बंडल मानचित्र: Difference between revisions

From Vigyanwiki
m (32 revisions imported from alpha:बंडल_मानचित्र)
 
(23 intermediate revisions by 3 users not shown)
Line 1: Line 1:
गणित में, '''बंडल मानचित्र''' या बंडल संरूप एक ऐसा मानचित्र है जो तन्तु बंडलों के [[श्रेणी (गणित)|श्रेणी]] में एक आकारिता होता है।
गणित में, '''बंडल मानचित्र''' फाइबर बंडल (तन्तु गठरी) की श्रेणी में एक आकारिता होता है। इसके दो अलग-अलग, परंतु मजबूत रूप में संबंधित, बंडल मानचित्र   के भाव होते हैं, जो इस पर निर्भर करते हैं कि क्या सवाल में दिए गए फाइबर बंडलों के पास एक सामान्य आधार समष्टि है। इसके अतिरिक्त, यह केवल उपलब्ध फाइबर बंडलों की कौन सी श्रेणी पर विचार किया जा रहा है, इसके आधार पर कई विभिन्न रूपांतरण हैं। पहले तीन खंडों में, हम संस्थानिक समष्टियो की श्रेणी में सामान्य फाइबर बंडलों को विचार करेंगे। पुनः  चौथे खंड में, कुछ अन्य उदाहरण दिए जाएंगे।


बंडल मानचित्र के दो भिन्न और गहरे संबंधित अर्थ होते हैं, जो इस बात पर निर्भर करते हैं कि क्या विचार में आने वाले तंतु बंडलों के पास एक समान बेस स्पेस होता है। इसी तरह, जिन भी श्रेणी के तंतु बंडल विचार किए जा रहे होते हैं, उन परिवर्तनों के साथ कई विविधताएं हो सकती हैं। पहले तीन खंडों में, हम शीर्षकीय रूप से संस्थानिक स्पेस के श्रेणी में सामान्य तंतु बंडलों को विचार करेंगे। तब चौथे खंड में, कुछ अन्य उदाहरण दिए जाएंगे।
==सामान्य आधार के ऊपर बंडल मानचित्र==
यदि <math>\pi_E\colon E \to M</math> और <math>\pi_F\colon F \to M</math> एक स्थान ''M'' पर फाइबर बंडल हों, तो एक बंडल मानचित्र  'E' से 'F' 'पर 'M' के लिए एक नियमित मानचित्र <math>\varphi\colon E \to F</math> होती है जिसका पालमूल <math> \pi_F\circ\varphi = \pi_E </math> माना जाता है। अर्थात, यह आरेख होता है:
[[Image:BundleMorphism-03.svg|120px|center]][[समघटक आरेखण|समघटक आरेख]] परिपथ में सहेजता है। समतुल्य रूप से, किसी भी बिंदु ''x'' के लिए, <math>\varphi</math> नियमित मानचित्र के बिंदु <math>E_x= \pi_E^{-1}({x})</math> को बिंदु <math>F_x= \pi_F^{-1}({x})</math> परिपथ में आरेखित करता है।


==सामान्य बेस के ऊपर बंडल मानचित्र==
==रेशा बंडलों की सामान्य आकृतियाँ==
यदि <math>\pi_E\colon E \to M</math> और <math>\pi_F\colon F \to M</math> एक स्थान ''M'' पर तंतु बंडल  हैं, तो ''E'' से ''F'' तक एक बंडल मानचित्र एक ऐसा नियमित चित्र  <math>\varphi\colon E \to F</math> है जिसका निम्नलिखित रूप <math>\pi_F\circ\varphi = \pi_E</math> होता है अर्थात आरेख
यदि <math>\pi_{E} : E \to M</math> और <math>\pi_{F} : F \to N</math> स्थानों ''M'' और ''N'' पर फाइबर बंडल हों, तो एक नियमित नक्शा <math>\varphi : E \to F</math> एक बंडल मानचित्र  कहलाता है अगर एक ऐसा नियमित नक्शा <math>f : M \to N</math> हो जिससे चित्रण होता है:
[[Image:BundleMorphism-03.svg|120px|center]]परिवर्तित होता है । बंडल मानचित्र, M में किसी भी बिंदु x के लिए, <math>\varphi</math> तन्तु  <math>E_x= \pi_E^{-1}(\{x\})</math> को आरेखित करता है तन्तु से x के ऊपर E का <math>F_x= \pi_F^{-1}(\{x\})</math> F के ऊपर x के साथ संबंधित रूप से आरेखित करता है।
[[Image:BundleMorphism-04.svg|150px|center]]समतुल्यता का चित्रण, अर्थात् <math>\pi_F\circ\varphi = f\circ\pi_E</math> होता है। दूसरे शब्दों में, <math>\varphi</math> फाइबर-संरक्षणकारी होता है, और ''f'' ''E'' के फाइबरों की जगह के नक्शे पर उत्पन्न होने वाला मानचित्र  होता है: क्योंकि <math>\pi_{E}</math> प्रतिकूलक होता है, इसलिए <math>\varphi</math> द्वारा अनुबंधित किया जाता है। एक दिए गए ''f'' के लिए, ऐसा एक बंडल मानचित्र  <math>\varphi</math> कहलाता है जिसे फाइबर कवरिंग f'कहा जाता है।


==तन्तु बंडलों की सामान्य आकृतियाँ==
==दो धारणाओं के बीच संबंध==
यदि π<sub>''E''</sub>:''E''→ ''M'' और π<sub>''F''</sub>:''F''→ ''N'' एक-दूसरे स्थान ''M'' और ''N'' पर तन्तु बंडल हों तब एक निरंतर मानचित्र <math>\varphi : E \to F</math> जो कि बंडल ''E'' से बंडल ''F'' तक है और जिसमें एक निरंतर मानचित्र ''f'':''M''→ ''N'' ऐसा है जिससे निम्नलिखित आरेख बना हो:
परिभाषाओं से सीधे रूप में यह पाया जा सकता है कि ''M'' पर एक बंडल मानचित्र   पहले मान में वही बात है जो ''M'' के पहचान मानचित्र   को कवर करता है।
[[Image:BundleMorphism-04.svg|150px|center]]आवागमन, अर्थात्, <math> \pi_F\circ\varphi = f\circ\pi_E </math>. दूसरे शब्दों में, <math>\varphi</math> तन्तु -संरक्षण है, और ''एफ'' ''ई'' के तन्तु  के स्थान पर प्रेरित मानचित्र है: चूंकि π<sub>''E''</sub> विशेषण है, f विशिष्ट रूप से निर्धारित होता है <math>\varphi</math>. किसी दिए गए f के लिए, ऐसा बंडल मानचित्र <math>\varphi</math> कहा जाता है कि यह एक बंडल मैप ''कवरिंग एफ'' है


[[index.php?title=Category:Created On 25/07/2023|Bundle Map]]
विपरीत रूप से, सामान्य बंडल मानचित्र  को निश्चित आधार अंतर्वाहन के उपयोग से एक मुख्य आधार स्थल पर बंडल मानचित्र  में घटाया जा सकता है, जिसकी विन्यासिकता की नोटियन के द्वारा होता है। यदि <math>\pi_{F}:F\rightarrow N</math> एक फाइबर बंडल ''N'' पर हो और <math>f:M\rightarrow N</math> एक नियमित मान हो, तो "f की पुलबैक" ''F'' का एक फाइबर बंडल ''M'' पर होता है जिसका फाइबर ''x'' पर इस प्रकार होता है (''f''<sup>*</sup>''F'')<sub>''x''</sub> = ''F''<sub>''f''(''x'')</sub>। यहाँ तक पहुँचा जाता है कि एक ''M'' पर ''f'' की कवरिंग वाला बंडल मानचित्र ''E'' से ''F'' की तरह कुछ होने के बराबर है।
[[index.php?title=Category:Machine Translated Page|Bundle Map]]


==दो धारणाओं के बीच संबंध==
[[Category:Created On 25/07/2023|Bundle Map]]
परिभाषाओं से यह तुरंत पता चलता है कि एम पर एक बंडल मैप (पहले अर्थ में) एम के पहचान मानचित्र को कवर करने वाले बंडल मैप के समान है।
[[Category:Machine Translated Page|Bundle Map]]
 
[[Category:Vigyan Ready]]
इसके विपरीत, [[पुलबैक बंडल]] की धारणा का उपयोग करके सामान्य बंडल मानचित्रों को एक निश्चित आधार स्थान पर बंडल मानचित्रों में कम किया जा सकता है। यदि π<sub>''F''</sub>:F→ N, N के ऊपर एक तन्तु  बंडल है और f:M→ N एक सतत मानचित्र है, तो F द्वारा F का 'पुलबैक' एक तन्तु  बंडल f है<sup>*</sup>M के ऊपर F जिसका x के ऊपर का तन्तु  (f) द्वारा दिया गया है<sup>*</sup>एफ)<sub>''x''</sub> = एफ<sub>''f''(''x'')</sub>. इसके बाद यह निष्कर्ष निकलता है कि E से F तक f को कवर करने वाला बंडल मैप E से f तक बंडल मैप के समान है<sup>*</sup>एम के ऊपर एफ।


==विकल्प और सामान्यीकरण==
==विकल्प और सामान्यीकरण==
बंडल मानचित्र की सामान्य अवधारणा में दो प्रकार की भिन्नताएँ हैं।
बंडल मानचित्र की सामान्य अवधारणा में दो प्रकार की भिन्नताएँ हैं।


सबसे पहले, कोई विभिन्न श्रेणी के स्थानों में तन्तु  बंडलों पर विचार कर सकता है। यह, उदाहरण के लिए, एक चिकने मैनिफोल्ड पर चिकने तन्तु  बंडलों के बीच एक चिकने बंडल मानचित्र की धारणा की ओर ले जाता है।
"पहले, व्यक्तियों की अलग श्रेणी में रेशा बंडल का विचार किया जा सकता है। इससे, उदाहरण के लिए, स्मूथ मानचित्र के ऊपर स्मूथ रेशा बंडलों के बीच एक स्मूथ बंडल मानचित्र के धारणा तक पहुंचा जाता है।"


दूसरा, कोई अपने तन्तु  में अतिरिक्त संरचना वाले तन्तु  बंडलों पर विचार कर सकता है, और इस संरचना को संरक्षित करने वाले बंडल मानचित्रों पर ध्यान केंद्रित कर सकता है। यह, उदाहरण के लिए, [[वेक्टर बंडल]]ों के बीच एक (वेक्टर) बंडल होमोमोर्फिज्म की धारणा की ओर ले जाता है, जिसमें तन्तु  वेक्टर रिक्त स्थान होते हैं, और एक बंडल मैप ''φ'' को प्रत्येक तन्तु  पर एक रैखिक मानचित्र होना आवश्यक है। इस मामले में, ऐसे बंडल मैप ''φ'' (''एफ'' को कवर करते हुए) को वेक्टर बंडल होम('''',''एफ'' के एक [[अनुभाग (फाइबर बंडल)|अनुभाग (तन्तु  बंडल)]] के रूप में भी देखा जा सकता है<sup>*</sup>F) या M, जिसका x से अधिक का तन्तु  वेक्टर स्पेस होम है<sub>x</sub>,एफ<sub>''f''(''x'')</sub>) (एल(ई) को भी दर्शाया गया है<sub>x</sub>,एफ<sub>''f''(''x'')</sub>)) से [[रेखीय मानचित्र]]ों की
दूसरा, हम फाइबरों में अतिरिक्त संरचना वाले फाइबर बंडल को भी विचार कर सकते हैं, और केवल उन बंडल मानचित्र पर ध्यान केंद्रित कर सकते हैं जो इस संरचना को संरक्षित रखते हैं। इससे, उदाहरण के लिए, बंडल होमोमॉर्फिज्म की धारणा आती है जिसमें फाइबर विभाग सदिश समष्टि होते हैं, और एक बंडल मानचित्र ''φ'' को हर फाइबर पर एक रैखिक मानचित्र माना जाता है। इस स्थिति में, ऐसे एक बंडल मानचित्र  ''φ'' को व्यूह भी देखा जा सकता है जो बिंदु व्यूह Hom(''E'',''f<sup>*</sup>F'') के एक अनुच्छेद के रूप में समझा जा सकता है, जिसका बिंदु व्यूह होम (''E<sub>x</sub>'',''F''<sub>''f''(''x'')</sub>) (जिसे ''L''(''E<sub>x</sub>'',''F''<sub>''f''(''x'')</sub>) भी लिखा जाता है) होता है, जो ''E<sub>x</sub>'' से ''F''<sub>''f''(''x'')</sub> की रैखिक मानचित्र होते हैं।
<sub>x</sub>एफ को<sub>''f''(''x'')</sub>.


{{DEFAULTSORT:Bundle Map}}
{{DEFAULTSORT:Bundle Map}}
श्रेणी:तन्तु  बंडल
श्रेणी:निरंतर कार्यों का सिद्धांत
[[Category:Created On 25/07/2023|Bundle Map]]
[[Category:Machine Translated Page|Bundle Map]]

Latest revision as of 07:02, 28 September 2023

गणित में, बंडल मानचित्र फाइबर बंडल (तन्तु गठरी) की श्रेणी में एक आकारिता होता है। इसके दो अलग-अलग, परंतु मजबूत रूप में संबंधित, बंडल मानचित्र के भाव होते हैं, जो इस पर निर्भर करते हैं कि क्या सवाल में दिए गए फाइबर बंडलों के पास एक सामान्य आधार समष्टि है। इसके अतिरिक्त, यह केवल उपलब्ध फाइबर बंडलों की कौन सी श्रेणी पर विचार किया जा रहा है, इसके आधार पर कई विभिन्न रूपांतरण हैं। पहले तीन खंडों में, हम संस्थानिक समष्टियो की श्रेणी में सामान्य फाइबर बंडलों को विचार करेंगे। पुनः चौथे खंड में, कुछ अन्य उदाहरण दिए जाएंगे।

सामान्य आधार के ऊपर बंडल मानचित्र

यदि और एक स्थान M पर फाइबर बंडल हों, तो एक बंडल मानचित्र 'E' से 'F' 'पर 'M' के लिए एक नियमित मानचित्र होती है जिसका पालमूल माना जाता है। अर्थात, यह आरेख होता है:

BundleMorphism-03.svg

समघटक आरेख परिपथ में सहेजता है। समतुल्य रूप से, किसी भी बिंदु x के लिए, नियमित मानचित्र के बिंदु को बिंदु परिपथ में आरेखित करता है।

रेशा बंडलों की सामान्य आकृतियाँ

यदि और स्थानों M और N पर फाइबर बंडल हों, तो एक नियमित नक्शा एक बंडल मानचित्र कहलाता है अगर एक ऐसा नियमित नक्शा हो जिससे चित्रण होता है:

BundleMorphism-04.svg

समतुल्यता का चित्रण, अर्थात् होता है। दूसरे शब्दों में, फाइबर-संरक्षणकारी होता है, और f E के फाइबरों की जगह के नक्शे पर उत्पन्न होने वाला मानचित्र होता है: क्योंकि प्रतिकूलक होता है, इसलिए द्वारा अनुबंधित किया जाता है। एक दिए गए f के लिए, ऐसा एक बंडल मानचित्र कहलाता है जिसे फाइबर कवरिंग f'कहा जाता है।

दो धारणाओं के बीच संबंध

परिभाषाओं से सीधे रूप में यह पाया जा सकता है कि M पर एक बंडल मानचित्र पहले मान में वही बात है जो M के पहचान मानचित्र को कवर करता है।

विपरीत रूप से, सामान्य बंडल मानचित्र को निश्चित आधार अंतर्वाहन के उपयोग से एक मुख्य आधार स्थल पर बंडल मानचित्र में घटाया जा सकता है, जिसकी विन्यासिकता की नोटियन के द्वारा होता है। यदि एक फाइबर बंडल N पर हो और एक नियमित मान हो, तो "f की पुलबैक" F का एक फाइबर बंडल M पर होता है जिसका फाइबर x पर इस प्रकार होता है (f*F)x = Ff(x)। यहाँ तक पहुँचा जाता है कि एक M पर f की कवरिंग वाला बंडल मानचित्र E से F की तरह कुछ होने के बराबर है।

विकल्प और सामान्यीकरण

बंडल मानचित्र की सामान्य अवधारणा में दो प्रकार की भिन्नताएँ हैं।

"पहले, व्यक्तियों की अलग श्रेणी में रेशा बंडल का विचार किया जा सकता है। इससे, उदाहरण के लिए, स्मूथ मानचित्र के ऊपर स्मूथ रेशा बंडलों के बीच एक स्मूथ बंडल मानचित्र के धारणा तक पहुंचा जाता है।"

दूसरा, हम फाइबरों में अतिरिक्त संरचना वाले फाइबर बंडल को भी विचार कर सकते हैं, और केवल उन बंडल मानचित्र पर ध्यान केंद्रित कर सकते हैं जो इस संरचना को संरक्षित रखते हैं। इससे, उदाहरण के लिए, बंडल होमोमॉर्फिज्म की धारणा आती है जिसमें फाइबर विभाग सदिश समष्टि होते हैं, और एक बंडल मानचित्र φ को हर फाइबर पर एक रैखिक मानचित्र माना जाता है। इस स्थिति में, ऐसे एक बंडल मानचित्र φ को व्यूह भी देखा जा सकता है जो बिंदु व्यूह Hom(E,f*F) के एक अनुच्छेद के रूप में समझा जा सकता है, जिसका बिंदु व्यूह होम (Ex,Ff(x)) (जिसे L(Ex,Ff(x)) भी लिखा जाता है) होता है, जो Ex से Ff(x) की रैखिक मानचित्र होते हैं।