एनवेलप प्रमेय: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 111: | Line 111: | ||
==संदर्भ== | ==संदर्भ== | ||
{{Reflist|30em}} | {{Reflist|30em}} | ||
[[Category:Created On 13/02/2023]] | [[Category:Created On 13/02/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Multi-column templates]] | |||
[[Category:Pages using div col with small parameter]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Templates using under-protected Lua modules]] | |||
[[Category:Wikipedia fully protected templates|Div col]] | |||
[[Category:अर्थशास्त्र प्रमेय]] | |||
[[Category:उत्पादन अर्थशास्त्र]] | |||
[[Category:विविधताओं की गणना]] | |||
[[Category:विश्लेषण में प्रमेय]] |
Latest revision as of 17:44, 19 September 2023
गणित और अर्थशास्त्र में, एनवेलप प्रमेय एक पैरामिट्रीकृत अनुकूलन समस्या के मान फलन के अवकलनीयता गुणों के बारे में प्रमुख परिणाम है।[1] जैसा कि हम उद्देश्य के मापदंडों को बदलते हैं, एनवेलप प्रमेय से पता चलता है कि, निश्चित अर्थ में, उद्देश्य के अनुकूलक में परिवर्तन उद्देश्य फलन में परिवर्तन के लिए योगदान नहीं करते हैं। लिफ़ाफ़ा प्रमेय अनुकूलन मॉडल के तुलनात्मक सांख्यिकी के लिए महत्वपूर्ण उपकरण है।[2]
एनवेलप शब्द मान फलन के रेखांकन का वर्णन करने से प्राप्त होता है, जो फलन के मापदण्डयुक्त परिवार के रेखांकन के ऊपरी लिफाफे के रूप में होता है जो अनुकूलित हैं।
कथन
आज्ञा से और वास्तविक-मूल्यवान निरंतर भिन्न-भिन्न कार्यों पर , जहाँ विकल्प चर हैं और मापदण्ड हैं, और चुनने की समस्या पर विचार करें , किसी प्रदत्त के लिए , इतनी रूप में:
- का विषय है और .
इस समस्या की लैग्रेंजियन अभिव्यक्ति द्वारा दिया गया है
जहाँ लैग्रेंज गुणक हैं। अब चलो और एक साथ ऐसा समाधान हो जो बाधाओं के अधीन उद्देश्य फलन f को अधिकतम करता है (और इसलिए लैग्रेंजियन के काठी बिंदु हैं),
और मूल्य फलन को परिभाषित करें
तब हमारे पास निम्नलिखित प्रमेय है।[3][4]
प्रमेय: मान लीजिए और निरन्तर अवकलनीय हैं। तब
जहाँ .
एकपक्षीय विकल्प के लिए समुच्चय
होने देना विकल्प समुच्चय को निरूपित करें और प्रासंगिक मापदण्ड होने दें . दे पैरामिट्रीकृत उद्देश्य फलन, मान फलन को निरूपित करें और इष्टतम विकल्प पत्राचार (समुच्चय-वैल्यू फलन) द्वारा दिया गया है:
-
(1)
-
(2)
एनवेलप प्रमेय मान फलन के लिए पर्याप्त स्थितियों का वर्णन करता है मापदण्ड में अलग-अलग होने के लिए और इसके व्युत्पन्न का वर्णन करें
-
(3)
जहाँ के आंशिक व्युत्पन्न को दर्शाता है इसके संबंध में . अर्थात्, मापदण्ड के संबंध में मूल्य फलन का व्युत्पन्न उद्देश्य फलन के आंशिक व्युत्पन्न के संबंध में बराबर होता है अधिकतम स्तर को अपने इष्टतम स्तर पर स्थिर रखना।
पारंपरिक एनवेलप प्रमेय व्युत्पत्ति के लिए प्रथम-क्रम की स्थिति का उपयोग करते हैं (1), जिसके लिए आवश्यक है कि चुनाव समुच्चय हो उत्तल और सामयिक संरचना, और उद्देश्य फलन है चर में अवकलनीय हो . (तर्क यह है कि मैक्सिमाइज़र में परिवर्तनों का इष्टतम पर केवल दूसरा क्रम प्रभाव होता है और इसलिए इसे अनदेखा किया जा सकता है।) चूंकि , कई अनुप्रयोगों में जैसे कि अनुबंध सिद्धांत और खेल सिद्धांत में प्रोत्साहन बाधाओं का विश्लेषण, गैर-उत्तल उत्पादन समस्याएं,और मोनोटोन या शक्तिशाली तुलनात्मक सांख्यिकी, विकल्प समुच्चय और उद्देश्य कार्यों में सामान्यतः पारंपरिक एनवेलप प्रमेयों द्वारा आवश्यक संस्थानिक और उत्तल गुणों की कमी होती है।
पॉल मिलग्रोम और सेगल (2002) ने निरीक्षण किया कि पारंपरिक एनवेलप सूत्र मूल्य फलन के किसी भी भिन्नता बिंदु पर मनमाना विकल्प समुच्चय के साथ अनुकूलन समस्याओं के लिए है,[5]परंतु कि उद्देश्य फलन मापदण्ड में अलग-अलग हो:
प्रमेय 1: चलो और . यदि दोनों और उपस्थितहै, एनवेलप सूत्र (3) रखता है।
सबूत: समीकरण (1) का अर्थ है कि के लिए ,
मान्यताओं के अनुसार , प्रदर्शित अधिकतमकरण समस्या का उद्देश्य कार्य भिन्न होता है , और इस अधिकतमकरण के लिए प्रथम-क्रम की स्थिति बिल्कुल समीकरण है (3). क्यू.इ.डी.
जबकि सामान्य रूप से मूल्य फलन की भिन्नता के लिए शक्तिशाली धारणाओं की आवश्यकता होती है, कई अनुप्रयोगों में कमजोर स्थितियां जैसे पूर्ण निरंतरता, भिन्नता लगभग हर जगह, या बाएं और दाएं-भिन्नता, पर्याप्त होती है। विशेष रूप से, मिलग्रोम और सहगल (2002) प्रमेय 2 के लिए पर्याप्त स्थिति प्रदान करता है बिल्कुल निरंतर होना,[5]जिसका अर्थ है कि यह लगभग हर जगह अलग-अलग है और इसके व्युत्पन्न के अभिन्न अंग के रूप में प्रदर्शित किया जा सकता है:
प्रमेय 2: मान लीजिए कि सभी के लिए नित्य है . यह भी मान लीजिए कि एक पूर्णांकीय फलन उपस्थित है ऐसा है कि सभी के लिए और लगभग सभी . तब नितांत सतत है। मान लीजिए, इसके अतिरिक्त सभी के लिए अलग-अलग है , ओर वो लगभग हर जगह . फिर किसी भी चयन के लिए ,
-
(4)
प्रमाण: प्रयोग करना (1)(1), किसी भी के लिए निरीक्षण करें साथ ,
इसका अर्थ यह है कि नितांत सतत है। इसलिए, लगभग हर जगह अलग-अलग है, और उपयोग कर रहा है (3) उत्पन्नवार (4). क्यू.इ.डी.
यह परिणाम आम गलत धारणा को दूर करता है कि मूल्य फलन के अच्छे व्यवहार के लिए अधिकतम अच्छे व्यवहार की आवश्यकता होती है। प्रमेय 2 मान फलन की पूर्ण निरंतरता सुनिश्चित करता है तथापि अधिकतमक असंतत हो। इसी तरह, मिल्ग्रोम और सेगल (2002) प्रमेय 3 का अर्थ है कि मूल्य फलन अलग-अलग होना चाहिए और इसलिए एनवेलप सूत्र को संतुष्ट करें (3) जब परिवार पर समान अवकलनीय है और एकल-मूल्यवान और निरंतर है , तथापि अधिकतमकर्ता अवकलनीय न हो (उदाहरण के लिए, यदि असमानता बाधाओं के समुच्चय द्वारा वर्णित है और बाध्यकारी बाधाओं के समुच्चय में परिवर्तन होता है ).[5]
अनुप्रयोग
निर्माता सिद्धांत के लिए आवेदन
प्रमेय 1 का तात्पर्य लाभ फलन के किसी भी अवकलनीयता बिंदु पर होटलिंग लेम्मा से है, और प्रमेय 2 का तात्पर्य उत्पादक अधिशेष सूत्र से है। औपचारिक रूप से, चलो उत्पादन समुच्चय के साथ मूल्य-स्वीकारक फर्म के लाभ कार्य को निरूपित करें मूल्यों का सामना करना पड़ रहा है , और जाने फर्म के आपूर्ति कार्य को निरूपित करें, अर्थात,
होने देना (अच्छे की मूल्य ) और अन्य वस्तुओं की मूल्यें निर्धारित करें . प्रमेय 1 को प्रयुक्त करना उत्पन्नवार (फर्म की अच्छे की इष्टतम आपूर्ति ). प्रमेय 2 प्रयुक्त करना (जिसकी मान्यताओं को सत्यापित किया जाता है सीमित अंतराल तक सीमित है) उपज
अर्थात निर्माता अधिशेष अच्छे के लिए फर्म के आपूर्ति वक्र के अनुसार एकीकृत करके प्राप्त किया जा सकता है .
तंत्र डिजाइन और नीलामी सिद्धांत के लिए आवेदन
ऐसे एजेंट पर विचार करें जिसकी उपयोगिता कार्य करती है परिणामों से अधिक उसके प्रकार पर निर्भर करता है . होने देना विभिन्न संदेशों को भेजकर तंत्र में एजेंट द्वारा प्राप्त किए जा सकने वाले संभावित परिणामों के मेनू का प्रतिनिधित्व करता है। एजेंट की संतुलन उपयोगिता तंत्र में तब (1), और समुच्चय द्वारा दिया जाता है तंत्र के संतुलन के परिणाम (2) द्वारा दिए गए हैं। कोई चयन तंत्र द्वारा कार्यान्वित विकल्प नियम है। मान लीजिए कि एजेंट की उपयोगिता कार्य करती है अवकलनीय है और बिल्कुल सतत है सभी के लिए , ओर वो पर समाकलनीय है . तब प्रमेय 2 का अर्थ है कि एजेंट की संतुलन उपयोगिता किसी दिए गए विकल्प नियम को प्रयुक्त करने वाले किसी भी तंत्र में अभिन्न स्थिति (4) को पूरा करना चाहिए।
निरंतर प्रकार के रिक्त स्थान के साथ तंत्र डिजाइन समस्याओं के विश्लेषण में अभिन्न स्थिति (4) महत्वपूर्ण कदम है। विशेष रूप से, मायर्सन (1981) के एकल-आइटम नीलामियों के विश्लेषण में, बोली लगाने वाले के दृष्टिकोण से परिणाम को इस रूप में वर्णित किया जा सकता है: , जहाँ वस्तु प्राप्त करने की बोलीदाता की संभावना है और उसका अपेक्षित भुगतान है, और बोली लगाने वाले की अपेक्षित उपयोगिता रूप लेती है . इस स्थितियों में दे रहे हैं बोली लगाने वाले के न्यूनतम संभव प्रकार को दर्शाता है, बोली लगाने वाले की संतुलन अपेक्षित उपयोगिता के लिए अभिन्न स्थिति (4)। रूप धारण कर लेता है
(इस समीकरण की व्याख्या उस फर्म के लिए निर्माता अधिशेष सूत्र के रूप में की जा सकती है, जिसकी उत्पादन विधि संख्या को परिवर्तित करने के लिए है संभावना में वस्तु को जीतने की नीलामी द्वारा परिभाषित किया जाता है और जो निश्चित मूल्य t पर पुनर्विक्रय करती है). बदले में यह स्थिति मायर्सन (1981) द्वारा मनाई गई राजस्व समानता को प्राप्त करती है: नीलामी में अपेक्षित राजस्व उत्पन्न होता है जिसमें बोलीदाताओं के पास स्वतंत्र निजी मूल्य होते हैं जो पूरी तरह से बोली लगाने वालों की संभावनाओं द्वारा निर्धारित होते हैं। सभी प्रकार के लिए वस्तु प्राप्त करने का साथ ही अपेक्षित अदायगी के द्वारा बोलीदाताओं के निम्नतम प्रकारों में से। अंत में, यह स्थिति मायर्सन (1981) की इष्टतम नीलामियों में महत्वपूर्ण कदम है।[6]
एनवेलप प्रमेय के तंत्र डिजाइन के अन्य अनुप्रयोगों के लिए मिर्लीस (1971) देखें,[7] होल्मस्ट्रॉम (1979),[8] लॉफॉन्ट और मास्किन (1980),[9] रिले और सैमुएलसन (1981),[10] फडेनबर्ग और टिरोल (1991),[11] और विलियम्स (1999)।[12] जबकि इन लेखकों ने एनवेलप प्रमेय को (टुकड़े के अनुसार) लगातार अलग-अलग विकल्प के नियमों या यहां तक कि संकीर्ण वर्गों पर ध्यान देने के द्वारा व्युत्पन्न और शोषण किया, यह कभी-कभी विकल्प नियम को प्रयुक्त करने के लिए इष्टतम हो सकता है जो टुकड़े-टुकड़े लगातार अलग-अलग नहीं होता है। ( उदाहरण मायर्सन (1991) के अध्याय 6.5 में वर्णित रैखिक उपयोगिता वाली व्यापारिक समस्याओं का वर्ग है।[13]) ध्यान दें कि अभिन्न स्थिति (3) अभी भी इस समुच्चयिंग में बनी हुई है और होल्मस्ट्रॉम के लेम्मा (होल्मस्ट्रॉम, 1979) जैसे महत्वपूर्ण परिणामों को दर्शाती है।[8] मायर्सन लेम्मा (मायर्सन, 1981),[6] राजस्व तुल्यता प्रमेय (नीलामी के लिए), ग्रीन-लॉफोंट-होल्मस्ट्रॉम प्रमेय (ग्रीन और लॉफोंट, 1979; होल्मस्ट्रॉम, 1979),[14][8] मायर्सन-सैटरथवेट अक्षमता प्रमेय (मायर्सन और सैटरथवेट, 1983),[15] जेहील-मोल्दोवानु असंभवता प्रमेय (जेहिल और मोल्दोवु, 2001),[16] मैकेफी-मैकमिलन कमजोर-कार्टेल्स प्रमेय (मैकएफी और मैकमिलन, 1992),[17] और वेबर मार्टिंगेल प्रमेय (वेबर, 1983),[18] आदि। इन अनुप्रयोगों का विवरण मिलग्रोम (2004) के अध्याय 3 में प्रदान किया गया है,[19] जो मुख्य रूप से एनवेलप प्रमेय और मांग सिद्धांत में अन्य परिचित विधि और अवधारणाओं के आधार पर नीलामी और तंत्र डिजाइन विश्लेषण में सुरुचिपूर्ण और एकीकृत ढांचा प्रदान करता है।
बहुआयामी मापदण्ड रिक्त स्थान के लिए अनुप्रयोग
बहुआयामी मापदण्ड स्थान के लिए , प्रमेय 1 को मूल्य के आंशिक और दिशात्मक डेरिवेटिव पर प्रयुक्त किया जा सकता है फलन। यदि दोनों उद्देश्य कार्य करते हैं और मूल्य फलन में (पूरी तरह से) अलग-अलग हैं , प्रमेय 1 का तात्पर्य उनके प्रवणता्स के लिए एनवेलप सूत्र से है: प्रत्येक के लिए . जबकि मान फलन की कुल अवकलनीयता सुनिश्चित करना आसान नहीं हो सकता है, प्रमेय 2 को अभी भी दो मापदण्ड मानों को जोड़ने वाले किसी भी सुगम पथ के साथ प्रयुक्त किया जा सकता है और . अर्थात्, मान लीजिए कि कार्य करता है सभी के लिए अलग-अलग हैं साथ सभी के लिए . से सुगम मार्ग को अवकलनीय मानचित्रण द्वारा वर्णित है परिबद्ध व्युत्पन्न के साथ, जैसे कि और . प्रमेय 2 का अर्थ है कि ऐसे किसी भी सुगम पथ के लिए, मान फलन के परिवर्तन को आंशिक प्रवणता के रेखा अभिन्न के रूप में व्यक्त किया जा सकता है पथ के साथ उद्देश्य फलन का:
विशेष रूप से, के लिए , यह स्थापित करता है कि चक्रीय पथ किसी भी सुगम पथ के साथ एकीकृत होता है शून्य होना चाहिए:
यह अभिन्नता की स्थिति बहुआयामी प्रकारों के साथ तंत्र डिजाइन में महत्वपूर्ण भूमिका निभाती है, किस प्रकार के चयन नियमों को बाधित करती है तंत्र-प्रेरित मेनू द्वारा बनाए रखा जा सकता है . निर्माता सिद्धांत के आवेदन में, के साथ फर्म के उत्पादन वेक्टर होने के नाते और मूल्य वेक्टर होने के नाते, , और पूर्णता की स्थिति कहती है कि कोई भी तर्कसंगत आपूर्ति कार्य संतुष्ट करना चाहिए
जब निरंतर अवकलनीय है, यह समाकलनीयता स्थिति प्रतिस्थापन मैट्रिक्स की समरूपता के समतुल्य है . (उपभोक्ता सिद्धांत में, व्यय न्यूनीकरण समस्या पर प्रयुक्त एक ही तर्क स्लटस्की मैट्रिक्स की समरूपता उत्पन्न करता है।)
मापदण्डीकृत बाधाओं के लिए आवेदन
अब मान लीजिए कि संभव समुच्चय मापदण्ड पर निर्भर करता है, अर्थात,
जहाँ कुछ के लिए
लगता है कि उत्तल समुच्चय है, और अवतल हैं , और वहाँ उपस्थितहै ऐसा है कि सभी के लिए . इन धारणाओं के अनुसार , यह सर्वविदित है कि उपरोक्त विवश अनुकूलन कार्यक्रम को सैडल पॉइंट के रूप में प्रस्तुत किया जा सकता है। लैग्रैंगियन के लिए सैडल-पॉइंट समस्या , जहाँ लैग्रेंजियन को कम करने के लिए विरोधी द्वारा चुने गए लैग्रेंज मल्टीप्लायरों का वेक्टर है।[20][21] यह सैडल-पॉइंट समस्याओं के लिए मिल्ग्रोम और सेगल (2002, प्रमेय 4) एनवेलप प्रमेय के अनुप्रयोग की अनुमति देता है,[5] अतिरिक्त मान्यताओं के अनुसार मानक रैखिक स्थान में कॉम्पैक्ट समुच्चय है, और में निरंतर हैं , और और में निरंतर हैं . विशेष रूप से, देना मापदण्ड मान के लिए लैग्रेंजियन के काठी बिंदु को निरूपित करें , प्रमेय का तात्पर्य है पूर्णतया निरंतर है और संतुष्ट करता है
विशेष स्थितियों के लिए जिसमें से स्वतंत्र है , , और , सूत्र का तात्पर्य है ए.ई. के लिए . अर्थात लैग्रेंज गुणक बाधा अनुकूलन कार्यक्रम में इसकी प्रतिबिंब मूल्य है।[21]
अन्य अनुप्रयोग
मिलग्रोम और सेगल (2002) प्रदर्शित करते हैं कि एनवेलप प्रमेय का सामान्यीकृत संस्करण उत्तल कार्यरचना, निरंतर अनुकूलन समस्याओं, सैडल-पॉइंट समस्याओं और इष्टतम अवरोधन समस्याओं पर भी प्रयुक्त किया जा सकता है।[5]
यह भी देखें
- उच्चतम प्रमेय
- डांस्किन प्रमेय
- होटलिंग की लेम्मा
- ले चेटेलियर का सिद्धांत
- रॉय की पहचान
- मूल्य फलन
संदर्भ
- ↑ Border, Kim C. (2019). "Miscellaneous Notes on Optimization Theory and Related Topics". Lecture Notes. California Institute of Technology: 154.
- ↑ Carter, Michael (2001). Foundations of Mathematical Economics. Cambridge: MIT Press. pp. 603–609. ISBN 978-0-262-53192-4.
- ↑ Afriat, S. N. (1971). "Theory of Maxima and the Method of Lagrange". SIAM Journal on Applied Mathematics. 20 (3): 343–357. doi:10.1137/0120037.
- ↑ Takayama, Akira (1985). Mathematical Economics (Second ed.). New York: Cambridge University Press. pp. 137–138. ISBN 978-0-521-31498-5.
- ↑ 5.0 5.1 5.2 5.3 5.4 Milgrom, Paul; Ilya Segal (2002). "Envelope Theorems for Arbitrary Choice Sets". Econometrica. 70 (2): 583–601. CiteSeerX 10.1.1.217.4736. doi:10.1111/1468-0262.00296.
- ↑ 6.0 6.1 Myerson, Roger (1981). "Optimal Auction Design". Mathematics of Operations Research. 6: 58–73. doi:10.1287/moor.6.1.58. S2CID 12282691.
- ↑ Mirrlees, James (2002). "An Exploration in the Theory of Optimal Taxation". Review of Economic Studies. 38 (2): 175–208. doi:10.2307/2296779. JSTOR 2296779.
- ↑ 8.0 8.1 8.2 Holmstrom, Bengt (1979). "Groves Schemes on Restricted Domains". Econometrica. 47 (5): 1137–1144. doi:10.2307/1911954. JSTOR 1911954. S2CID 55414969.
- ↑ Laffont, Jean-Jacques; Eric Maskin (1980). "A Differentiable Approach to Dominant Strategy Mechanisms". Econometrica. 48 (6): 1507–1520. doi:10.2307/1912821. JSTOR 1912821.
- ↑ Riley, John G.; Samuelson, William S. (1981). "Optimal Auctions". American Economic Review. 71 (3): 381–392. JSTOR 1802786.
- ↑ Fudenberg, Drew; Tirole, Jean (1991). Game Theory. Cambridge: MIT Press. ISBN 0-262-06141-4.
- ↑ Williams, Steven (1999). "A Characterization of Efficient, Bayesian Incentive Compatible Mechanism". Economic Theory. 14: 155–180. doi:10.1007/s001990050286. S2CID 154378924.
- ↑ Myerson, Roger (1991). Game Theory. Cambridge: Harvard University Press. ISBN 0-674-34115-5.
- ↑ Green, J.; Laffont, J. J. (1979). Incentives in Public Decision Making. Amsterdam: North-Holland. ISBN 0-444-85144-5.
- ↑ Myerson, R.; M. Satterthwaite (1983). "Efficient Mechanisms for Bilateral Trading" (PDF). Journal of Economic Theory. 29 (2): 265–281. doi:10.1016/0022-0531(83)90048-0. hdl:10419/220829.
- ↑ Jehiel, Philippe; Moldovanu, Benny (2001). "Efficient Design with Interdependent Valuations". Econometrica. 69 (5): 1237–1259. CiteSeerX 10.1.1.23.7639. doi:10.1111/1468-0262.00240.
- ↑ McAfee, R. Preston; John McMillan (1992). "Bidding Rings". American Economic Review. 82 (3): 579–599. JSTOR 2117323.
- ↑ Weber, Robert (1983). "Multiple-Object Auctions" (PDF). In Engelbrecht-Wiggans, R.; Shubik, M.; Stark, R. M. (eds.). Auctions, Bidding, and Contracting: Uses and Theory. New York: New York University Press. pp. 165–191. ISBN 0-8147-7827-5.
- ↑ Milgrom, Paul (2004). Putting Auction Theory to Work. Cambridge University Press. ISBN 9780521536721.
- ↑ Luenberger, D. G. (1969). Optimization by Vector Space Methods. New York: John Wiley & Sons. ISBN 9780471181170.
- ↑ 21.0 21.1 Rockafellar, R. T. (1970). Convex Analysis. Princeton: Princeton University Press. ISBN 0691015864.