न्यूटोनियन क्षमता: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
गणित में, न्यूटोनियन क्षमता या न्यूटन क्षमता वेक्टर कलन में [[ऑपरेटर (गणित)]] है जो नकारात्मक [[लाप्लासियन]] के व्युत्क्रम के रूप में कार्य करता है, जो उन कार्यों पर होता है जो अनंत पर पर्याप्त रूप से सुचारू और क्षय होते हैं। जैसे, यह [[संभावित सिद्धांत]] में अध्ययन का मौलिक उद्देश्य है। इसकी सामान्य प्रकृति में, यह विलक्षण अभिन्न संचालिका है, जो मूल में [[गणितीय विलक्षणता]] वाले फलन के साथ [[कनवल्शन]] द्वारा परिभाषित है, न्यूटोनियन कर्नेल Γ जो [[लाप्लास समीकरण]] का [[मौलिक समाधान]] है। इसका नाम [[आइजैक न्यूटन]] के नाम पर रखा गया है, जिन्होंने पहली बार इसकी खोज की और सिद्ध किया कि यह तीन चर लाप्लास समीकरण के लिए ग्रीन के कार्य में [[हार्मोनिक फ़ंक्शन|हार्मोनिक फलन]] था, जहां यह न्यूटन के सार्वभौमिक गुरुत्वाकर्षण के नियम में मौलिक [[गुरुत्वाकर्षण क्षमता]] के रूप में कार्य करता था। आधुनिक संभावित सिद्धांत में, न्यूटोनियन क्षमता को [[इलेक्ट्रोस्टैटिक क्षमता]] के रूप में माना जाता है। | गणित में, '''न्यूटोनियन क्षमता''' या न्यूटन क्षमता वेक्टर कलन में [[ऑपरेटर (गणित)]] है जो नकारात्मक [[लाप्लासियन]] के व्युत्क्रम के रूप में कार्य करता है, जो उन कार्यों पर होता है जो अनंत पर पर्याप्त रूप से सुचारू और क्षय होते हैं। जैसे, यह [[संभावित सिद्धांत]] में अध्ययन का मौलिक उद्देश्य है। इसकी सामान्य प्रकृति में, यह विलक्षण अभिन्न संचालिका है, जो मूल में [[गणितीय विलक्षणता]] वाले फलन के साथ [[कनवल्शन]] द्वारा परिभाषित है, न्यूटोनियन कर्नेल Γ जो [[लाप्लास समीकरण]] का [[मौलिक समाधान]] है। इसका नाम [[आइजैक न्यूटन]] के नाम पर रखा गया है, जिन्होंने पहली बार इसकी खोज की और सिद्ध किया कि यह तीन चर लाप्लास समीकरण के लिए ग्रीन के कार्य में [[हार्मोनिक फ़ंक्शन|हार्मोनिक फलन]] था, जहां यह न्यूटन के सार्वभौमिक गुरुत्वाकर्षण के नियम में मौलिक [[गुरुत्वाकर्षण क्षमता]] के रूप में कार्य करता था। आधुनिक संभावित सिद्धांत में, न्यूटोनियन क्षमता को [[इलेक्ट्रोस्टैटिक क्षमता]] के रूप में माना जाता है। | ||
[[ कॉम्पैक्ट समर्थन | कॉम्पैक्ट समर्थन]] [[ पूर्णांक समारोह | पूर्णांक फलन]] ''f'' की न्यूटोनियन क्षमता को कनवल्शन के रूप में परिभाषित किया गया है। | [[ कॉम्पैक्ट समर्थन | कॉम्पैक्ट समर्थन]] [[ पूर्णांक समारोह | पूर्णांक फलन]] ''f'' की न्यूटोनियन क्षमता को कनवल्शन के रूप में परिभाषित किया गया है। |
Latest revision as of 10:28, 25 September 2023
गणित में, न्यूटोनियन क्षमता या न्यूटन क्षमता वेक्टर कलन में ऑपरेटर (गणित) है जो नकारात्मक लाप्लासियन के व्युत्क्रम के रूप में कार्य करता है, जो उन कार्यों पर होता है जो अनंत पर पर्याप्त रूप से सुचारू और क्षय होते हैं। जैसे, यह संभावित सिद्धांत में अध्ययन का मौलिक उद्देश्य है। इसकी सामान्य प्रकृति में, यह विलक्षण अभिन्न संचालिका है, जो मूल में गणितीय विलक्षणता वाले फलन के साथ कनवल्शन द्वारा परिभाषित है, न्यूटोनियन कर्नेल Γ जो लाप्लास समीकरण का मौलिक समाधान है। इसका नाम आइजैक न्यूटन के नाम पर रखा गया है, जिन्होंने पहली बार इसकी खोज की और सिद्ध किया कि यह तीन चर लाप्लास समीकरण के लिए ग्रीन के कार्य में हार्मोनिक फलन था, जहां यह न्यूटन के सार्वभौमिक गुरुत्वाकर्षण के नियम में मौलिक गुरुत्वाकर्षण क्षमता के रूप में कार्य करता था। आधुनिक संभावित सिद्धांत में, न्यूटोनियन क्षमता को इलेक्ट्रोस्टैटिक क्षमता के रूप में माना जाता है।
कॉम्पैक्ट समर्थन पूर्णांक फलन f की न्यूटोनियन क्षमता को कनवल्शन के रूप में परिभाषित किया गया है।
समाधान अद्वितीय नहीं है, क्योंकि w में किसी हार्मोनिक फलन को जोड़ने से समीकरण प्रभावित नहीं होगा। इस तथ्य का उपयोग उचित रूप से नियमित डोमेन में पोइसन समीकरण के लिए डिरिचलेट समस्या के समाधान के अस्तित्व और विशिष्टता को सिद्ध करने के लिए किया जा सकता है, और उपयुक्त व्यवहार वाले कार्यों के लिए f: समाधान प्राप्त करने के लिए पहले न्यूटोनियन क्षमता प्रयुक्त करता है, और फिर जोड़कर समायोजित करता है सही सीमा डेटा प्राप्त करने के लिए हार्मोनिक फलन न्यूटोनियन क्षमता को अधिक व्यापक रूप से दृढ़ संकल्प के रूप में परिभाषित किया गया है।
यदि f ठोस रूप से समर्थित निरंतर कार्य है (या, अधिक सामान्यतः, परिमित माप) जो कि घूर्णन है, तो f का कनवल्शन Γ f के समर्थन के बाहर x के लिए संतुष्ट करता है।
जब माप μ पर्याप्त रूप से चिकनी हाइपरसफेस s (होल्डर स्पेस की लायपुनोव सतह होल्डर क्लास C1,α) पर बड़े पैमाने पर वितरण से जुड़ा होता है) जो Rd को विभाजित करता है दो क्षेत्रों में D+ और D−, तो μ की न्यूटोनियन क्षमता को 'सरल परत क्षमता' के रूप में संदर्भित किया जाता है। सरल परत विभव निरंतर होते हैं और एस को छोड़कर लैपलेस समीकरण को हल करते हैं। वे बंद सतह पर आवेश वितरण से जुड़े इलेक्ट्रोस्टैटिक क्षमता के संदर्भ में इलेक्ट्रोस्टाटिक्स के अध्ययन में स्वाभाविक रूप से दिखाई देते हैं। यदि dμ = f dH (d − 1)-आयामी हॉसडॉर्फ माप के साथ S पर सतत कार्य का उत्पाद है, फिर S के बिंदु y पर, परत को पार करते समय सामान्य व्युत्पन्न छलांग विच्छेदन f(y) से निकलता है। इसके अतिरिक्त, सामान्य व्युत्पन्न एस पर अच्छी तरह से परिभाषित निरंतर कार्य का है। यह विशेष रूप से लाप्लास समीकरण के लिए न्यूमैन समस्या के अध्ययन के लिए उपयुक्त सरल परतें बनाता है।
यह भी देखें
- दोहरी परत क्षमता
- ग्रीन का कार्य
- रिज क्षमता
- तीन चर लाप्लास समीकरण के लिए ग्रीन का कार्य
संदर्भ
- Evans, L.C. (1998), Partial Differential Equations, Providence: American Mathematical Society, ISBN 0-8218-0772-2.
- Gilbarg, D.; Trudinger, Neil (1983), Elliptic Partial Differential Equations of Second Order, New York: Springer, ISBN 3-540-41160-7.
- Solomentsev, E.D. (2001) [1994], "Newton potential", Encyclopedia of Mathematics, EMS Press
- Solomentsev, E.D. (2001) [1994], "Simple-layer potential", Encyclopedia of Mathematics, EMS Press
- Solomentsev, E.D. (2001) [1994], "Surface potential", Encyclopedia of Mathematics, EMS Press