आवेग अपरिवर्तनशीलता: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
आवेग अपरिवर्तनशीलता निरंतर-समय फिल्टर से असतत-समय [[अनंत-आवेग-प्रतिक्रिया]] (आईआईआर) फिल्टर को डिजाइन करने की तकनीक है जिसमें निरंतर-समय प्रणाली की आवेग प्रतिक्रिया को असतत-समय प्रणाली की आवेग प्रतिक्रिया उत्पन्न करने के लिए प्रारूपित किया जाता है। असतत-समय प्रणाली की आवृत्ति प्रतिक्रिया निरंतर-समय प्रणाली की आवृत्ति प्रतिक्रिया की स्थानांतरित प्रतियों का योग है; यदि निरंतर-समय प्रणाली प्रारूप की [[नाइक्विस्ट आवृत्ति]] से कम आवृत्ति तक लगभग बैंड-सीमित है, तो असतत-समय प्रणाली की आवृत्ति प्रतिक्रिया नाइक्विस्ट आवृत्ति से नीचे की आवृत्तियों के लिए लगभग इसके समान होती है। | |||
== | ==विचार== | ||
निरंतर-समय प्रणाली की आवेग प्रतिक्रिया <math>h_c(t)</math> को भिन्न-भिन्न समय प्रणाली की आवेग प्रतिक्रिया उत्पन्न करने के लिए प्रतिरूप अवधि <math>T</math> के साथ प्रतिरूप <math>h[n]</math> लिया जाता है | |||
:<math>h[n]=Th_c(nT)\,</math> | :<math>h[n]=Th_c(nT)\,</math> | ||
Line 8: | Line 8: | ||
:<math>H(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^\infty{H_c\left(j\frac{\omega}{T} + j\frac{2{\pi}}{T}k\right)}\,</math> | :<math>H(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^\infty{H_c\left(j\frac{\omega}{T} + j\frac{2{\pi}}{T}k\right)}\,</math> | ||
यदि निरंतर समय फ़िल्टर लगभग बैंड-सीमित है ( | |||
यदि निरंतर समय फ़िल्टर लगभग बैंड-सीमित है (अर्थात <math>H_c(j\Omega) < \delta</math> जब <math>|\Omega| \ge \pi/T</math> तो असतत-समय प्रणाली की आवृत्ति प्रतिक्रिया लगभग π रेडियन प्रति प्रारूप (नाइक्विस्ट आवृत्ति 1/(2T) हर्ट्ज)के नीचे) से नीचे आवृत्तियों के लिए निरंतर-समय प्रणाली की आवृत्ति प्रतिक्रिया होगी) : | |||
:<math>H(e^{j\omega}) = H_c(j\omega/T)\,</math> के लिए <math>|\omega| \le \pi\,</math> | :<math>H(e^{j\omega}) = H_c(j\omega/T)\,</math> के लिए <math>|\omega| \le \pi\,</math> | ||
Line 15: | Line 17: | ||
===[[द्विरेखीय परिवर्तन]] की तुलना=== | ===[[द्विरेखीय परिवर्तन]] की तुलना=== | ||
ध्यान दें कि अलियासिंग होगी, जिसमें नाइक्विस्ट आवृत्ति के नीचे अलियासिंग भी | ध्यान दें कि अलियासिंग होगी, जिसमें नाइक्विस्ट आवृत्ति के नीचे अलियासिंग भी सम्मिलित है, इस हद तक कि निरंतर-समय फ़िल्टर की प्रतिक्रिया उस आवृत्ति के ऊपर गैर-शून्य है। बिलिनियर ट्रांसफॉर्म आवेग अपरिवर्तनीयता का विकल्प है जो भिन्न मैपिंग का उपयोग करता है जो निरंतर समय प्रणाली की आवृत्ति प्रतिक्रिया को अनंत आवृत्ति से माप करता है, मैपिंग के विपरीत, भिन्न-भिन्न समय के स्थिति में नाइक्विस्ट आवृत्ति तक आवृत्तियों की सीमा में माप करता है आवृत्तियाँ वृत्ताकार ओवरलैप के साथ रैखिक रूप से होती हैं जैसा कि आवेग आक्रमण करता है। | ||
=== | ===कार्य प्रणाली में ध्रुवों पर प्रभाव=== | ||
यदि निरंतर ध्रुव पर <math>s = s_k</math>, | यदि निरंतर ध्रुव पर <math>s = s_k</math>, कार्य प्रणाली को आंशिक अंश विस्तार में लिखा जा सकता है | ||
:<math>H_c(s) = \sum_{k=1}^N{\frac{A_k}{s-s_k}}\,</math> | :<math>H_c(s) = \sum_{k=1}^N{\frac{A_k}{s-s_k}}\,</math> | ||
Line 31: | Line 33: | ||
:<math>h[n] = Th_c(nT)\,</math> | :<math>h[n] = Th_c(nT)\,</math> | ||
:<math>h[n] = T \sum_{k=1}^N{A_ke^{s_knT}u[n]}\,</math> | :<math>h[n] = T \sum_{k=1}^N{A_ke^{s_knT}u[n]}\,</math> | ||
असतत-समय आवेग प्रतिक्रिया पर z-परिवर्तन करने से निम्नलिखित असतत-समय प्रणाली | असतत-समय आवेग प्रतिक्रिया पर z-परिवर्तन करने से निम्नलिखित असतत-समय कार्य प्रणाली उत्पन्न होता है | ||
:<math>H(z) = T \sum_{k=1}^N{\frac{A_k}{1-e^{s_kT}z^{-1}}}\,</math> | :<math>H(z) = T \sum_{k=1}^N{\frac{A_k}{1-e^{s_kT}z^{-1}}}\,</math> | ||
इस प्रकार निरंतर-समय प्रणाली | इस प्रकार निरंतर-समय कार्य प्रणाली से ध्रुवों को z = e<sup>s<sub>k</sub>T</sup> पर ध्रुवों में अनुवादित किया जाता है. शून्य, यदि कोई हो, इतनी सरलता से माप नहीं किए जाते हैं। | ||
===ध्रुव और शून्य=== | ===ध्रुव और शून्य=== | ||
यदि | यदि कार्य प्रणाली में शून्य के साथ-साथ ध्रुव भी हैं, तो उन्हें उसी तरह से माप किया जा सकता है, किन्तु परिणाम अब आवेग अपरिवर्तनीय परिणाम नहीं है: असतत-समय आवेग प्रतिक्रिया केवल निरंतर-समय आवेग प्रतिक्रिया के प्रतिरूपों के समान नहीं है। इस विधि को [[मिलान Z-रूपांतरण विधि]], या पोल-ज़ीरो मैपिंग के रूप में जाना जाता है। | ||
===स्थिरता और कारणता=== | ===स्थिरता और कारणता=== | ||
चूँकि सतत-समय प्रणाली में ध्रुव | |||
चूँकि s = s<sub>k</sub> पर सतत-समय प्रणाली में ध्रुव, z = exp(s<sub>k</sub>T) पर असतत-समय प्रणाली में ध्रुवों में परिवर्तित हो जाते हैं, s-तल माप के बाएँ आधे भाग में ध्रुव z-तल में इकाई वृत्त के अंदर हो जाते हैं ; इसलिए यदि निरंतर-समय फ़िल्टर कारणात्मक और स्थिर है, तो असतत-समय फ़िल्टर भी कारणात्मक और स्थिर होगा। | |||
===संशोधित सूत्र=== | ===संशोधित सूत्र=== | ||
जब | जब एक कारण निरंतर-समय आवेग प्रतिक्रिया में <math>t=0</math> पर असंततता होती है, तो उपरोक्त अभिव्यक्तियाँ सुसंगत नहीं होती हैं।<ref>{{Cite journal|title = आवेग अपरिवर्तनशीलता के लिए एक सुधार|journal = IEEE Signal Processing Letters|date = 2000-10-01|issn = 1070-9908|pages = 273–275|volume = 7|issue = 10|doi = 10.1109/97.870677|first = L.B.|last = Jackson}}</ref> ऐसा इसलिए है क्योंकि <math>h_c (0)</math> की दाएं और बाएं सीमाएं भिन्न-भिन्न हैं, और उन्हें वास्तव में केवल अपने औसत का योगदान करना चाहिए, इसके सही मूल्य का अर्ध भाग <math>h_c (0_+)</math> से <math>h[0]</math> है | ||
यह सुधार करने से मिलता है | यह सुधार करने से मिलता है | ||
Line 50: | Line 53: | ||
:<math>h[n] = T \left( h_c(nT) - \frac{1}{2} h_c(0_+)\delta [n] \right) \,</math> | :<math>h[n] = T \left( h_c(nT) - \frac{1}{2} h_c(0_+)\delta [n] \right) \,</math> | ||
:<math>h[n] = T \sum_{k=1}^N{A_ke^{s_knT}} \left( u[n] - \frac{1}{2} \delta[n] \right) \,</math> | :<math>h[n] = T \sum_{k=1}^N{A_ke^{s_knT}} \left( u[n] - \frac{1}{2} \delta[n] \right) \,</math> | ||
असतत-समय आवेग प्रतिक्रिया पर z-परिवर्तन करने से निम्नलिखित असतत-समय प्रणाली | असतत-समय आवेग प्रतिक्रिया पर z-परिवर्तन करने से निम्नलिखित असतत-समय कार्य प्रणाली उत्पन्न होता है | ||
:<math>H(z) = T \sum_{k=1}^N{\frac{A_k}{1-e^{s_kT}z^{-1}} - \frac{T}{2} \sum_{k=1}^N A_k}.</math> | :<math>H(z) = T \sum_{k=1}^N{\frac{A_k}{1-e^{s_kT}z^{-1}} - \frac{T}{2} \sum_{k=1}^N A_k}.</math> | ||
बिना किसी असंततता वाले फिल्टर के लिए दूसरा योग शून्य है, यही कारण है कि इसे अनदेखा करना | बिना किसी असंततता वाले फिल्टर के लिए दूसरा योग शून्य है, यही कारण है कि इसे अनदेखा करना अधिकांशतः सुरक्षित होता है। | ||
==यह भी देखें== | ==यह भी देखें == | ||
* द्विरेखीय परिवर्तन | * द्विरेखीय परिवर्तन | ||
* मिलान Z- | * मिलान Z-परिवर्तन विधि | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 08:55, 17 August 2023
आवेग अपरिवर्तनशीलता निरंतर-समय फिल्टर से असतत-समय अनंत-आवेग-प्रतिक्रिया (आईआईआर) फिल्टर को डिजाइन करने की तकनीक है जिसमें निरंतर-समय प्रणाली की आवेग प्रतिक्रिया को असतत-समय प्रणाली की आवेग प्रतिक्रिया उत्पन्न करने के लिए प्रारूपित किया जाता है। असतत-समय प्रणाली की आवृत्ति प्रतिक्रिया निरंतर-समय प्रणाली की आवृत्ति प्रतिक्रिया की स्थानांतरित प्रतियों का योग है; यदि निरंतर-समय प्रणाली प्रारूप की नाइक्विस्ट आवृत्ति से कम आवृत्ति तक लगभग बैंड-सीमित है, तो असतत-समय प्रणाली की आवृत्ति प्रतिक्रिया नाइक्विस्ट आवृत्ति से नीचे की आवृत्तियों के लिए लगभग इसके समान होती है।
विचार
निरंतर-समय प्रणाली की आवेग प्रतिक्रिया को भिन्न-भिन्न समय प्रणाली की आवेग प्रतिक्रिया उत्पन्न करने के लिए प्रतिरूप अवधि के साथ प्रतिरूप लिया जाता है
इस प्रकार, दोनों प्रणालियों की आवृत्ति प्रतिक्रियाएँ संबंधित हैं
यदि निरंतर समय फ़िल्टर लगभग बैंड-सीमित है (अर्थात जब तो असतत-समय प्रणाली की आवृत्ति प्रतिक्रिया लगभग π रेडियन प्रति प्रारूप (नाइक्विस्ट आवृत्ति 1/(2T) हर्ट्ज)के नीचे) से नीचे आवृत्तियों के लिए निरंतर-समय प्रणाली की आवृत्ति प्रतिक्रिया होगी) :
- के लिए
द्विरेखीय परिवर्तन की तुलना
ध्यान दें कि अलियासिंग होगी, जिसमें नाइक्विस्ट आवृत्ति के नीचे अलियासिंग भी सम्मिलित है, इस हद तक कि निरंतर-समय फ़िल्टर की प्रतिक्रिया उस आवृत्ति के ऊपर गैर-शून्य है। बिलिनियर ट्रांसफॉर्म आवेग अपरिवर्तनीयता का विकल्प है जो भिन्न मैपिंग का उपयोग करता है जो निरंतर समय प्रणाली की आवृत्ति प्रतिक्रिया को अनंत आवृत्ति से माप करता है, मैपिंग के विपरीत, भिन्न-भिन्न समय के स्थिति में नाइक्विस्ट आवृत्ति तक आवृत्तियों की सीमा में माप करता है आवृत्तियाँ वृत्ताकार ओवरलैप के साथ रैखिक रूप से होती हैं जैसा कि आवेग आक्रमण करता है।
कार्य प्रणाली में ध्रुवों पर प्रभाव
यदि निरंतर ध्रुव पर , कार्य प्रणाली को आंशिक अंश विस्तार में लिखा जा सकता है
इस प्रकार, व्युत्क्रम लाप्लास परिवर्तन का उपयोग करते हुए, आवेग प्रतिक्रिया है
संबंधित असतत-समय प्रणाली की आवेग प्रतिक्रिया को फिर निम्नलिखित के रूप में परिभाषित किया गया है
असतत-समय आवेग प्रतिक्रिया पर z-परिवर्तन करने से निम्नलिखित असतत-समय कार्य प्रणाली उत्पन्न होता है
इस प्रकार निरंतर-समय कार्य प्रणाली से ध्रुवों को z = eskT पर ध्रुवों में अनुवादित किया जाता है. शून्य, यदि कोई हो, इतनी सरलता से माप नहीं किए जाते हैं।
ध्रुव और शून्य
यदि कार्य प्रणाली में शून्य के साथ-साथ ध्रुव भी हैं, तो उन्हें उसी तरह से माप किया जा सकता है, किन्तु परिणाम अब आवेग अपरिवर्तनीय परिणाम नहीं है: असतत-समय आवेग प्रतिक्रिया केवल निरंतर-समय आवेग प्रतिक्रिया के प्रतिरूपों के समान नहीं है। इस विधि को मिलान Z-रूपांतरण विधि, या पोल-ज़ीरो मैपिंग के रूप में जाना जाता है।
स्थिरता और कारणता
चूँकि s = sk पर सतत-समय प्रणाली में ध्रुव, z = exp(skT) पर असतत-समय प्रणाली में ध्रुवों में परिवर्तित हो जाते हैं, s-तल माप के बाएँ आधे भाग में ध्रुव z-तल में इकाई वृत्त के अंदर हो जाते हैं ; इसलिए यदि निरंतर-समय फ़िल्टर कारणात्मक और स्थिर है, तो असतत-समय फ़िल्टर भी कारणात्मक और स्थिर होगा।
संशोधित सूत्र
जब एक कारण निरंतर-समय आवेग प्रतिक्रिया में पर असंततता होती है, तो उपरोक्त अभिव्यक्तियाँ सुसंगत नहीं होती हैं।[1] ऐसा इसलिए है क्योंकि की दाएं और बाएं सीमाएं भिन्न-भिन्न हैं, और उन्हें वास्तव में केवल अपने औसत का योगदान करना चाहिए, इसके सही मूल्य का अर्ध भाग से है
यह सुधार करने से मिलता है
असतत-समय आवेग प्रतिक्रिया पर z-परिवर्तन करने से निम्नलिखित असतत-समय कार्य प्रणाली उत्पन्न होता है
बिना किसी असंततता वाले फिल्टर के लिए दूसरा योग शून्य है, यही कारण है कि इसे अनदेखा करना अधिकांशतः सुरक्षित होता है।
यह भी देखें
- द्विरेखीय परिवर्तन
- मिलान Z-परिवर्तन विधि
संदर्भ
- ↑ Jackson, L.B. (2000-10-01). "आवेग अपरिवर्तनशीलता के लिए एक सुधार". IEEE Signal Processing Letters. 7 (10): 273–275. doi:10.1109/97.870677. ISSN 1070-9908.
अन्य स्रोत
- ओपेनहेम, एलन वी. और शेफ़र, रोनाल्ड डब्ल्यू. बक के साथ, जॉन आर. डिस्क्रीट-टाइम सिग्नल प्रोसेसिंग। दूसरा संस्करण। अपर सैडल रिवर, न्यू जर्सी: प्रेंटिस-हॉल, 1999।
- सहाय, अनंत। पाठ्यक्रम व्याख्यान. इलेक्ट्रिकल इंजीनियरिंग 123: डिजिटल सिग्नल प्रोसेसिंग। यूनिवर्सिटी ऑफ कैलिफोर्निया, बर्केले। 5 अप्रैल 2007.
- एइटेलबर्ग, एड. कन्वोल्यूशन इनवेरिएंस और सही आवेग इनवेरिएंस। सिग्नल प्रोसेसिंग, वॉल्यूम। 86, अंक 5, पृ. 1116-1120. 2006
बाहरी संबंध
- Impulse Invariant Transform at CircuitDesign.info Brief explanation, an example, and application to Continuous Time Sigma Delta ADC's.