जनरल डिरिचलेट श्रृंखला: Difference between revisions
No edit summary |
m (7 revisions imported from alpha:जनरल_डिरिचलेट_श्रृंखला) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 32: | Line 32: | ||
: <math>\mathbb{C}_{\sigma_c}=\{s\in\mathbb{C}: \operatorname{Re}(s)>\sigma_c\}.</math> | : <math>\mathbb{C}_{\sigma_c}=\{s\in\mathbb{C}: \operatorname{Re}(s)>\sigma_c\}.</math> | ||
डिरिचलेट श्रृंखला के अभिसरण का भुज, [[रेखा (ज्यामिति)]] और [[अर्ध-स्थान (ज्यामिति)]] अर्ध-तल एक शक्ति श्रृंखला के अभिसरण के त्रिज्या, [[सीमा (टोपोलॉजी)]] और [[डिस्क (गणित)]] के अनुरूप हैं। | डिरिचलेट श्रृंखला के अभिसरण का भुज, [[रेखा (ज्यामिति)]] और [[अर्ध-स्थान (ज्यामिति)|अर्ध-समष्टि (ज्यामिति)]] अर्ध-तल एक शक्ति श्रृंखला के अभिसरण के त्रिज्या, [[सीमा (टोपोलॉजी)]] और [[डिस्क (गणित)]] के अनुरूप हैं। | ||
अभिसरण की रेखा पर, अभिसरण का प्रश्न विवर्त रहता है जैसा कि शक्ति श्रृंखला के स्थिति में होता है। चूँकि , यदि डिरिचलेट श्रृंखला एक ही ऊर्ध्वाधर रेखा पर विभिन्न बिंदुओं पर अभिसरण और विचलन करती है, तो यह रेखा अभिसरण की रेखा होनी चाहिए। यह प्रमाण अभिसरण के भुज की परिभाषा में निहित है। एक उदाहरण श्रृंखला होगी | अभिसरण की रेखा पर, अभिसरण का प्रश्न विवर्त रहता है जैसा कि शक्ति श्रृंखला के स्थिति में होता है। चूँकि , यदि डिरिचलेट श्रृंखला एक ही ऊर्ध्वाधर रेखा पर विभिन्न बिंदुओं पर अभिसरण और विचलन करती है, तो यह रेखा अभिसरण की रेखा होनी चाहिए। यह प्रमाण अभिसरण के भुज की परिभाषा में निहित है। एक उदाहरण श्रृंखला होगी | ||
Line 111: | Line 111: | ||
== विश्लेषणात्मक | == विश्लेषणात्मक फलन == | ||
डिरिचलेट श्रृंखला द्वारा दर्शाया गया एक [[फ़ंक्शन (गणित)|फलन (गणित)]]। | डिरिचलेट श्रृंखला द्वारा दर्शाया गया एक [[फ़ंक्शन (गणित)|फलन (गणित)]]। | ||
: <math>f(s)=\sum_{n=1}^{\infty}a_n e^{-\lambda_n s},</math> | : <math>f(s)=\sum_{n=1}^{\infty}a_n e^{-\lambda_n s},</math> | ||
अभिसरण के आधे तल पर [[विश्लेषणात्मक कार्य]] है। इसके अतिरिक्त , के लिए <math>k=1,2,3,\ldots</math> | अभिसरण के आधे तल पर [[विश्लेषणात्मक कार्य|विश्लेषणात्मक फलन]] है। इसके अतिरिक्त , के लिए <math>k=1,2,3,\ldots</math> | ||
: <math>f^{(k)}(s)=(-1)^k\sum_{n=1}^{\infty}a_n\lambda_n^k e^{-\lambda_n s}.</math> | : <math>f^{(k)}(s)=(-1)^k\sum_{n=1}^{\infty}a_n\lambda_n^k e^{-\lambda_n s}.</math> | ||
Line 146: | Line 146: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 12/08/2023]] | [[Category:Created On 12/08/2023]] | ||
[[Category:Vigyan Ready]] |
Latest revision as of 07:25, 27 September 2023
गणितीय विश्लेषण के क्षेत्र में एक सामान्य डिरिचलेट श्रृंखला एक अनंत श्रृंखला है जो इसका रूप लेती है
जहां , सम्मिश्र संख्याएं हैं और गैर-ऋणात्मक वास्तविक संख्याओं का सख्ती से बढ़ता हुआ क्रम है जो अनंत की ओर जाता है।
एक साधारण अवलोकन से पता चलता है कि एक 'साधारण' डिरिचलेट श्रृंखला है जो
एक घात श्रृंखला के समय को प्रतिस्थापित करके प्राप्त किया जाता है
जब प्राप्त होता है .
मौलिक प्रमेय
यदि डिरिचलेट श्रृंखला पर अभिसरण है, तो यह डोमेन में समान रूप से अभिसरण है
और किसी भी के लिए अभिसरण जहां है।
डिरिचलेट श्रृंखला के अभिसरण के संबंध में अब तीन संभावनाएं हैं, अथार्त यह सभी के लिए, किसी के लिए या एस के कुछ मानो के लिए अभिसरण हो सकता है। इसके पश्चात् वाले स्थिति में, एक उपस्थित है जैसे कि श्रृंखला के लिए अभिसरण है और के लिए भिन्न है। परिपाटी के अनुसार, यदि श्रृंखला कहीं भी अभिसरण नहीं करती है और यदि श्रृंखला सम्मिश्र तल पर हर जगह अभिसरण करती है।
अभिसरण का भुज
डिरिचलेट श्रृंखला के अभिसरण के भुज को उपरोक्त के रूप में परिभाषित किया जा सकता है। एक और समकक्ष परिभाषा है
रेखा अभिसरण रेखा कहलाती है। अभिसरण के आधे तल को इस प्रकार परिभाषित किया गया है
डिरिचलेट श्रृंखला के अभिसरण का भुज, रेखा (ज्यामिति) और अर्ध-समष्टि (ज्यामिति) अर्ध-तल एक शक्ति श्रृंखला के अभिसरण के त्रिज्या, सीमा (टोपोलॉजी) और डिस्क (गणित) के अनुरूप हैं।
अभिसरण की रेखा पर, अभिसरण का प्रश्न विवर्त रहता है जैसा कि शक्ति श्रृंखला के स्थिति में होता है। चूँकि , यदि डिरिचलेट श्रृंखला एक ही ऊर्ध्वाधर रेखा पर विभिन्न बिंदुओं पर अभिसरण और विचलन करती है, तो यह रेखा अभिसरण की रेखा होनी चाहिए। यह प्रमाण अभिसरण के भुज की परिभाषा में निहित है। एक उदाहरण श्रृंखला होगी
जो (वैकल्पिक हार्मोनिक श्रृंखला) पर अभिसरण करता है और (हार्मोनिक श्रृंखला) पर विचलन करता है। इस प्रकार, अभिसरण की रेखा है।
मान लीजिए कि डिरिचलेट श्रृंखला पर अभिसरण नहीं करती है, तो यह स्पष्ट है कि और विचलन करते हैं। दूसरी ओर, यदि डिरिचलेट श्रृंखला पर अभिसरण करती है, तो और अभिसरण होते हैं। इस प्रकार, की गणना करने के लिए दो सूत्र हैं, जो के अभिसरण पर निर्भर करता है जिसे विभिन्न अभिसरण परीक्षणों द्वारा निर्धारित किया जा सकता है। ये सूत्र किसी शक्ति श्रृंखला के अभिसरण की त्रिज्या के लिए कॉची-हैडामर्ड प्रमेय के समान हैं।
यदि भिन्न है, अर्थात , तब द्वारा दिया गया है
यदि अभिसरण है, अर्थात , तब द्वारा दिया गया है
पूर्ण अभिसरण का भुज
एक डिरिचलेट श्रृंखला पूर्ण अभिसरण है यदि श्रृंखला
अभिसारी है. सदैव की तरह, एक बिल्कुल अभिसरण डिरिचलेट श्रृंखला अभिसरण है, किन्तु इसका विपरीत सदैव सत्य नहीं होता है।
यदि डिरिचलेट श्रृंखला पर बिल्कुल अभिसरण है, तो यह सभी s के लिए बिल्कुल अभिसरण है जहां एक डिरिचलेट श्रृंखला पूरी तरह से सभी के लिए, नहीं के लिए या एस के कुछ मूल्यों के लिए अभिसरण कर सकती है। इसके पश्चात् वाले स्थिति में, एक उपस्थित है, जैसे कि श्रृंखला के लिए पूर्ण रूप से अभिसरण करती है और के लिए गैर-पूर्ण रूप से अभिसरण करती है।
निरपेक्ष अभिसरण के भुज को उपरोक्त के रूप में या समकक्ष के रूप में परिभाषित किया जा सकता है
पूर्ण अभिसरण की रेखा और अर्ध-तल को समान रूप से परिभाषित किया जा सकता है। जो कि की गणना करने के भी दो सूत्र हैं।
यदि तो फिर, भिन्न है द्वारा दिया गया है
यदि तो, अभिसरण है द्वारा दिया गया है
सामान्य रूप से, अभिसरण का भुज पूर्ण अभिसरण के भुज से मेल नहीं खाता है। इस प्रकार, अभिसरण और पूर्ण अभिसरण की रेखा के मध्य एक पट्टी हो सकती है जहां डिरिचलेट श्रृंखला सशर्त अभिसरण है। इस पट्टी की चौड़ाई दी गई है
उस स्थिति में जहां एल = 0, तब
अब तक प्रदान किए गए सभी सूत्र को प्रतिस्थापित करके 'साधारण' डिरिचलेट श्रृंखला के लिए अभी भी सत्य हैं।
अभिसरण के अन्य भुज
डिरिचलेट श्रृंखला के लिए अभिसरण के अन्य एब्सिस्सा पर विचार करना संभव है। परिबद्ध अभिसरण का भुज द्वारा दिया गया है
जबकि एकसमान अभिसरण का भुज द्वारा दिया गया है
ये भुज अभिसरण और निरपेक्ष अभिसरण के भुजाओं से सूत्रों द्वारा संबंधित हैं
,
और बोह्र का एक उल्लेखनीय प्रमेय वास्तव में दिखाता है कि किसी भी सामान्य डिरिचलेट श्रृंखला के लिए जहां (अर्थात् फॉर्म की डिरिचलेट श्रृंखला,, और [1] बोह्ननब्लस्ट और हिले ने पश्चात् में दिखाया कि हर संख्या के लिए डिरिचलेट श्रृंखला हैं जिसके लिए [2] हैं।
सामान्य डिरिचलेट श्रृंखला के लिए एकसमान अभिसरण के भुज का सूत्र इस प्रकार दिया गया है: किसी भी के लिए, मान लीजिए
, तब [3]
विश्लेषणात्मक फलन
डिरिचलेट श्रृंखला द्वारा दर्शाया गया एक फलन (गणित)।
अभिसरण के आधे तल पर विश्लेषणात्मक फलन है। इसके अतिरिक्त , के लिए
आगे सामान्यीकरण
एक डिरिचलेट श्रृंखला को बहु-वेरिएबल स्थिति में और अधिक सामान्यीकृत किया जा सकता है जहां , k = 2, 3, 4,..., या सम्मिश्र परिवर्तनीय स्थिति जहाँ , m = 1, 2,. है
संदर्भ
- ↑ McCarthy, John E. (2018). "डिरिचलेट श्रृंखला" (PDF).
{{cite web}}
: CS1 maint: url-status (link) - ↑ Bohnenblust & Hille (1931). "डिरिचलेट श्रृंखला के पूर्ण अभिसरण पर". Annals of Mathematics. 32 (3): 600–622. doi:10.2307/1968255. JSTOR 1968255.
- ↑ "Dirichlet series - distance between σu and σc". StackExchange. Retrieved 26 June 2020.
{{cite web}}
: CS1 maint: url-status (link)
- G. H. Hardy, and M. Riesz, The general theory of Dirichlet's series, Cambridge University Press, first edition, 1915.
- E. C. Titchmarsh, The theory of functions, Oxford University Press, second edition, 1939.
- Tom Apostol, Modular functions and Dirichlet series in number theory, Springer, second edition, 1990.
- A.F. Leont'ev, Entire functions and series of exponentials (in Russian), Nauka, first edition, 1982.
- A.I. Markushevich, Theory of functions of a complex variables (translated from Russian), Chelsea Publishing Company, second edition, 1977.
- J.-P. Serre, A Course in Arithmetic, Springer-Verlag, fifth edition, 1973.
- John E. McCarthy, Dirichlet Series, 2018.
- H. F. Bohnenblust and Einar Hille, On the Absolute Convergence of Dirichlet Series, Annals of Mathematics, Second Series, Vol. 32, No. 3 (Jul., 1931), pp. 600-622.
बाहरी संबंध
- "Dirichlet series". PlanetMath.
- "Dirichlet series", Encyclopedia of Mathematics, EMS Press, 2001 [1994]