बंडल मानचित्र: Difference between revisions

From Vigyanwiki
Line 25: Line 25:
बंडल मानचित्र की सामान्य अवधारणा में दो प्रकार की भिन्नताएँ हैं।
बंडल मानचित्र की सामान्य अवधारणा में दो प्रकार की भिन्नताएँ हैं।


सबसे पहले, कोई विभिन्न श्रेणी के स्थानों में तन्तु  बंडलों पर विचार कर सकता है। यह, उदाहरण के लिए, एक चिकने मैनिफोल्ड पर चिकने तन्तु  बंडलों के बीच एक चिकने बंडल मानचित्र की धारणा की ओर ले जाता है।
"पहले, व्यक्तियों की अलग श्रेणी में फाइबर बंडल का विचार किया जा सकता है। इससे, उदाहरण के लिए, स्मूथ मानचित्र के ऊपर स्मूथ फाइबर बंडलों के बीच एक '''स्मूथ बंडल मानचित्र''' के धारणा तक पहुंचा जाता है।"


दूसरा, कोई अपने तन्तु  में अतिरिक्त संरचना वाले तन्तु  बंडलों पर विचार कर सकता है, और इस संरचना को संरक्षित करने वाले बंडल मानचित्रों पर ध्यान केंद्रित कर सकता है। यह, उदाहरण के लिए, [[वेक्टर बंडल]]ों के बीच एक (वेक्टर) बंडल होमोमोर्फिज्म की धारणा की ओर ले जाता है, जिसमें तन्तु  वेक्टर रिक्त स्थान होते हैं, और एक बंडल मैप ''φ'' को प्रत्येक तन्तु  पर एक रैखिक मानचित्र होना आवश्यक है। इस मामले में, ऐसे बंडल मैप ''φ'' (''एफ'' को कवर करते हुए) को वेक्टर बंडल होम('''',''एफ'' के एक [[अनुभाग (फाइबर बंडल)|अनुभाग (तन्तु  बंडल)]] के रूप में भी देखा जा सकता है<sup>*</sup>F) या M, जिसका x से अधिक का तन्तु  वेक्टर स्पेस होम है<sub>x</sub>,एफ<sub>''f''(''x'')</sub>) (एल(ई) को भी दर्शाया गया है<sub>x</sub>,एफ<sub>''f''(''x'')</sub>)) से [[रेखीय मानचित्र]]ों की
"दूसरे, फाइबर बंडलों में अतिरिक्त संरचना के साथ विचार किया जा सकता है, और इन फाइबरों को प्रेसर्व करने वाले बंडल मानचित्रों पर ध्यान केंद्रित किया जा सकता है। इससे, उदाहरण के लिए, वेक्टर स्थानों के साथ फाइबर बंडलों (जिनके फाइबर वेक्टर स्थान होते हैं) के बीच एक '''(वेक्टर) बंडल समान्तर''' की धारणा तक पहुंचा जाता है, जिसमें बंडल मानचित्र ''φ'' को प्रत्येक फाइबर पर एक रैखिक मानचित्र के रूप में होने की आवश्यकता होती है। इस मामले में, ऐसे बंडल मानचित्र ''φ'' (''f'' कवरिंग बंडल मानचित्र के रूप में) को वेक्टर बंडल Hom(''E'', ''f''<sup>*</sup>''F'') का भी एक [[सेक्शन (फाइबर बंडल)|सेक्शन]] माना जा सकता है, जिसका मानचित्र Hom(''E<sub>x</sub>'', ''F''<sub>''f''(''x'')</sub>) (जिसे ''L''(''E<sub>x</sub>'', ''F''<sub>''f''(''x'')</sub>) भी लिखा जाता है) होता है, जो 'E<sub>x</sub>' से ''F''<sub>''f''(''x'')</sub> तक [[रैखिक चित्र]] (लीनियर मानचित्र) की होती है।"
<sub>x</sub>एफ को<sub>''f''(''x'')</sub>.


{{DEFAULTSORT:Bundle Map}}
{{DEFAULTSORT:Bundle Map}}

Revision as of 01:32, 8 August 2023

गणित में, बंडल मानचित्र या बंडल संरूप एक ऐसा मानचित्र है जो तन्तु बंडलों के श्रेणी में एक आकारिता होता है।

बंडल मानचित्र के दो भिन्न और गहरे संबंधित अर्थ होते हैं, जो इस बात पर निर्भर करते हैं कि क्या विचार में आने वाले तंतु बंडलों के पास एक समान बेस स्पेस होता है। इसी तरह, जिन भी श्रेणी के तंतु बंडल विचार किए जा रहे होते हैं, उन परिवर्तनों के साथ कई विविधताएं हो सकती हैं। पहले तीन खंडों में, हम शीर्षकीय रूप से संस्थानिक स्पेस के श्रेणी में सामान्य तंतु बंडलों को विचार करेंगे। तब चौथे खंड में, कुछ अन्य उदाहरण दिए जाएंगे।

सामान्य बेस के ऊपर बंडल मानचित्र

यदि और एक स्थान M पर तंतु बंडल हैं, तो E से F तक एक बंडल मानचित्र एक ऐसा नियमित चित्र है जिसका निम्नलिखित रूप होता है अर्थात आरेख

BundleMorphism-03.svg

परिवर्तित होता है । बंडल मानचित्र, M में किसी भी बिंदु x के लिए, तन्तु को आरेखित करता है तन्तु से x के ऊपर E का F के ऊपर x के साथ संबंधित रूप से आरेखित करता है।

तन्तु बंडलों की सामान्य आकृतियाँ

यदि πE:EM और πF:FN एक-दूसरे स्थान M और N पर तन्तु बंडल हों तब एक निरंतर मानचित्र जो कि बंडल E से बंडल F तक है और जिसमें एक निरंतर मानचित्र f:MN ऐसा है जिससे निम्नलिखित आरेख बना हो:

BundleMorphism-04.svg

इसका अर्थ है प्रत्याय, अर्थात् , दूसरे शब्दों में, तन्तु संरक्षण, है, और f ई के तन्तु के अंतर्गत स्थान पर उत्पन्न होने वाला आरेख है: क्योंकि πE प्रत्यायी है, f द्वारा अद्वितीय रूप से निर्धारित होता है। एक दिए गए f के लिए, ऐसा एक बंडल आरेख कहलाता है जो f को कवरिंग करता है।

दो धारणाओं के बीच संबंध

"यह परिभाषाओं से सीधे प्राप्त होता है कि M पर एक बंडल मानचित्र (पहले अर्थ में) वही चीज है जो M के विशेषण को कवर करने वाला एक बंडल मानचित्र है।"

"विपरीत रूप से, जनरल बंडल मानचित्रों को निश्चित बेस स्थान पर बंडल मानचित्रों में घटाया जा सकता है, पुलबैक बंडल के धारणा का उपयोग करके। यदि πF: FN एक N पर फाइबर बंडल है और f:MN एक नियमित मानचित्र है, तो fF को F का पुलबैक बंडल कहते हैं जो M पर एक फाइबर बंडल है, जिसका फाइबर x पर (fF)x = Ff(x) दिया गया है। तब यह फालोट उत्पन्न होता है कि E से F तक किसी भी बंडल मानचित्र को M पर f*F तक किसी भी बंडल मानचित्र के रूप में कवर करना एक जैसा ही है।"

विकल्प और सामान्यीकरण

बंडल मानचित्र की सामान्य अवधारणा में दो प्रकार की भिन्नताएँ हैं।

"पहले, व्यक्तियों की अलग श्रेणी में फाइबर बंडल का विचार किया जा सकता है। इससे, उदाहरण के लिए, स्मूथ मानचित्र के ऊपर स्मूथ फाइबर बंडलों के बीच एक स्मूथ बंडल मानचित्र के धारणा तक पहुंचा जाता है।"

"दूसरे, फाइबर बंडलों में अतिरिक्त संरचना के साथ विचार किया जा सकता है, और इन फाइबरों को प्रेसर्व करने वाले बंडल मानचित्रों पर ध्यान केंद्रित किया जा सकता है। इससे, उदाहरण के लिए, वेक्टर स्थानों के साथ फाइबर बंडलों (जिनके फाइबर वेक्टर स्थान होते हैं) के बीच एक (वेक्टर) बंडल समान्तर की धारणा तक पहुंचा जाता है, जिसमें बंडल मानचित्र φ को प्रत्येक फाइबर पर एक रैखिक मानचित्र के रूप में होने की आवश्यकता होती है। इस मामले में, ऐसे बंडल मानचित्र φ (f कवरिंग बंडल मानचित्र के रूप में) को वेक्टर बंडल Hom(E, f*F) का भी एक सेक्शन माना जा सकता है, जिसका मानचित्र Hom(Ex, Ff(x)) (जिसे L(Ex, Ff(x)) भी लिखा जाता है) होता है, जो 'Ex' से Ff(x) तक रैखिक चित्र (लीनियर मानचित्र) की होती है।"


श्रेणी:तन्तु बंडल श्रेणी:निरंतर कार्यों का सिद्धांत