औपचारिक व्युत्पन्न: Difference between revisions
No edit summary |
No edit summary |
||
(6 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{For|औपचारिक भाषा सिद्धांत में अवधारणा|ब्रोज़ोज़ोव्स्की व्युत्पन्न}} | {{For|औपचारिक भाषा सिद्धांत में अवधारणा|ब्रोज़ोज़ोव्स्की व्युत्पन्न}} | ||
गणित में, औपचारिक व्युत्पन्न | गणित में, '''औपचारिक व्युत्पन्न''' बहुपद वलय या [[औपचारिक शक्ति श्रृंखला]] की वलय के तत्वों पर संक्रिया है जो व्युत्पन्न से व्युत्पन्न के रूप की नकल करता है। चूँकि वे समान दिखाई देते हैं, औपचारिक व्युत्पन्न का बीजगणितीय लाभ यह है कि यह [[सीमा (गणित)]] की धारणा पर निर्भर नहीं करता है, जो सामान्यतः [[अंगूठी (गणित)|वलय (गणित)]] के लिए परिभाषित करना असंभव है। व्युत्पन्न के कई गुण औपचारिक व्युत्पन्न के लिए सही हैं, लेकिन कुछ, विशेष रूप से वे जो संख्यात्मक विवरण बनाते हैं, नहीं हैं। | ||
बीजगणित में | बीजगणित में बहुपद के अनेक मूलों का परीक्षण करने के लिए औपचारिक अवकलन का उपयोग किया जाता है। | ||
== परिभाषा == | == परिभाषा == | ||
वलय ठीक करें <math>R</math> (आवश्यक रूप से क्रमविनिमेय नहीं) और माना <math>A = R[x]</math> बहुपदों की वलय बनें <math>R</math> (अगर <math>R</math> क्रमविनिमेय नहीं है, यह एकल अनिश्चित चर पर [[मुक्त बीजगणित]] है।) | |||
फिर औपचारिक व्युत्पन्न के तत्वों पर | फिर औपचारिक व्युत्पन्न के तत्वों पर संक्रिया है <math>A</math>, जहां अगर | ||
:<math>f(x)\,=\,a_n x^n + \cdots + a_1 x + a_0,</math> | :<math>f(x)\,=\,a_n x^n + \cdots + a_1 x + a_0,</math> | ||
Line 15: | Line 15: | ||
:<math>f'(x)\,=\,Df(x) = n a_n x^{n - 1} + \cdots + i a_i x^{i-1} + \cdots + a_1.</math> | :<math>f'(x)\,=\,Df(x) = n a_n x^{n - 1} + \cdots + i a_i x^{i-1} + \cdots + a_1.</math> | ||
उपरोक्त परिभाषा में, किसी भी गैर-ऋणात्मक पूर्णांक के लिए <math>i</math> और <math>r \in R</math>, <math>ir</math> | उपरोक्त परिभाषा में, किसी भी गैर-ऋणात्मक पूर्णांक के लिए <math>i</math> और <math>r \in R</math>, <math>ir</math> वलय में हमेशा की तरह परिभाषित किया गया है: <math>ir = \underbrace{r+r+\cdots+r}_\text{i times}</math> (साथ <math>ir = 0</math> अगर <math>i = 0</math>).<ref>{{cite book|title=सार बीजगणित में पहला कोर्स|author1=John B. Fraleigh|author2=Victor J. Katz|publisher=Pearson|page=443|year=2002}}</ref> | ||
यह परिभाषा भले ही काम करती हो <math>R</math> [[पहचान तत्व]] नहीं है। | यह परिभाषा भले ही काम करती हो <math>R</math> [[पहचान तत्व]] नहीं है। | ||
Line 24: | Line 24: | ||
1) <math>r'=0</math> सभी के लिए <math>r\in R\subset R[x].</math> | 1) <math>r'=0</math> सभी के लिए <math>r\in R\subset R[x].</math> | ||
2) सामान्यीकरण स्वयंसिद्ध, <math>x' = 1 | 2) सामान्यीकरण स्वयंसिद्ध, <math>x' = 1.</math> | ||
3) मानचित्र बहुपद वलय में अतिरिक्त संचालन के साथ संचार करता है, <math>(a+b)' = a'+b'.</math> | |||
कोई यह सिद्ध कर सकता है कि यह स्वयंसिद्ध परिभाषा सभी सामान्य वलय स्वयंसिद्धों का सम्मान करते हुए | 4) मानचित्र बहुपद वलय गुणन संक्रिया के संबंध में लीबनिज के नियम को संतुष्ट करता है, <math>(a\cdot b)'=a'\cdot b+a\cdot b'.</math> | ||
कोई यह सिद्ध कर सकता है कि यह स्वयंसिद्ध परिभाषा सभी सामान्य वलय स्वयंसिद्धों का सम्मान करते हुए अच्छी तरह से परिभाषित मानचित्र उत्पन्न करती है। | |||
उपरोक्त सूत्र (अर्थात औपचारिक व्युत्पन्न की परिभाषा जब गुणांक वलय क्रमविनिमेय है) पूर्वोक्त स्वयंसिद्धों का प्रत्यक्ष परिणाम है: | उपरोक्त सूत्र (अर्थात औपचारिक व्युत्पन्न की परिभाषा जब गुणांक वलय क्रमविनिमेय है) पूर्वोक्त स्वयंसिद्धों का प्रत्यक्ष परिणाम है: | ||
Line 55: | Line 57: | ||
: कारकों के क्रम पर ध्यान दें; जब R क्रमविनिमेय नहीं है तो यह महत्वपूर्ण है। | : कारकों के क्रम पर ध्यान दें; जब R क्रमविनिमेय नहीं है तो यह महत्वपूर्ण है। | ||
ये दो गुण D को A पर | ये दो गुण D को A पर व्युत्पत्ति (अमूर्त बीजगणित) बनाते हैं (सामान्यीकरण की चर्चा के लिए [[सापेक्ष विभेदक रूपों का मॉड्यूल]] देखें) | ||
ध्यान दें कि औपचारिक व्युत्पन्न [[रिंग समरूपता|वलय समरूपता]] नहीं है, क्योंकि उत्पाद नियम कहने से अलग है (और यह स्थिति नहीं है) कि <math>(f \cdot g)' = f' \cdot g'</math>. चूँकि, यह उपरोक्त नियमों द्वारा मॉड्यूल (गणित) | ध्यान दें कि औपचारिक व्युत्पन्न [[रिंग समरूपता|वलय समरूपता]] नहीं है, क्योंकि उत्पाद नियम कहने से अलग है (और यह स्थिति नहीं है) कि <math>(f \cdot g)' = f' \cdot g'</math>. चूँकि, यह उपरोक्त नियमों द्वारा मॉड्यूल (गणित) R-मॉड्यूल का समरूपता (रैखिक मानचित्र) है। | ||
== दोहराए गए कारकों को खोजने के लिए आवेदन == | == दोहराए गए कारकों को खोजने के लिए आवेदन == | ||
कलन की तरह, व्युत्पन्न कई जड़ों का पता लगाता है। यदि R | कलन की तरह, व्युत्पन्न कई जड़ों का पता लगाता है। यदि R क्षेत्र है तो R[x] यूक्लिडियन प्रांत है, और इस स्थिति में हम मूलों की बहुलता को परिभाषित कर सकते हैं; R[x] में प्रत्येक बहुपद f(x) और R के प्रत्येक तत्व r के लिए, गैर-ऋणात्मक पूर्णांक m<sub>r</sub> उपस्थित है और बहुपद g(x) ऐसा है कि | ||
:<math>f(x) = (x - r)^{m_r} g(x)</math> | :<math>f(x) = (x - r)^{m_r} g(x)</math> | ||
जहां | जहां ''g''(''r'') ≠''m<sub>r</sub>'' की जड़ के रूप में r की बहुलता है। यह लाइबनिज नियम से इस प्रकार है कि इस स्थिति में, ''m<sub>r</sub>'' के परिणामी बहुपद का मूल नहीं होने से पहले f(x) पर किए जाने वाले विभेदों की संख्या भी है। इस अवलोकन की उपयोगिता यह है कि चूँकि सामान्यतः ''R'' [x] में डिग्री ''n'' के प्रत्येक बहुपद में ''n'' जड़ों की बहुलता नहीं होती है (यह उपरोक्त प्रमेय द्वारा अधिकतम है), हम [[फील्ड एक्सटेंशन]] को पास कर सकते हैं जिसमें यह सत्य है ( अर्थात्, बीजगणितीय बंद) एक बार जब हम ऐसा कर लेते हैं, तो हम बहुमूल को उजागर कर सकते हैं जो केवल R के ऊपर मूल नहीं था। उदाहरण के लिए, यदि R तीन तत्वों वाला क्षेत्र है, तो बहुपद | ||
:<math>f(x)\,=\,x^6 + 1</math> | :<math>f(x)\,=\,x^6 + 1</math> | ||
R में कोई जड़ नहीं है; चूँकि, इसका औपचारिक व्युत्पन्न (<math>f'(x)\,=\,6 x^5</math>) शून्य है (क्यों?) क्योंकि R में 3 = 0 और R के किसी भी विस्तार में, इसलिए जब हम बीजगणितीय समापन के पास जाते हैं तो इसका | R में कोई जड़ नहीं है; चूँकि, इसका औपचारिक व्युत्पन्न (<math>f'(x)\,=\,6 x^5</math>) शून्य है (क्यों?) क्योंकि R में 3 = 0 और R के किसी भी विस्तार में, इसलिए जब हम बीजगणितीय समापन के पास जाते हैं तो इसका बहुमूल होता है जिसे स्वयं R में गुणनखंड द्वारा पता नहीं लगाया जा सकता था। इस प्रकार, औपचारिक भेदभाव बहुलता की [[संगणनीयता सिद्धांत (कंप्यूटर विज्ञान)]] की धारणा की अनुमति देता है। गैलोज़ सिद्धांत में यह महत्वपूर्ण है, जहां अलग-अलग फ़ील्ड एक्सटेंशन (बहुपदों द्वारा परिभाषित बहुपदों के साथ परिभाषित) और अविभाज्य लोगों के बीच भेद किया जाता है। | ||
=== विश्लेषणात्मक व्युत्पन्न के अनुरूप === | |||
जब अदिशों का वलय R क्रमविनिमेय होता है, तो औपचारिक अवकलज की | जब अदिशों का वलय R क्रमविनिमेय होता है, तो औपचारिक अवकलज की वैकल्पिक और समतुल्य परिभाषा होती है, जो अवकलन कलन में देखी गई परिभाषा के समान होती है। वलय R[X,Y] का तत्व Y–X, Y को विभाजित करता है किसी भी अऋणात्मक पूर्णांक n के लिए Y<sup>''n''</sup> – X<sup>''n''</sup> को विभाजित करता है, और इसलिए अनिश्चित में किसी भी बहुपद f के लिए f(Y) – f(X) को विभाजित करता है। यदि R[X,Y] में भागफल को g द्वारा निरूपित किया जाता है, तब | ||
:<math>g(X,Y) = \frac{f(Y) - f(X)}{Y - X}.</math> | :<math>g(X,Y) = \frac{f(Y) - f(X)}{Y - X}.</math> | ||
तब यह सत्यापित करना कठिन नहीं है कि g(X,X) (R[X] में) f के औपचारिक व्युत्पन्न के साथ मेल खाता है जैसा कि इसे ऊपर परिभाषित किया गया था। | तब यह सत्यापित करना कठिन नहीं है कि g(X,X) (R[X] में) f के औपचारिक व्युत्पन्न के साथ मेल खाता है जैसा कि इसे ऊपर परिभाषित किया गया था। | ||
यौगिक का यह सूत्रीकरण | यौगिक का यह सूत्रीकरण औपचारिक शक्ति श्रृंखला के लिए समान रूप से अच्छी तरह से काम करता है, जब तक कि गुणांक की वलय विनिमेय है। | ||
वास्तव में, यदि इस परिभाषा में विभाजन कार्यों के वर्ग में किया जाता है <math>Y</math> पर निरंतर <math>X</math>, यह व्युत्पन्न की मौलिक परिभाषा को पुनः प्राप्त करेगा। यदि यह दोनों में निरंतर कार्यों की श्रेणी में किया जाता है <math>X</math> और <math>Y</math>, हमें समान भिन्नता और हमारा कार्य मिलता है <math>f</math> निरंतर भिन्न होगा। इसी तरह, कार्यों के विभिन्न वर्गों (जैसे, लिप्सचिट्ज़ वर्ग) को चुनकर, हमें भिन्नता के विभिन्न स्वाद मिलते हैं। इस प्रकार, विभेदीकरण कार्यों के बीजगणित का | वास्तव में, यदि इस परिभाषा में विभाजन कार्यों के वर्ग में किया जाता है <math>Y</math> पर निरंतर <math>X</math>, यह व्युत्पन्न की मौलिक परिभाषा को पुनः प्राप्त करेगा। यदि यह दोनों में निरंतर कार्यों की श्रेणी में किया जाता है <math>X</math> और <math>Y</math>, हमें समान भिन्नता और हमारा कार्य मिलता है <math>f</math> निरंतर भिन्न होगा। इसी तरह, कार्यों के विभिन्न वर्गों (जैसे, लिप्सचिट्ज़ वर्ग) को चुनकर, हमें भिन्नता के विभिन्न स्वाद मिलते हैं। इस प्रकार, विभेदीकरण कार्यों के बीजगणित का भाग बन जाता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 96: | Line 98: | ||
श्रेणी:सार बीजगणित | श्रेणी:सार बीजगणित | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category: | |||
[[Category:Created On 01/05/2023]] | [[Category:Created On 01/05/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] |
Latest revision as of 16:31, 25 September 2023
गणित में, औपचारिक व्युत्पन्न बहुपद वलय या औपचारिक शक्ति श्रृंखला की वलय के तत्वों पर संक्रिया है जो व्युत्पन्न से व्युत्पन्न के रूप की नकल करता है। चूँकि वे समान दिखाई देते हैं, औपचारिक व्युत्पन्न का बीजगणितीय लाभ यह है कि यह सीमा (गणित) की धारणा पर निर्भर नहीं करता है, जो सामान्यतः वलय (गणित) के लिए परिभाषित करना असंभव है। व्युत्पन्न के कई गुण औपचारिक व्युत्पन्न के लिए सही हैं, लेकिन कुछ, विशेष रूप से वे जो संख्यात्मक विवरण बनाते हैं, नहीं हैं।
बीजगणित में बहुपद के अनेक मूलों का परीक्षण करने के लिए औपचारिक अवकलन का उपयोग किया जाता है।
परिभाषा
वलय ठीक करें (आवश्यक रूप से क्रमविनिमेय नहीं) और माना बहुपदों की वलय बनें (अगर क्रमविनिमेय नहीं है, यह एकल अनिश्चित चर पर मुक्त बीजगणित है।)
फिर औपचारिक व्युत्पन्न के तत्वों पर संक्रिया है , जहां अगर
तो इसका औपचारिक व्युत्पन्न है
उपरोक्त परिभाषा में, किसी भी गैर-ऋणात्मक पूर्णांक के लिए और , वलय में हमेशा की तरह परिभाषित किया गया है: (साथ अगर ).[1]
यह परिभाषा भले ही काम करती हो पहचान तत्व नहीं है।
वैकल्पिक स्वयंसिद्ध परिभाषा
औपचारिक व्युत्पन्न को स्वयंसिद्ध रूप से मानचित्र के रूप में भी परिभाषित किया जा सकता है निम्नलिखित गुणों को संतुष्ट करना।
1) सभी के लिए
2) सामान्यीकरण स्वयंसिद्ध,
3) मानचित्र बहुपद वलय में अतिरिक्त संचालन के साथ संचार करता है,
4) मानचित्र बहुपद वलय गुणन संक्रिया के संबंध में लीबनिज के नियम को संतुष्ट करता है,
कोई यह सिद्ध कर सकता है कि यह स्वयंसिद्ध परिभाषा सभी सामान्य वलय स्वयंसिद्धों का सम्मान करते हुए अच्छी तरह से परिभाषित मानचित्र उत्पन्न करती है।
उपरोक्त सूत्र (अर्थात औपचारिक व्युत्पन्न की परिभाषा जब गुणांक वलय क्रमविनिमेय है) पूर्वोक्त स्वयंसिद्धों का प्रत्यक्ष परिणाम है:
गुण
यह सत्यापित किया जा सकता है कि:
- औपचारिक अवकलन रैखिक है: किसी भी दो बहुपद f(x),g(x) in R[x] और R के अवयव r,s के लिए हमारे पास है
- औपचारिक व्युत्पन्न उत्पाद नियम को संतुष्ट करता है:
- कारकों के क्रम पर ध्यान दें; जब R क्रमविनिमेय नहीं है तो यह महत्वपूर्ण है।
ये दो गुण D को A पर व्युत्पत्ति (अमूर्त बीजगणित) बनाते हैं (सामान्यीकरण की चर्चा के लिए सापेक्ष विभेदक रूपों का मॉड्यूल देखें)
ध्यान दें कि औपचारिक व्युत्पन्न वलय समरूपता नहीं है, क्योंकि उत्पाद नियम कहने से अलग है (और यह स्थिति नहीं है) कि . चूँकि, यह उपरोक्त नियमों द्वारा मॉड्यूल (गणित) R-मॉड्यूल का समरूपता (रैखिक मानचित्र) है।
दोहराए गए कारकों को खोजने के लिए आवेदन
कलन की तरह, व्युत्पन्न कई जड़ों का पता लगाता है। यदि R क्षेत्र है तो R[x] यूक्लिडियन प्रांत है, और इस स्थिति में हम मूलों की बहुलता को परिभाषित कर सकते हैं; R[x] में प्रत्येक बहुपद f(x) और R के प्रत्येक तत्व r के लिए, गैर-ऋणात्मक पूर्णांक mr उपस्थित है और बहुपद g(x) ऐसा है कि
जहां g(r) ≠mr की जड़ के रूप में r की बहुलता है। यह लाइबनिज नियम से इस प्रकार है कि इस स्थिति में, mr के परिणामी बहुपद का मूल नहीं होने से पहले f(x) पर किए जाने वाले विभेदों की संख्या भी है। इस अवलोकन की उपयोगिता यह है कि चूँकि सामान्यतः R [x] में डिग्री n के प्रत्येक बहुपद में n जड़ों की बहुलता नहीं होती है (यह उपरोक्त प्रमेय द्वारा अधिकतम है), हम फील्ड एक्सटेंशन को पास कर सकते हैं जिसमें यह सत्य है ( अर्थात्, बीजगणितीय बंद) एक बार जब हम ऐसा कर लेते हैं, तो हम बहुमूल को उजागर कर सकते हैं जो केवल R के ऊपर मूल नहीं था। उदाहरण के लिए, यदि R तीन तत्वों वाला क्षेत्र है, तो बहुपद
R में कोई जड़ नहीं है; चूँकि, इसका औपचारिक व्युत्पन्न () शून्य है (क्यों?) क्योंकि R में 3 = 0 और R के किसी भी विस्तार में, इसलिए जब हम बीजगणितीय समापन के पास जाते हैं तो इसका बहुमूल होता है जिसे स्वयं R में गुणनखंड द्वारा पता नहीं लगाया जा सकता था। इस प्रकार, औपचारिक भेदभाव बहुलता की संगणनीयता सिद्धांत (कंप्यूटर विज्ञान) की धारणा की अनुमति देता है। गैलोज़ सिद्धांत में यह महत्वपूर्ण है, जहां अलग-अलग फ़ील्ड एक्सटेंशन (बहुपदों द्वारा परिभाषित बहुपदों के साथ परिभाषित) और अविभाज्य लोगों के बीच भेद किया जाता है।
विश्लेषणात्मक व्युत्पन्न के अनुरूप
जब अदिशों का वलय R क्रमविनिमेय होता है, तो औपचारिक अवकलज की वैकल्पिक और समतुल्य परिभाषा होती है, जो अवकलन कलन में देखी गई परिभाषा के समान होती है। वलय R[X,Y] का तत्व Y–X, Y को विभाजित करता है किसी भी अऋणात्मक पूर्णांक n के लिए Yn – Xn को विभाजित करता है, और इसलिए अनिश्चित में किसी भी बहुपद f के लिए f(Y) – f(X) को विभाजित करता है। यदि R[X,Y] में भागफल को g द्वारा निरूपित किया जाता है, तब
तब यह सत्यापित करना कठिन नहीं है कि g(X,X) (R[X] में) f के औपचारिक व्युत्पन्न के साथ मेल खाता है जैसा कि इसे ऊपर परिभाषित किया गया था।
यौगिक का यह सूत्रीकरण औपचारिक शक्ति श्रृंखला के लिए समान रूप से अच्छी तरह से काम करता है, जब तक कि गुणांक की वलय विनिमेय है।
वास्तव में, यदि इस परिभाषा में विभाजन कार्यों के वर्ग में किया जाता है पर निरंतर , यह व्युत्पन्न की मौलिक परिभाषा को पुनः प्राप्त करेगा। यदि यह दोनों में निरंतर कार्यों की श्रेणी में किया जाता है और , हमें समान भिन्नता और हमारा कार्य मिलता है निरंतर भिन्न होगा। इसी तरह, कार्यों के विभिन्न वर्गों (जैसे, लिप्सचिट्ज़ वर्ग) को चुनकर, हमें भिन्नता के विभिन्न स्वाद मिलते हैं। इस प्रकार, विभेदीकरण कार्यों के बीजगणित का भाग बन जाता है।
यह भी देखें
- व्युत्पन्न
- यूक्लिडियन डोमेन
- सापेक्ष अंतर रूपों का मॉड्यूल
- गैल्वा सिद्धांत
- औपचारिक शक्ति श्रृंखला
- पिंचरले व्युत्पन्न
संदर्भ
- ↑ John B. Fraleigh; Victor J. Katz (2002). सार बीजगणित में पहला कोर्स. Pearson. p. 443.
स्रोत
- Lang, Serge (2002), Algebra, Graduate Texts in Mathematics, vol. 211 (Revised third ed.), New York: Springer-Verlag, ISBN 978-0-387-95385-4, MR 1878556, Zbl 0984.00001
- माइकल लिविशिट्स, आप कलन को सरल बना सकते हैं, arXiv:0905.3611v1
श्रेणी:सार बीजगणित