बीटा-सिटोस्टेरॉल: Difference between revisions

From Vigyanwiki
 
(No difference)

Latest revision as of 07:02, 23 September 2023


β-सिटोस्टेरॉल (बीटा-सिटोस्टेरॉल) कोलेस्ट्रॉल के समान रासायनिक संरचनाओं वाले कई फाइटोस्टेरॉल (प्लांट स्टेरोल) में से एक है। यह एक विशिष्ट गंध वाला सफेद, मोमी पाउडर होता है, और खाद्य योज्य ई499 के घटकों में से एक होता है। फाइटोस्टेरॉल हाइड्रोफोबिक और अल्कोहल में घुलनशील होते हैं।

प्राकृतिक घटनाएँ और भोजन

β-सिटोस्टेरॉल पादप जगत में व्यापक रूप से वितरित होते है। यह वनस्पति तेल, अखरोट (फल), एवोकाडो और सलाद ड्रेसिंग जैसे तैयार खाद्य पदार्थों में पाया जाता है।[1] ओलावियस अल्गारवेन्सिस, समुद्री एनेलिड की एक प्रजाति, मुख्य रूप से कोलेस्ट्रॉल के अतिरिक्त अपनी कोशिका झिल्लियों में सिटोस्टेरॉल को सम्मिलित करती है, यद्यपि उक्त झिल्लियों में कोलेस्ट्रॉल भी उपस्थित होता है। [2]

मानव अनुसंधान

सौम्य प्रॉस्टैट ग्रन्थि हाइपरप्लासिया (बीपीएच) और रक्त कोलेस्ट्रॉल का स्तर को कम करने की क्षमता के लिए β-सिटोस्टेरॉल का अध्ययन किया जा रहा है।[3][4]

आनुवंशिक विकार

जबकि पादप स्टेरोल्स सामान्यतः पर लाभदायक होते हैं, एक दुर्लभ ऑटोसोमल रिसेसिव आनुवंशिक विकार फाइटोस्टेरोलेमिया होता है जो फाइटोस्टेरॉल के अत्यधिक अवशोषण का कारण बनता है।[5]

उपचय स्टेरॉयड बोल्डनोन का पूर्ववर्ती

स्टेरॉयड होने के कारण, β-सिटोस्टेरॉल उपचय स्टेरॉयड बोल्डनोन का पूर्ववर्ती होता है। बोल्डनोन अंडेसिलेनेट का उपयोग सामान्यतः पर पशु चिकित्सा में मवेशियों में वृद्धि को प्रेरित करने के लिए किया जाता है, परन्तु यह खेलों में सबसे अधिक दुरुपयोग होने वाले उपचय स्टेरॉयड में से एक होता है। इससे संदेह उत्पन्न हुआ कि बोल्डनोन अनडिसिलेनेट पर सकारात्मक परीक्षण करने वाले कुछ एथलीटों ने वास्तव में हार्मोन का दुरुपयोग नहीं किया था, जबकि β-सिटोस्टेरॉल से भरपूर भोजन का सेवन किया था।[6][7][8]

रसायन शास्त्र

रासायनिक अभियांत्रिकी

रासायनिक मध्यवर्ती के रूप में सिटोस्टेरॉल का उपयोग कई वर्षों तक सीमित था क्योंकि पार्श्व-श्रृंखला पर हमले के एक रासायनिक बिंदु की कमी थी जो इसे हटाने की अनुमति देता था। कई प्रयोगशालाओं के व्यापक प्रयासों से अंततः स्यूडोमोनस सूक्ष्म जीव का अन्वेषण हुआ जिसने उस परिवर्तन को कुशलतापूर्वक प्रभावित किया था। किण्वन डिहाइड्रोएपियनड्रोस्टेरोन सहित 17-कीटो उत्पादों के मिश्रण को वहन करने के लिए कार्बन 17 पर संपूर्ण एलिफैटिक पार्श्व-श्रृंखला का संग्रह करता है।[9]

संश्लेषण

β-सिटोस्टेरॉल का पूर्ण संश्लेषण प्राप्त नहीं किया जा सका है। यद्यपि, β-सिटोस्टेरॉल को स्टिगमास्टरोल 1 से संश्लेषित किया गया है, जिसमें स्टिगमास्टरोल की पार्श्व-श्रृंखला का एक विशिष्ट हाइड्रोजनीकरण सम्मिलित होता है।

संश्लेषण में पहला चरण पी-टीएससीएल, डीएमएपी और पाइरीडीन (90% उपज) का उपयोग करके स्टिगमास्टरोल 1 (95% शुद्धता) से स्टिगमास्टरोल टॉसिलेट 2 बनाता है। इसके पश्चात् टॉसिलेट 2 सॉल्वोलिसिस से निकलता है क्योंकि इसे पाइरीडीन और निर्जल मेथेनॉल के साथ उपचार किया जाता है जिससें स्टिगमास्टरोल मिथाइल ईथर 4 को आई-स्टिगमास्टरोल मिथाइल ईथर 3 (74% उपज) का 5:1 अनुपात दिया जा सके, जिसे पश्चात् में क्रोमैटोग्राफी द्वारा इसे हटा दिया जाता है। पहले प्रस्तावित संश्लेषण के हाइड्रोजनीकरण चरण में उत्प्रेरक पीडी/सी और विलायक एथिल एसीटेट सम्मिलित थे। यद्यपि, हाइड्रोलिसिस के समय समावयवीकरण के कारण, अन्य उत्प्रेरक, जैसे प्लेटिनम ऑक्साइड, और इथेनॉल जैसे सॉल्वैंट्स का परीक्षण किया गया। भिन्न उत्प्रेरक के उपयोग से थोड़ा परिवर्तन हुआ। यद्यपि, इथेनॉल ने यौगिक 5 देने के लिए समावयवीकरण और अज्ञात अशुद्धता के गठन को रोक दिया था। संश्लेषण का अंतिम चरण पी-टीएसओएच, जलीय डाइऑक्सेन और गर्मी (80 डिग्री सेल्सियस) के साथ 5 के β-रिंग के दोहरे बंधन का संरक्षण होता है। β-सिटोस्टेरॉल उत्पन्न करने के लिए 6. अंतिम दो चरणों के लिए संचयी उपज 55% थी, और संश्लेषण के लिए कुल उपज 37% थी।[10]

Synthesis of sitosterol.gif

जैवसंश्लेषण

साइक्लोआर्टेनॉल (7) से β-सिटोस्टेरॉल (6) का जैवसंश्लेषण

स्टेरोल्स और कुछ विशिष्ट लिपिड दोनों के जैवसंश्लेषण का विनियमन झिल्ली जैवजनन के समय होता है।[11] 13सी-लेबलिंग पैटर्न के माध्यम से, यह निर्धारित किया गया है कि मेवलोनेट और डीऑक्सीक्साइलुलोज़ दोनों मार्ग β-सिटोस्टेरॉल के निर्माण में सम्मिलित होते हैं।[12] β-सिटोस्टेरॉल के गठन का स्पष्ट तंत्र जीव के अनुसार भिन्न होता है, परन्तु सामान्यतः यह साइक्लोआर्टेनॉल से आता पाया जाता है।[13]

साइक्लोआर्टेनॉल का जैवसंश्लेषण आइसोपेंटेनिल डिफॉस्फेट (आईपीपी) के एक अणु के रूप में प्रारंभ होता है और डाइमिथाइलैलिल डिफॉस्फेट (डीएमएपीपी) के दो अणु फ़ार्नेसिल डिफॉस्फेट (एफपीपी) बनाते हैं। फिर एफपीपी के दो अणुओं को स्क्वैलीन, एक ट्राइटरपीन प्राप्त करने के लिए अंत तक जोड़ा जाता है। स्क्वैलीन, एक मध्यवर्ती के रूप में 2,3-ऑक्सीडोस्क्वेलीन 6 के साथ चक्रीकरण प्रतिक्रिया के माध्यम से साइक्लोआर्टेनॉल बनाता है।

साइक्लोआर्टेनॉल (आरेख में यौगिक 7) के दोहरे बंधन को एसएएम द्वारा मिथाइलेट किया जाता है जिससें एक कार्बोकेशन दिया जा सके जो हाइड्राइड परिवर्तन से निकलता है और मिथाइलीन पार्श्व-श्रृंखला के साथ एक यौगिक प्राप्त करने के लिए एक प्रोटॉन नष्ट कर देता है। ये दोनों चरण स्टेरोल सी-24 मिथाइलट्रांसफेरेज़ (आरेख में चरण ई1) द्वारा उत्प्रेरित होते हैं। इसके पश्चात् यौगिक 8 को स्टेरोल सी-4 डेमिथाइलेज़ (ई2) द्वारा उत्प्रेरित किया जाता है और साइक्लोयूकेलेनॉल का उत्पादन करने के लिए मिथाइल समूह नष्ट कर देता है। इसके पश्चात्, साइक्लोप्रोपेन रिंग को 10 बनाने के लिए साइक्लोयूकेलेनॉल साइक्लोइसोमेरेज़ (ई3) के साथ विवृत किया जाता है। यौगिक 10 एक मिथाइल समूह नष्ट कर देता है और ग्रामिस्टरोल 11 बनाने के लिए एलिलिक समावयवीकरण से निकलता है। यह चरण स्टेरोल सी-14 डेमिथाइलेज़ (ई4), स्टेरोल द्वारा उत्प्रेरित होता है। Δ14-रिडक्टेस (E5), और स्टेरोल Δ8-Δ7-आइसोमेरेज़ (E6)। अंतिम मिथाइल समूह को एपिस्टेरोल 12 बनाने के लिए स्टेरोल डेमिथाइलेज़ (ई 7) द्वारा हटा दिया जाता है। एपिस्टेरोल 12 को एसएएम द्वारा मिथाइलेट किया जाता है जिससें दूसरा कार्बोकेशन उत्पन्न हो सके, जो 13 उत्पन्न करने के लिए एक प्रोटॉन नष्ट कर देता है। यह चरण 24-मिथाइलनेस्टरॉल सी-मिथाइलट्रांसफेरेज़ (ई 8) द्वारा उत्प्रेरित होता है। यौगिक 13 में अब एनएडीपीएच द्वारा कमी की जा रही है और β-रिंग में संशोधन करके β-सिटोस्टेरॉल बनाया गया है।

यह भी देखें

  • चरनतिन, एक β-सिटोस्टेरिल ग्लूकोसाइड जो करेले के पौधे में पाया जाता है।

संदर्भ

  1. "Nutrition data: Foods highest in beta-sitosterol per 200 calorie serving". Conde Nast, USDA National Nutrient Database, version SR-21. 2014. Retrieved 25 September 2015.
  2. Michellod, Dolma; Bien, Tanja; Birgel, Daniel; Violette, Marlene; Kleiner, Manuel; Fearn, Sarah; Zeidler, Caroline; Gruber-Vodicka, Harald R.; Dubilier, Nicole; Liebeke, Manuel (5 May 2023). "जानवरों में डे नोवो फाइटोस्टेरॉल संश्लेषण". Science (in English). 380 (6644): 520–526. doi:10.1126/science.add7830. ISSN 0036-8075.
  3. Wilt, T; Ishani, A; MacDonald, R; Stark, G; Mulrow, C; Lau, J (2000). "सौम्य प्रोस्टेटिक हाइपरप्लासिया के लिए बीटा-सिटोस्टेरॉल". The Cochrane Database of Systematic Reviews. 2011 (2): CD001043. doi:10.1002/14651858.CD001043. PMC 8407049. PMID 10796740.
  4. Kim, T. H.; Lim, H. J.; Kim, M. S.; Lee, M. S. (2012). "सौम्य प्रोस्टेटिक हाइपरप्लासिया के लिए आहार अनुपूरक: व्यवस्थित समीक्षाओं का अवलोकन". Maturitas. 73 (3): 180–5. doi:10.1016/j.maturitas.2012.07.007. PMID 22883375.
  5. Patel Manoj D.; Thompson Paul D. (2006). "फाइटोस्टेरॉल और संवहनी रोग". Atherosclerosis. 186 (1): 12–19. doi:10.1016/j.atherosclerosis.2005.10.026. PMID 16325823.
  6. G. Gallina; G. Ferretti; R. Merlanti; C. Civitareale; F. Capolongo; R. Draisci; C. Montesissa (2007). "Boldenone, Boldione, and Milk Replacers in the Diet of Veal Calves: The Effects of Phytosterol Content on the Urinary Excretion of Boldenone Metabolites". J. Agric. Food Chem. 55 (20): 8275–8283. doi:10.1021/jf071097c. PMID 17844992.
  7. Ros MM, Sterk SS, Verhagen H, Stalenhoef AF, de Jong N (2007). "Phytosterol consumption and the anabolic steroid boldenone in humans: a hypothesis piloted" (PDF). Food Addit. Contam. 24 (7): 679–84. doi:10.1080/02652030701216727. PMID 17613052. S2CID 38614535.
  8. R. Draisci; R. Merlanti; G. Ferretti; L. Fantozzi; C. Ferranti; F. Capolongo; S. Segato; C. Montesissa (2007). "दो अलग-अलग दूध प्रतिस्थापकों को खिलाने वाले वील बछड़ों के मूत्र में बोल्डनोन का उत्सर्जन प्रोफ़ाइल". Analytica Chimica Acta. 586 (1–2): 171–176. doi:10.1016/j.aca.2007.01.026. PMID 17386709.
  9. Lenz, G. R.; Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., Wiley Interscience, London, 1983, Vol. 21, 645.
  10. McCarthy, FO; Chopra, J; Ford, A; Hogan, SA; Kerry, JP; O'Brien, NM; Ryan, E; Maguire, AR (2005). "बीटा-सिटोस्टेरॉल और बीटा-सिटोस्टेरॉल ऑक्साइड डेरिवेटिव का संश्लेषण, अलगाव और लक्षण वर्णन". Organic & Biomolecular Chemistry. 3 (16): 3059–65. doi:10.1039/b505069c. PMID 16186940.
  11. Hartmann, Marie-Andrée (2003). "5 Sterol metabolism and functions in higher plants". लिपिड चयापचय और झिल्ली जैवजनन. Topics in Current Genetics. Vol. 6. pp. 183–211. doi:10.1007/978-3-540-40999-1_6. ISBN 978-3-540-20752-8.
  12. De-Eknamkul W.; Potduang B. (2003). "Biosynthesis of β-Sitosterol and Stigmasterol in Croton sublyratus Proceeds Via a Mixed Origin of Isoprene Units". Phytochemistry. 62 (3): 389–398. doi:10.1016/S0031-9422(02)00555-1. PMID 12620352.
  13. Dewick, P. M. Medicinal Natural Products: A Biosynthetic Approach. 3 ed.; John Wiley & Sons Ltd.: United Kingdom cyclization, 2009; p 539.