}</ref> समतुल्य रूप से, नेगल बिंदु [[प्रतिपूरक त्रिभुज]] का अंत:केंद्र है। किसी त्रिभुज का मिश्रित रेखीय अंतःवृत्त, मिश्रित रैखिक स्पर्श बिंदु और विपरीत शीर्ष को मिलाने वाली रेखाओं का संगामिति बिंदु होता है। | ||
== बैरीसेंट्रिक निर्देशांक == | == बैरीसेंट्रिक निर्देशांक == | ||
नेगल बिंदु की गैर-सामान्यीकृत [[बैरीसेंट्रिक समन्वय प्रणाली]] हैं <math> (s-a:s-b:s-c) </math> जहाँ <math>s = \tfrac{a+b+c}{2}</math> संदर्भ त्रिभुज {{math|△''ABC''}} की अर्ध-परिधि है . | |||
== [[ट्रिलिनियर निर्देशांक]] == | == [[ट्रिलिनियर निर्देशांक]] == | ||
नेगल बिंदु के त्रिरेखीय निर्देशांक हैं जैसा<ref name="Gallatly">{{cite book | |||
| author = Gallatly, William | | author = Gallatly, William | ||
| title = The Modern Geometry of the Triangle | | title = The Modern Geometry of the Triangle | ||
Line 49: | Line 49: | ||
== इतिहास == | == इतिहास == | ||
नेगल बिंदु का नाम उन्नीसवीं सदी के जर्मन गणितज्ञ क्रिश्चियन हेनरिक वॉन नेगल के नाम पर रखा गया है, जिन्होंने 1836 में इसके बारे में लिखा था। | |||
इस बिंदु के अध्ययन में प्रारंभिक योगदान [[अगस्त लियोपोल्ड क्रेले]] और [[कार्ल गुस्ताव जैकब जैकोबी]] द्वारा भी किया गया था।<ref>{{cite journal | इस बिंदु के अध्ययन में प्रारंभिक योगदान [[अगस्त लियोपोल्ड क्रेले]] और [[कार्ल गुस्ताव जैकब जैकोबी]] द्वारा भी किया गया था।<ref>{{cite journal |
Revision as of 11:52, 19 September 2023
ज्यामिति में, नेगल बिंदु (ईसाई हेनरिक वॉन नेगल के नाम पर) एक त्रिभुज केंद्र है, जो दिए गए त्रिकोण से जुड़े बिंदुओं में से एक है, जिसकी परिभाषा त्रिभुज के स्थान या मापदंड पर निर्भर नहीं करती है। यह त्रिभुज के तीनों विखंडन (ज्यामिति) की समवर्ती रेखाओं का बिंदु है।
निर्माण
एक त्रिकोण △ABC दिया, होने देना TA, TB, TC एक्सटच त्रिकोण है जिसमें द A-बाह्यवृत्त रेखा BC से मिलता है, B-बाह्यवृत्त रेखा CA से मिलता है , और यह C-बाह्यवृत्त क्रमशः रेखा AB, मिलता है । रेखाएं ATA, BTB, CTC त्रिभुज △ABC के नेगल बिंदु N में मिलती हैं
बिंदु TA का एक और निर्माण A को प्रारंभ करना है और त्रिकोण △ABC के चारों ओर इसकी परिधि का पता लगाना है, और इसी तरह TB और TC के लिए इस निर्माण के कारण, नेगल बिंदु को कभी-कभी समद्विभाजित परिधि बिंदु और खंड भी कहा जाता है ATA, BTB, CTC को त्रिभुज का विभाजक (ज्यामिति) कहा जाता है।
नेगल बिंदु का एक आसान निर्माण उपथित है। एक त्रिभुज के प्रत्येक शीर्ष से प्रारंभ होकर, यह विपरीत किनारे की लंबाई से दोगुनी लंबाई ले जाने के लिए पर्याप्त है। हम तीन रेखाएँ प्राप्त करते हैं जो नेगल बिंदु पर मिलती हैं।[1]
अन्य त्रिकोण केन्द्रों से संबंध
नेगल बिंदु गेरगोन बिंदु का समस्थानिक संयुग्म है। नेगल बिंदु, केन्द्रक और अंतःकेंद्र एक रेखा पर संरेख होते हैं जिसे नेगल रेखा कहा जाता है। मध्य मध्य त्रिकोण का नेगल बिंदु है;[2][3] समतुल्य रूप से, नेगल बिंदु प्रतिपूरक त्रिभुज का अंत:केंद्र है। किसी त्रिभुज का मिश्रित रेखीय अंतःवृत्त, मिश्रित रैखिक स्पर्श बिंदु और विपरीत शीर्ष को मिलाने वाली रेखाओं का संगामिति बिंदु होता है।
बैरीसेंट्रिक निर्देशांक
नेगल बिंदु की गैर-सामान्यीकृत बैरीसेंट्रिक समन्वय प्रणाली हैं जहाँ संदर्भ त्रिभुज △ABC की अर्ध-परिधि है .
ट्रिलिनियर निर्देशांक
नेगल बिंदु के त्रिरेखीय निर्देशांक हैं जैसा[4]
या, समतुल्य, पक्ष की लंबाई के संदर्भ में
इतिहास
नेगल बिंदु का नाम उन्नीसवीं सदी के जर्मन गणितज्ञ क्रिश्चियन हेनरिक वॉन नेगल के नाम पर रखा गया है, जिन्होंने 1836 में इसके बारे में लिखा था।
इस बिंदु के अध्ययन में प्रारंभिक योगदान अगस्त लियोपोल्ड क्रेले और कार्ल गुस्ताव जैकब जैकोबी द्वारा भी किया गया था।[5]
यह भी देखें
संदर्भ
- ↑ Dussau, Xavier. "नागल बिंदु का प्रारंभिक निर्माण". HAL.
{{cite web}}
: CS1 maint: url-status (link) - ↑ Anonymous (1896). "Problem 73". Problems for Solution: Geometry. American Mathematical Monthly. 3 (12): 329. doi:10.2307/2970994. JSTOR 2970994.
- ↑ "Why is the Incenter the Nagel Point of the Medial Triangle?". Polymathematics.
- ↑ Gallatly, William (1913). The Modern Geometry of the Triangle (2nd ed.). London: Hodgson. p. 20.
- ↑ Baptist, Peter (1987). "Historische Anmerkungen zu Gergonne- und Nagel-Punkt". Sudhoffs Archiv für Geschichte der Medizin und der Naturwissenschaften. 71 (2): 230–233. MR 0936136.
बाहरी संबंध
- Nagel Point from Cut-the-knot
- Nagel Point, Clark Kimberling
- Weisstein, Eric W. "Nagel Point". MathWorld.
- Spieker Conic and generalization of Nagel line at Dynamic Geometry Sketches Generalizes Spieker circle and associated Nagel line.