बंडल मानचित्र: Difference between revisions

From Vigyanwiki
Line 10: Line 10:
यदि π<sub>''E''</sub>:''E''→ ''M'' और π<sub>''F''</sub>:''F''→ ''N'' एक-दूसरे स्थान ''M'' और ''N'' पर तन्तु बंडल हों तब एक निरंतर मानचित्र <math>\varphi : E \to F</math> जो कि बंडल ''E'' से बंडल ''F'' तक है और जिसमें एक निरंतर मानचित्र ''f'':''M''→ ''N'' ऐसा है जिससे निम्नलिखित आरेख बना हो:
यदि π<sub>''E''</sub>:''E''→ ''M'' और π<sub>''F''</sub>:''F''→ ''N'' एक-दूसरे स्थान ''M'' और ''N'' पर तन्तु बंडल हों तब एक निरंतर मानचित्र <math>\varphi : E \to F</math> जो कि बंडल ''E'' से बंडल ''F'' तक है और जिसमें एक निरंतर मानचित्र ''f'':''M''→ ''N'' ऐसा है जिससे निम्नलिखित आरेख बना हो:
[[Image:BundleMorphism-04.svg|150px|center]]इसका अर्थ है प्रत्याय, अर्थात् <math> \pi_F\circ\varphi = f\circ\pi_E </math>, दूसरे शब्दों में, <math>\varphi</math> तन्तु संरक्षण, है, और ''f'' ई के तन्तु के अंतर्गत स्थान पर उत्पन्न होने वाला आरेख है: क्योंकि π<sub>''E''</sub> प्रत्यायी है, ''f'' <math>\varphi</math> द्वारा अद्वितीय रूप से निर्धारित होता है। एक दिए गए ''f'' के लिए, ऐसा एक बंडल आरेख <math>\varphi</math> कहलाता है जो f को कवरिंग करता है।  
[[Image:BundleMorphism-04.svg|150px|center]]इसका अर्थ है प्रत्याय, अर्थात् <math> \pi_F\circ\varphi = f\circ\pi_E </math>, दूसरे शब्दों में, <math>\varphi</math> तन्तु संरक्षण, है, और ''f'' ई के तन्तु के अंतर्गत स्थान पर उत्पन्न होने वाला आरेख है: क्योंकि π<sub>''E''</sub> प्रत्यायी है, ''f'' <math>\varphi</math> द्वारा अद्वितीय रूप से निर्धारित होता है। एक दिए गए ''f'' के लिए, ऐसा एक बंडल आरेख <math>\varphi</math> कहलाता है जो f को कवरिंग करता है।  
[[index.php?title=Category:Created On 25/07/2023|Bundle Map]]
[[index.php?title=Category:Machine Translated Page|Bundle Map]]
==दो धारणाओं के बीच संबंध==
==दो धारणाओं के बीच संबंध==
"यह परिभाषाओं से सीधे प्राप्त होता है कि M पर एक बंडल मानचित्र वही वस्तु है जो M के विशेषण को कवर करने वाला एक बंडल मानचित्र है।"
"यह परिभाषाओं से सीधे प्राप्त होता है कि M पर एक बंडल मानचित्र वही वस्तु है जो M के विशेषण को कवर करने वाला एक बंडल मानचित्र है।"

Revision as of 16:56, 8 August 2023

गणित में, बंडल मानचित्र या बंडल संरूप एक ऐसा मानचित्र है जो तन्तु बंडलों के श्रेणी में एक आकारिता होता है।

बंडल मानचित्र के दो भिन्न और गहरे संबंधित अर्थ होते हैं, जो इस बात पर निर्भर करते हैं कि क्या विचार में आने वाले तंतु बंडलों के पास एक समान बेस स्पेस होता है। इसी तरह, जिन भी श्रेणी के तंतु बंडल विचार किए जा रहे होते हैं, उन परिवर्तनों के साथ कई विविधताएं हो सकती हैं। पहले तीन खंडों में, हम शीर्षकीय रूप से संस्थानिक स्पेस के श्रेणी में सामान्य तंतु बंडलों को विचार करेंगे। तब चौथे खंड में, कुछ अन्य उदाहरण दिए जाएंगे।

सामान्य बेस के ऊपर बंडल मानचित्र

यदि और एक स्थान M पर तंतु बंडल हैं, तो E से F तक एक बंडल मानचित्र एक ऐसा नियमित चित्र है जिसका निम्नलिखित रूप होता है अर्थात आरेख

BundleMorphism-03.svg

परिवर्तित होता है । बंडल मानचित्र, M में किसी भी बिंदु x के लिए, तन्तु को आरेखित करता है तन्तु से x के ऊपर E का F के ऊपर x के साथ संबंधित रूप से आरेखित करता है।

तन्तु बंडलों की सामान्य आकृतियाँ

यदि πE:EM और πF:FN एक-दूसरे स्थान M और N पर तन्तु बंडल हों तब एक निरंतर मानचित्र जो कि बंडल E से बंडल F तक है और जिसमें एक निरंतर मानचित्र f:MN ऐसा है जिससे निम्नलिखित आरेख बना हो:

BundleMorphism-04.svg

इसका अर्थ है प्रत्याय, अर्थात् , दूसरे शब्दों में, तन्तु संरक्षण, है, और f ई के तन्तु के अंतर्गत स्थान पर उत्पन्न होने वाला आरेख है: क्योंकि πE प्रत्यायी है, f द्वारा अद्वितीय रूप से निर्धारित होता है। एक दिए गए f के लिए, ऐसा एक बंडल आरेख कहलाता है जो f को कवरिंग करता है।

दो धारणाओं के बीच संबंध

"यह परिभाषाओं से सीधे प्राप्त होता है कि M पर एक बंडल मानचित्र वही वस्तु है जो M के विशेषण को कवर करने वाला एक बंडल मानचित्र है।"

"विपरीत रूप से, सामान्य बंडल मानचित्रों को निश्चित बेस स्थान पर बंडल मानचित्रों में पुलबैक बंडल के धारणा का उपयोग करके घटाया जा सकता है, यदि πF: FN एक N पर तन्तु बंडल है और f:MN एक नियमित मानचित्र है, तो fF को F का पुलबैक बंडल कहते हैं जो M पर एक तन्तु बंडल होता है, जिसका तन्तु x पर (fF)x = Ff(x) दिया गया होता है। तब यह फालोट उत्पन्न होता है कि E से F तक किसी भी बंडल मानचित्र को M पर f*F तक किसी भी बंडल मानचित्र के रूप में कवर करना एक जैसा ही होता है।"

विकल्प और सामान्यीकरण

बंडल मानचित्र की सामान्य अवधारणा में दो प्रकार की भिन्नताएँ हैं।

"पहले, व्यक्तियों की अलग श्रेणी में तन्तु बंडल का विचार किया जा सकता है। इससे, उदाहरण के लिए, स्मूथ मानचित्र के ऊपर स्मूथ तन्तु बंडलों के बीच एक स्मूथ बंडल मानचित्र के धारणा तक पहुंचा जाता है।"

"दूसरे, तन्तु बंडलों में अतिरिक्त संरचना के साथ विचार किया जा सकता है, और इन तन्तु को सुरक्षित करने वाले बंडल मानचित्रों पर ध्यान केंद्रित किया जा सकता है। इससे, उदाहरण के लिए, सदिश स्थानों के साथ तन्तु बंडलों के बीच एक सदिश बंडल समान्तर की धारणा तक पहुंचा जाता है, जिसमें बंडल मानचित्र φ को प्रत्येक तन्तु पर एक रैखिक मानचित्र के रूप में होने की आवश्यकता होती है। इस स्थिति में, ऐसे बंडल मानचित्र φ को सदिश बंडल होम(E, f*F) का भी एक सेक्शन माना जा सकता है, जिसका मानचित्र होम (Ex, Ff(x)) होता है, जो रैखिक मानचित्र को 'Ex' से Ff(x) भी दर्शाया गया है।