बंडल मानचित्र: Difference between revisions

From Vigyanwiki
Line 9: Line 9:
==तन्तु बंडलों की सामान्य आकृतियाँ==
==तन्तु बंडलों की सामान्य आकृतियाँ==
यदि π<sub>''E''</sub>:''E''→ ''M'' और π<sub>''F''</sub>:''F''→ ''N'' एक-दूसरे स्थान ''M'' और ''N'' पर तन्तु बंडल हों तब एक निरंतर मानचित्र <math>\varphi : E \to F</math> जो कि बंडल ''E'' से बंडल ''F'' तक है और जिसमें एक निरंतर मानचित्र ''f'':''M''→ ''N'' ऐसा है जिससे निम्नलिखित आरेख बना हो:
यदि π<sub>''E''</sub>:''E''→ ''M'' और π<sub>''F''</sub>:''F''→ ''N'' एक-दूसरे स्थान ''M'' और ''N'' पर तन्तु बंडल हों तब एक निरंतर मानचित्र <math>\varphi : E \to F</math> जो कि बंडल ''E'' से बंडल ''F'' तक है और जिसमें एक निरंतर मानचित्र ''f'':''M''→ ''N'' ऐसा है जिससे निम्नलिखित आरेख बना हो:
[[Image:BundleMorphism-04.svg|150px|center]]"यह अर्थ है कि बंडल मानचित्र <math>\varphi</math> फाइबरों को प्रेसर्व करता है (fiber-preserving) और ''f'' बंडल ''E'' के तंतु के विभाग (space of fibers) पर प्रेरित (induced) मानचित्र है। यहां, π<sub>''E''</sub> को सरजीवी  मानकर, ''f'' को <math>\varphi</math> द्वारा अद्वितीय रूप से निर्धारित किया जाता है।" किसी दिए गए f के लिए, ऐसा बंडल मानचित्र <math>\varphi</math> कहा जाता है कि यह एक बंडल मैप ''कवरिंग एफ'' है
[[Image:BundleMorphism-04.svg|150px|center]]प्रत्याय, अर्थात् <math> \pi_F\circ\varphi = f\circ\pi_E </math>। दूसरे शब्दों में, <math>\varphi</math> तन्तु प्रेजर्विंग है, और ''f'' के तन्तु के अंतर्गत स्थान पर उत्पन्न होने वाला आरेख है: क्योंकि π<sub>''E''</sub> प्रत्यायी है, ''f'' <math>\varphi</math> द्वारा अद्वितीय रूप से निर्धारित होता है। एक दिए गए ''f'' के लिए, ऐसा एक बंडल आरेख <math>\varphi</math> कहलाता है जो ''f'' को ''कवरिंग'' करता है।
 
[[index.php?title=Category:Created On 25/07/2023|Bundle Map]]
[[index.php?title=Category:Created On 25/07/2023|Bundle Map]]
[[index.php?title=Category:Machine Translated Page|Bundle Map]]
[[index.php?title=Category:Machine Translated Page|Bundle Map]]

Revision as of 01:20, 8 August 2023

गणित में, बंडल मानचित्र या बंडल संरूप एक ऐसा मानचित्र है जो तन्तु बंडलों के श्रेणी में एक आकारिता होता है।

बंडल मानचित्र के दो भिन्न और गहरे संबंधित अर्थ होते हैं, जो इस बात पर निर्भर करते हैं कि क्या विचार में आने वाले तंतु बंडलों के पास एक समान बेस स्पेस होता है। इसी तरह, जिन भी श्रेणी के तंतु बंडल विचार किए जा रहे होते हैं, उन परिवर्तनों के साथ कई विविधताएं हो सकती हैं। पहले तीन खंडों में, हम शीर्षकीय रूप से संस्थानिक स्पेस के श्रेणी में सामान्य तंतु बंडलों को विचार करेंगे। तब चौथे खंड में, कुछ अन्य उदाहरण दिए जाएंगे।

सामान्य बेस के ऊपर बंडल मानचित्र

यदि और एक स्थान M पर तंतु बंडल हैं, तो E से F तक एक बंडल मानचित्र एक ऐसा नियमित चित्र है जिसका निम्नलिखित रूप होता है अर्थात आरेख

BundleMorphism-03.svg

परिवर्तित होता है । बंडल मानचित्र, M में किसी भी बिंदु x के लिए, तन्तु को आरेखित करता है तन्तु से x के ऊपर E का F के ऊपर x के साथ संबंधित रूप से आरेखित करता है।

तन्तु बंडलों की सामान्य आकृतियाँ

यदि πE:EM और πF:FN एक-दूसरे स्थान M और N पर तन्तु बंडल हों तब एक निरंतर मानचित्र जो कि बंडल E से बंडल F तक है और जिसमें एक निरंतर मानचित्र f:MN ऐसा है जिससे निम्नलिखित आरेख बना हो:

BundleMorphism-04.svg

प्रत्याय, अर्थात् । दूसरे शब्दों में, तन्तु प्रेजर्विंग है, और f ई के तन्तु के अंतर्गत स्थान पर उत्पन्न होने वाला आरेख है: क्योंकि πE प्रत्यायी है, f द्वारा अद्वितीय रूप से निर्धारित होता है। एक दिए गए f के लिए, ऐसा एक बंडल आरेख कहलाता है जो f को कवरिंग करता है।

Bundle Map Bundle Map

दो धारणाओं के बीच संबंध

परिभाषाओं से यह तुरंत पता चलता है कि एम पर एक बंडल मैप (पहले अर्थ में) एम के पहचान मानचित्र को कवर करने वाले बंडल मैप के समान है।

इसके विपरीत, पुलबैक बंडल की धारणा का उपयोग करके सामान्य बंडल मानचित्रों को एक निश्चित आधार स्थान पर बंडल मानचित्रों में कम किया जा सकता है। यदि πF:F→ N, N के ऊपर एक तन्तु बंडल है और f:M→ N एक सतत मानचित्र है, तो F द्वारा F का 'पुलबैक' एक तन्तु बंडल f है*M के ऊपर F जिसका x के ऊपर का तन्तु (f) द्वारा दिया गया है*एफ)x = एफf(x). इसके बाद यह निष्कर्ष निकलता है कि E से F तक f को कवर करने वाला बंडल मैप E से f तक बंडल मैप के समान है*एम के ऊपर एफ।

विकल्प और सामान्यीकरण

बंडल मानचित्र की सामान्य अवधारणा में दो प्रकार की भिन्नताएँ हैं।

सबसे पहले, कोई विभिन्न श्रेणी के स्थानों में तन्तु बंडलों पर विचार कर सकता है। यह, उदाहरण के लिए, एक चिकने मैनिफोल्ड पर चिकने तन्तु बंडलों के बीच एक चिकने बंडल मानचित्र की धारणा की ओर ले जाता है।

दूसरा, कोई अपने तन्तु में अतिरिक्त संरचना वाले तन्तु बंडलों पर विचार कर सकता है, और इस संरचना को संरक्षित करने वाले बंडल मानचित्रों पर ध्यान केंद्रित कर सकता है। यह, उदाहरण के लिए, वेक्टर बंडलों के बीच एक (वेक्टर) बंडल होमोमोर्फिज्म की धारणा की ओर ले जाता है, जिसमें तन्तु वेक्टर रिक्त स्थान होते हैं, और एक बंडल मैप φ को प्रत्येक तन्तु पर एक रैखिक मानचित्र होना आवश्यक है। इस मामले में, ऐसे बंडल मैप φ (एफ को कवर करते हुए) को वेक्टर बंडल होम(,एफ के एक अनुभाग (तन्तु बंडल) के रूप में भी देखा जा सकता है*F) या M, जिसका x से अधिक का तन्तु वेक्टर स्पेस होम हैx,एफf(x)) (एल(ई) को भी दर्शाया गया हैx,एफf(x))) से रेखीय मानचित्रों की इxएफ कोf(x).


श्रेणी:तन्तु बंडल श्रेणी:निरंतर कार्यों का सिद्धांत