डी इलेक्ट्रॉन गिनती: Difference between revisions
No edit summary |
No edit summary |
||
(10 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Description of the electron configuration}} | {{Short description|Description of the electron configuration}} | ||
{{lowercase|d electron count}} | {{lowercase|d electron count}} | ||
डी इलेक्ट्रॉन गणना रसायन शास्त्र की एक विचारधारा है जिसका उपयोग [[ समन्वय परिसर |समन्वय परिसर]] में [[ संक्रमण धातु |संक्रमण धातु]] केंद्र के [[ रासायनिक संयोजन इलेक्ट्रॉन |रासायनिक संयोजन इलेक्ट्रॉन]] के इलेक्ट्रॉन विन्यास का वर्णन करने के लिए किया जाता है।<ref>{{Cite journal | डी (d) इलेक्ट्रॉन गणना रसायन शास्त्र की एक विचारधारा है जिसका उपयोग [[ समन्वय परिसर |समन्वय परिसर]] में [[ संक्रमण धातु |संक्रमण धातु]] केंद्र के [[ रासायनिक संयोजन इलेक्ट्रॉन |रासायनिक संयोजन इलेक्ट्रॉन]] के इलेक्ट्रॉन विन्यास का वर्णन करने के लिए किया जाता है।<ref>{{Cite journal | ||
| doi = 10.1016/0022-328X(95)00508-N | | doi = 10.1016/0022-328X(95)00508-N | ||
| issn = 0022-328X | | issn = 0022-328X | ||
Line 12: | Line 12: | ||
| date = 1995-09-20 | | date = 1995-09-20 | ||
| url=http://www.columbia.edu/cu/chemistry/groups/parkin/cbc.htm | | url=http://www.columbia.edu/cu/chemistry/groups/parkin/cbc.htm | ||
}}</ref><ref>[http://www.columbia.edu/cu/chemistry/groups/parkin/mlxz.htm MLX Plots (Ged Parkin group website, Columbia University)]</ref> डी इलेक्ट्रॉन गणना संक्रमण धातु परिसरों की ज्यामिति और प्रतिक्रियाशीलता को समझने का एक प्रभावी तरीका है। विचारधारा को समन्वय परिसरों का वर्णन करने के लिए उपयोग किए जाने वाले दो प्रमुख मॉडलों में | }}</ref><ref>[http://www.columbia.edu/cu/chemistry/groups/parkin/mlxz.htm MLX Plots (Ged Parkin group website, Columbia University)]</ref> डी इलेक्ट्रॉन गणना संक्रमण धातु परिसरों की ज्यामिति और प्रतिक्रियाशीलता को समझने का एक प्रभावी तरीका है। विचारधारा को समन्वय परिसरों का वर्णन करने के लिए उपयोग किए जाने वाले दो प्रमुख मॉडलों में सम्मिलित किया गया है; [[ क्रिस्टल क्षेत्र सिद्धांत |क्रिस्टल क्षेत्र सिद्धांत]] और [[ लिगैंड क्षेत्र सिद्धांत |लिगैंड क्षेत्र सिद्धांत]], जो [[ आणविक कक्षीय सिद्धांत |आणविक कक्षीय सिद्धांत]] पर आधारित एक अधिक उन्नत संस्करण है।<ref name=MiesslerTarr>{{cite book | last = Miessler | first = Gary L. |first2=Donald A. |last2=Tarr | year = 1998 | title = अकार्बनिक रसायन शास्त्र|edition=2nd| publisher = Pearson Education | location = Upper Saddle River, NJ | isbn = 0-13-841891-8}}</ref> | ||
== मानक इलेक्ट्रॉन विन्यास परिप्रेक्ष्य == | == मानक इलेक्ट्रॉन विन्यास परिप्रेक्ष्य == | ||
सरल औफबौ सिद्धांत और मैडेलंग के नियम द्वारा भविष्यवाणी की गई संक्रमण धातुओं के लिए इलेक्ट्रॉन विन्यास में अधिकांश परिवेश परिस्तिथियों के तहत संक्रमण धातु केंद्रों के प्रयोगात्मक अवलोकनों के साथ गंभीर विरोधाभास | सरल औफबौ सिद्धांत और मैडेलंग के नियम द्वारा भविष्यवाणी की गई कि संक्रमण धातुओं के लिए इलेक्ट्रॉन विन्यास में अधिकांश परिवेश परिस्तिथियों के तहत संक्रमण धातु केंद्रों के प्रयोगात्मक अवलोकनों के साथ गंभीर विरोधाभास है। अधिकांश परिस्थितियों में संक्रमण धातु केंद्र के सभी संयोजन इलेक्ट्रॉन d ऑर्बिटल्स में स्थित होते हैं, जबकि इलेक्ट्रॉन विन्यास का मानक मॉडल उनमें से कुछ को प्रासंगिक s ऑर्बिटल में होने का अनुमान लगाता है। | ||
संक्रमण धातु केंद्र की संयोजकता को मानक क्वांटम संख्याओं द्वारा वर्णित किया जा सकता है। औफबौ सिद्धांत और मैडेलुंग का नियम n आवर्त के लिए भविष्यवाणी | संक्रमण धातु केंद्र की संयोजकता को मानक क्वांटम संख्याओं द्वारा वर्णित किया जा सकता है। औफबौ सिद्धांत और मैडेलुंग का नियम n आवर्त के लिए भविष्यवाणी करता है कि ns ऑर्बिटल्स (n − 1)d ऑर्बिटल्स से पहले भरते हैं। उदाहरण के लिए 4s, आवर्त 4 में 3d से पहले भरता है। सामान्य रसायन शास्त्र की पाठ्यपुस्तकों में, कुछ अपवादों को ns ऑर्बिटल्स में केवल एक इलेक्ट्रॉन के साथ आधा या संपूर्ण d शेल पूरा करने के पक्ष में स्वीकार किया जाता है। सामान्य व्याख्या यह है कि आधे भरे या पूरी तरह से भरे हुए सबशेल्स विशेष रूप से इलेक्ट्रॉनों की स्थिर व्यवस्था हैं। एक उदाहरण क्रोमियम है जिसका इलेक्ट्रॉन विन्यास [Ar]4s<sup>1</sup>3d<sup>5</sup> है, आधे भरे हुए d सबशेल्स के साथ, हालांकि मैडेलुंग का नियम [Ar]4s<sup>2</sup>3d<sup>4</sup> इसी प्रकार तांबा [Ar]4s<sup>1</sup>3d<sup>10</sup> एक पूर्ण d उपकोश के साथ है, न कि [Ar]4s<sup>2</sup>3d<sup>9<big><ref name="MiesslerTarr" />{{rp|38}}</big></sup> | ||
<sup><big><sup>जब धातु केंद्रों का ऑक्सीकरण होता है तो मामले और जटिल हो जाते हैं। चूंकि (n − 1)d शेल में ns शेल की तुलना में अधिक ऊर्जा होने की भविष्यवाणी की गई है, यह उम्मीद की जा सकती है कि इलेक्ट्रॉनों को पहले (n − 1)d शेल से हटा दिया जाएगा। प्रायोगिक तौर पर यह देखा गया है कि न केवल पहले ns इलेक्ट्रॉनों को हटाया जाता है, यहां तक कि संघीकृत परिसरों के लिए भी सभी संयोजन इलेक्ट्रॉन (n − 1)d ऑर्बिटल्स में स्थित होते हैं।</big> | <sup><big><sup>जब धातु केंद्रों का ऑक्सीकरण होता है तो मामले और जटिल हो जाते हैं। चूंकि (n − 1)d शेल में ns शेल की तुलना में अधिक ऊर्जा होने की भविष्यवाणी की गई है, यह उम्मीद की जा सकती है कि इलेक्ट्रॉनों को पहले (n − 1)d शेल से हटा दिया जाएगा। प्रायोगिक तौर पर यह देखा गया है कि न केवल पहले ns इलेक्ट्रॉनों को हटाया जाता है, यहां तक कि संघीकृत परिसरों के लिए भी सभी संयोजन इलेक्ट्रॉन (n − 1)d ऑर्बिटल्स में स्थित होते हैं।</big> | ||
इस घटना के लिए विभिन्न आधारहीन तर्क हैं जिनमें ns इलेक्ट्रॉन नाभिक से दूर हैं और इस प्रकार तटस्थ परिसरों के आधार पर परिणामों की अनदेखी करते हुए पहले आयनित होते हैं। यह खराब व्याख्या मानक इलेक्ट्रॉन विन्यास मॉडल के साथ बुनियादी समस्याओं से बचाती है। मानक इलेक्ट्रॉन विन्यास मॉडल अन्य सभी परमाणुओं से हटाए गए | इस घटना के लिए विभिन्न आधारहीन तर्क हैं जिनमें ns इलेक्ट्रॉन नाभिक से दूर हैं और इस प्रकार तटस्थ परिसरों के आधार पर परिणामों की अनदेखी करते हुए पहले आयनित होते हैं। यह खराब व्याख्या मानक इलेक्ट्रॉन विन्यास मॉडल के साथ बुनियादी समस्याओं से बचाती है। मानक इलेक्ट्रॉन विन्यास मॉडल अन्य सभी परमाणुओं से हाइड्रोजन जैसे हटाए गए परमाणु को मानता है। यह धारणा केवल गूढ़ स्थितियों के लिए ही सही मायने में प्रासंगिक है। धातु केंद्रों के लिए धात्विक बंधों या सहसंयोजक बंधों के माध्यम से अन्य परमाणुओं के साथ बंधन होना कहीं अधिक सामान्य है। ये बांड ऑर्बिटल्स की ऊर्जा को काफी हद तक बदल देते हैं जिसके लिए इलेक्ट्रॉन विन्यास की भविष्यवाणी की जाती है। इस प्रकार समन्वय परिसरों के लिए मानक इलेक्ट्रॉन विन्यास औपचारिकता अर्थहीन है और डी इलेक्ट्रॉन गणना औपचारिकता एक उपयुक्त विकल्प है। | ||
== लिगैंड क्षेत्र परिप्रेक्ष्य == | == लिगैंड क्षेत्र परिप्रेक्ष्य == | ||
[[File:LFTi(III).png|thumb|upright=1.7|लिगैंड क्षेत्र योजना अष्टफलकीय परिसर में -बंधन को सारांशित करती है [Ti(H | [[File:LFTi(III).png|thumb|upright=1.7|लिगैंड क्षेत्र योजना अष्टफलकीय परिसर में -बंधन को सारांशित करती है [Ti(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup>.]]क्रिस्टल क्षेत्र सिद्धांत कई भौतिक घटनाओं का अच्छी तरह से वर्णन करता है लेकिन बंधन का वर्णन नहीं करता है और न ही इस बात की व्याख्या करता है कि ns इलेक्ट्रॉनों को (n − 1)d इलेक्ट्रॉनों से पहले क्यों आयनित होते हैं। वर्तमान लिगैंड क्षेत्र सिद्धांत इस मॉडल घटना की अपेक्षाकृत अच्छी और सरल स्पष्टीकरण प्रदान करता है । | ||
लिगैंड फील्ड थ्योरी द्वारा प्रस्तुत मॉडल के अनुसार, ns ऑर्बिटल लिगैंड्स के साथ बॉन्डिंग में | लिगैंड फील्ड थ्योरी द्वारा प्रस्तुत मॉडल के अनुसार, ns ऑर्बिटल लिगैंड्स के साथ बॉन्डिंग में सम्मिलित होता है और एक मजबूत बॉन्डिंग ऑर्बिटल बनाता है जिसमें मुख्य रूप से लिगैंड कैरेक्टर होता है और इसके अनुरूप मजबूत एंटी-बॉन्डिंग ऑर्बिटल होता है जो कि खाली होता है और आमतौर पर सबसे निचले खाली मॉलिक्यूलर ऑर्बिटल (एलयूएम्वो) के ऊपर होता है। चूंकि ns ऑर्बिटल से उत्पन्न ऑर्बिटल्स या तो बॉन्डिंग में नीचे होते हैं या संयोजन से काफी ऊपर हैं और ns ऑर्बिटल्स संयोजन का वर्णन करने के लिए प्रासंगिक नहीं हैं। अंतिम परिसर की ज्यामिति के आधार पर, या तो तीनों np ऑर्बिटल्स या उनमें से कुछ, ns ऑर्बिटल्स की तरह बॉन्डिंग में सम्मिलित होते हैं। यदि कोई np ऑर्बिटल्स गैर-बंधन रह जाता है तो भी परिसर की संयोजन से अधिक होता है। यह (n − 1)d ऑर्बिटल्स को बॉन्डिंग के कुछ हिस्से में सम्मिलित होने के लिए छोड़ देता है और इस प्रक्रिया में मेटल कॉम्प्लेक्स के संयोजन इलेक्ट्रॉनों का भी वर्णन करता है। संयोजकता का अंतिम विवरण, परिसर की ज्यामिति पर अत्यधिक निर्भर है, जो बदले में d इलेक्ट्रॉन गणना और संबद्ध लिगेंड के चरित्र पर अत्यधिक निर्भर है। | ||
उदाहरण के लिए, [Ti(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup> के लिए प्रदान किए गए MO आरेख में ns ऑर्बिटल - जिसे परमाणु ऑर्बिटल्स (AOs) के प्रतिनिधित्व में (n − 1)d के ऊपर रखा गया है - का उपयोग लिगैंड ऑर्बिटल्स के साथ एक रेखीय संयोजन में किया जाता है, जो महत्वपूर्ण लिगैंड के साथ एक बहुत ही स्थिर बॉन्डिंग ऑर्बिटल बनाता | उदाहरण के लिए, [Ti(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup> के लिए प्रदान किए गए MO आरेख में ns ऑर्बिटल - जिसे परमाणु ऑर्बिटल्स (AOs) के प्रतिनिधित्व में (n − 1)d के ऊपर रखा गया है - का उपयोग लिगैंड ऑर्बिटल्स के साथ एक रेखीय संयोजन में किया जाता है, जो महत्वपूर्ण लिगैंड के साथ एक बहुत ही स्थिर बॉन्डिंग ऑर्बिटल बनाता है, लिगैंड कॅरेक्टर के साथ-साथ एक खाली उच्च ऊर्जा एंटीबॉडी कक्षीय जो दिखाया नहीं गया है। इस स्थिति में जटिल ज्यामिति ऑक्टाहेड्रल आणविक ज्यामिति है, जिसका अर्थ है कि दो d ऑर्बिटल्स में बॉन्डिंग में सम्मिलित होने के लिए उचित ज्यामिति है। मूल मॉडल में अन्य तीन d ऑर्बिटल्स का लिगैंड के साथ महत्वपूर्ण अंतःक्रिया नहीं होता है और तीन डीजेनरेट नॉन-बॉन्डिंग ऑर्बिटल्स के रूप में बने रहते हैं। दो ऑर्बिटल्स जो बॉन्डिंग में सम्मिलित होते हैं, दो लिगैंड ऑर्बिटल्स के साथ उचित समरूपता के साथ एक रैखिक संयोजन बनाते हैं। इसके परिणामस्वरूप दो भरे हुए बॉन्डिंग ऑर्बिटल्स और दो ऑर्बिटल्स होते हैं जो आमतौर पर सबसे कम खाली मॉलिक्यूलर ऑर्बिटल्स (एलयूएम्वो) या उच्चतम आंशिक रूप से भरे हुए मॉलिक्यूलर ऑर्बिटल्स होते हैं - सबसे ज्यादा ऑक्यूपाइड मॉलिक्यूलर ऑर्बिटल्स (एचओएमओ ) पर भिन्नता होती है। | ||
== तानबे-सुगानो आरेख == | == तानबे-सुगानो आरेख == | ||
दस संभावित | दस संभावित d इलेक्ट्रॉन गणनाओं में से प्रत्येक में एक संबद्ध तानाबे-सुगानो आरेख है जो संभावित लिगैंड क्षेत्र के वातावरण के उन्नयन का वर्णन करता है, एक धातु केंद्र एक ऑक्टाहेड्रल आणविक ज्यामिति ज्यामिति में अनुभव कर सकता है। तनाबे-सुगानो आरेख थोड़ी मात्रा में जानकारी के साथ d से d कक्षीय इलेक्ट्रॉन संक्रमण के परिणामस्वरूप यूवी और दृश्यमान विद्युत चुम्बकीय स्पेक्ट्रम में अवशोषण की सटीक भविष्यवाणी करता है। ये ही d-d ट्रांज़िशन हैं, जो लिगैंड टू मेटल चार्ज ट्रांसफर (एलएमसीटी), या मेटल टू लिगैंड चार्ज ट्रांसफर (एमएलसीटी) जो आम तौर पर मेटल कॉम्प्लेक्स को उनके जीवंत रंग देते हैं। | ||
== सीमा == | == सीमा == | ||
यह याद रखना महत्वपूर्ण है कि | यह याद रखना महत्वपूर्ण है कि d इलेक्ट्रॉन गणना एक सिद्धांत है और कुछ परिसरों को दूसरों की तुलना में बेहतर तरीके से वर्णित करती है। धातु केंद्र या लिगैंड को इलेक्ट्रॉनों और चार्ज को प्रदान करना अक्सर मुश्किल या असंभव होता है। +4 चार्ज या इससे अधिक चार्ज वाले हाई-ऑक्सीडेशन-स्टेट मेटल सेंटर के लिए यह समझा जाता है कि वास्तविक चार्ज सेपरेशन बहुत छोटा है। लेकिन रसायन शास्त्र को समझने की कोशिश करते समय औपचारिक ऑक्सीकरण अवस्था और d इलेक्ट्रॉन गिनती का जिक्र करना अभी भी उपयोगी हो सकता है। | ||
== संभव डी इलेक्ट्रॉन | == संभव डी इलेक्ट्रॉन गणना == | ||
हर संभव d इलेक्ट्रॉन विन्यास के कई उदाहरण हैं। प्रत्येक संभावित | हर संभव d इलेक्ट्रॉन विन्यास के कई उदाहरण हैं। प्रत्येक संभावित d इलेक्ट्रॉन गणना और प्रतिनिधि उदाहरणों की सामान्य ज्यामिति और विशेषताओं का संक्षिप्त विवरण निम्नानुसार है। | ||
: | :d<sup>0</sup> | ||
:आमतौर पर [[ टेट्राहेड्रल आणविक ज्यामिति ]]; हालाँकि यह d | :आमतौर पर [[ टेट्राहेड्रल आणविक ज्यामिति |टेट्राहेड्रल आणविक ज्यामिति]]; हालाँकि यह d<sup>0</sup> के लिए संभव है, कई इलेक्ट्रॉन जोड़े (बॉन्ड/समन्वय संख्या) को समायोजित करने के लिए कॉम्प्लेक्स क्योंकि उनके d ऑर्बिटल्स खाली हैं और[[ 18-इलेक्ट्रॉन नियम |18-]]इलेक्ट्रॉन सीमा से काफी दूर हैं। d से d संक्रमण की कमी के कारण अक्सर रंगहीन। | ||
उदाहरण: [[ टाइटेनियम टेट्राक्लोराइड ]], [[ टाइटेनोसिन डाइक्लोराइड ]], श्वार्ट्ज का | उदाहरण: [[ टाइटेनियम टेट्राक्लोराइड | टाइटेनियम टेट्राक्लोराइड]], [[ टाइटेनोसिन डाइक्लोराइड |टाइटेनोसिन डाइक्लोराइड]], श्वार्ट्ज का अभिकर्मक है। | ||
: | :d<sup>1</sup> | ||
:उदाहरण: मोलिब्डेनम (V) क्लोराइड, [[ वैनाडिल एसिटाइलसेटोनेट ]], [[ वैनाडोसीन डाइक्लोराइड ]], [[ वैनेडियम टेट्राक्लोराइड ]]। | :उदाहरण: मोलिब्डेनम (V) क्लोराइड, [[ वैनाडिल एसिटाइलसेटोनेट | वैनाडिल एसिटाइलसेटोनेट]], [[ वैनाडोसीन डाइक्लोराइड |वैनाडोसीन डाइक्लोराइड]], [[ वैनेडियम टेट्राक्लोराइड |वैनेडियम टेट्राक्लोराइड]] । | ||
: | :d<sup>2</sup> | ||
: उदाहरण: [[ टाइटेनोसिन डाइकारबोनील ]] | : उदाहरण: [[ टाइटेनोसिन डाइकारबोनील |टाइटेनोसिन डाइकारबोनील]] | ||
: | :d<sup>3</sup> | ||
:उदाहरण: रीनेके का नमक। | :उदाहरण: रीनेके का नमक। | ||
: | :d<sup>4</sup> | ||
: ऑक्टाहेड्रल हाई-स्पिन: 4 अयुग्मित इलेक्ट्रॉन, अनुचुंबकीय, प्रतिस्थापनीय रूप से लेबिल। | : ऑक्टाहेड्रल हाई-स्पिन: 4 अयुग्मित इलेक्ट्रॉन, अनुचुंबकीय, प्रतिस्थापनीय रूप से लेबिल। | ||
: ऑक्टाहेड्रल लो-स्पिन: 2 अयुग्मित इलेक्ट्रॉन, अनुचुंबकीय, स्थानापन्न रूप से निष्क्रिय। | : ऑक्टाहेड्रल लो-स्पिन: 2 अयुग्मित इलेक्ट्रॉन, अनुचुंबकीय, स्थानापन्न रूप से निष्क्रिय। | ||
: | :d<sup>5</sup> | ||
[[File:CFT-High Spin Splitting Diagram-Vector.svg|thumb|upright=1.3|हाई-स्पिन [Fe(NO | [[File:CFT-High Spin Splitting Diagram-Vector.svg|thumb|upright=1.3|हाई-स्पिन [Fe(NO<sub>2</sub>)<sub>6</sub>]<sup>3−</sup> क्रिस्टल क्षेत्र आरेख]] | ||
[[File:CFT-Low Spin Splitting Diagram-Vector.svg|thumb|upright=1.3|लो-स्पिन [Fe(NO | [[File:CFT-Low Spin Splitting Diagram-Vector.svg|thumb|upright=1.3|लो-स्पिन [Fe(NO<sub>2</sub>)<sub>6</sub>]<sup>3−</sup> क्रिस्टल क्षेत्र आरेख]]ऑक्टाहेड्रल हाई-स्पिन: 5 अयुग्मित इलेक्ट्रॉन, अनुचुंबकीय, प्रतिस्थापनीय रूप से लेबिल। | ||
: ऑक्टाहेड्रल लो-स्पिन: 1 अयुग्मित इलेक्ट्रॉन, अनुचुंबकीय, स्थानापन्न रूप से निष्क्रिय। | : ऑक्टाहेड्रल लो-स्पिन: 1 अयुग्मित इलेक्ट्रॉन, अनुचुंबकीय, स्थानापन्न रूप से निष्क्रिय। | ||
:उदाहरण: [[ पोटेशियम फेरियोऑक्सालेट ]], [[ वैनेडियम कार्बोनिल ]]। | :उदाहरण: [[ पोटेशियम फेरियोऑक्सालेट ]], [[ वैनेडियम कार्बोनिल ]]। | ||
: | :d<sup>6</sup> | ||
:आम तौर पर ऑक्टाहेड्रल आणविक ज्यामिति [[ उच्च स्पिन ]] और [[ कम स्पिन ]] दोनों में जटिल होती है। | :आम तौर पर ऑक्टाहेड्रल आणविक ज्यामिति [[ उच्च स्पिन |उच्च स्पिन]] और [[ कम स्पिन |कम स्पिन]] दोनों में जटिल होती है। | ||
: ऑक्टाहेड्रल हाई-स्पिन: 4 अयुग्मित इलेक्ट्रॉन, अनुचुंबकीय, प्रतिस्थापनीय रूप से लेबिल। | : ऑक्टाहेड्रल हाई-स्पिन: 4 अयुग्मित इलेक्ट्रॉन, अनुचुंबकीय, प्रतिस्थापनीय रूप से लेबिल। | ||
: ऑक्टाहेड्रल लो-स्पिन: कोई अयुग्मित इलेक्ट्रॉन नहीं, प्रतिचुंबकीय, प्रतिस्थापन रूप से निष्क्रिय। | : ऑक्टाहेड्रल लो-स्पिन: कोई अयुग्मित इलेक्ट्रॉन नहीं, प्रतिचुंबकीय, प्रतिस्थापन रूप से निष्क्रिय। | ||
:उदाहरण: हेक्सामिनकोबाल्ट (III) क्लोराइड, [[ सोडियम कोबाल्टिनिट्राइट ]], [[ मोलिब्डेनम हेक्साकार्बोनिल ]], [[ फेरोसीन ]], [[ फेरोइन ]], [[ क्रोमियम कार्बोनिल ]]। | :उदाहरण: हेक्सामिनकोबाल्ट (III) क्लोराइड, [[ सोडियम कोबाल्टिनिट्राइट ]], [[ मोलिब्डेनम हेक्साकार्बोनिल ]], [[ फेरोसीन ]], [[ फेरोइन ]], [[ क्रोमियम कार्बोनिल ]]। | ||
: | :d<sup>7</sup> | ||
: ऑक्टाहेड्रल उच्च स्पिन: 3 अयुग्मित इलेक्ट्रॉन, अनुचुंबकीय, प्रतिस्थापनीय रूप से प्रयोगशाला। | : ऑक्टाहेड्रल उच्च स्पिन: 3 अयुग्मित इलेक्ट्रॉन, अनुचुंबकीय, प्रतिस्थापनीय रूप से प्रयोगशाला। | ||
: ऑक्टाहेड्रल कम स्पिन: 1 अयुग्मित इलेक्ट्रॉन, अनुचुंबकीय, प्रतिस्थापनीय रूप से प्रयोगशाला। | : ऑक्टाहेड्रल कम स्पिन: 1 अयुग्मित इलेक्ट्रॉन, अनुचुंबकीय, प्रतिस्थापनीय रूप से प्रयोगशाला। | ||
: उदाहरण: [[ कोबाल्टोसिन ]]। | : उदाहरण: [[ कोबाल्टोसिन ]]। | ||
: | :d<sup>8</sup> | ||
: परिसर जो d | : परिसर जो d<sup>8</sup> हैं, हाई-स्पिन आमतौर पर ऑक्टाहेड्रल मॉलिक्यूलर ज्योमेट्री (या टेट्राहेड्रल मॉलिक्यूलर ज्योमेट्री) होते हैं जबकि लो-स्पिन d<sup>8</sup> कॉम्प्लेक्स आमतौर पर 16-इलेक्ट्रॉन स्क्वायर प्लानर कॉम्प्लेक्स होते हैं। पहली पंक्ति संक्रमण धातु परिसरों जैसे Ni<sup>2+</sup> के लिए और Cu<sup>+</sup> पांच-समन्वित 18-इलेक्ट्रॉन प्रजातियां भी बनाती हैं जो वर्ग पिरामिड से लेकर [[ त्रिकोणीय द्विपिरामिड आणविक ज्यामिति ]] तक भिन्न होती हैं। | ||
: अष्टफलकीय उच्च प्रचक्रण: 2 अयुग्मित इलेक्ट्रॉन, अनुचुंबकीय, प्रतिस्थापनीय रूप से लेबिल। | : अष्टफलकीय उच्च प्रचक्रण: 2 अयुग्मित इलेक्ट्रॉन, अनुचुंबकीय, प्रतिस्थापनीय रूप से लेबिल। | ||
: स्क्वायर प्लानर कम स्पिन: कोई अयुग्मित इलेक्ट्रॉन नहीं, प्रतिचुंबकीय, प्रतिस्थापन रूप से निष्क्रिय। | : स्क्वायर प्लानर कम स्पिन: कोई अयुग्मित इलेक्ट्रॉन नहीं, प्रतिचुंबकीय, प्रतिस्थापन रूप से निष्क्रिय। | ||
उदाहरण: [[ सिस्प्लैटिन ]], [[ निकलोसीन ]], डाइक्लोरोबिस (एथिलीनडायमाइन) निकेल (II), [[ आयरन पेंटाकार्बोनिल ]], ज़ीज़ का नमक, वास्का का कॉम्प्लेक्स, विल्किंसन का उत्प्रेरक। | उदाहरण: [[ सिस्प्लैटिन ]], [[ निकलोसीन ]], डाइक्लोरोबिस (एथिलीनडायमाइन) निकेल (II), [[ आयरन पेंटाकार्बोनिल ]], ज़ीज़ का नमक, वास्का का कॉम्प्लेक्स, विल्किंसन का उत्प्रेरक। | ||
: | :d<sup>9</sup> | ||
:इस इलेक्ट्रॉन गणना के साथ स्थिर परिसर पहली पंक्ति (आवर्त चार) संक्रमण धातु केंद्र के लिए अधिक सामान्य हैं, क्योंकि वे दूसरी या तीसरी पंक्ति संक्रमण धातु केंद्रों के आधार पर परिसरों के लिए हैं। इनमें चार-समन्वय 17-इलेक्ट्रॉन प्रजातियां और पांच-समन्वय 19-इलेक्ट्रॉन प्रजातियां | :इस इलेक्ट्रॉन गणना के साथ स्थिर परिसर पहली पंक्ति (आवर्त चार) संक्रमण धातु केंद्र के लिए अधिक सामान्य हैं, क्योंकि वे दूसरी या तीसरी पंक्ति संक्रमण धातु केंद्रों के आधार पर परिसरों के लिए हैं। इनमें चार-समन्वय 17-इलेक्ट्रॉन प्रजातियां और पांच-समन्वय 19-इलेक्ट्रॉन प्रजातियां सम्मिलित हैं। | ||
: उदाहरण: श्वाइज़र का अभिकर्मक। | : उदाहरण: श्वाइज़र का अभिकर्मक। | ||
: | :d<sup>10</sup> | ||
:अक्सर टेट्राहेड्रल आणविक ज्यामिति परिसर 18-इलेक्ट्रॉन सीमा द्वारा 4 अतिरिक्त बांड (8 अतिरिक्त इलेक्ट्रॉन) बनाने तक सीमित होते हैं। | :अक्सर टेट्राहेड्रल आणविक ज्यामिति परिसर 18-इलेक्ट्रॉन सीमा द्वारा 4 अतिरिक्त बांड (8 अतिरिक्त इलेक्ट्रॉन) बनाने तक सीमित होते हैं। d से d संक्रमण की कमी के कारण अक्सर रंगहीन। | ||
उदाहरण: [[ टेट्राकिस (ट्राइफेनिलफॉस्फीन) पैलेडियम (0) | टेट्राकिस (ट्राइफेनिलफॉस्फीन) पैलेडियम (0)]], [[ निकल कार्बोनिल |निकल कार्बोनिल]] । | उदाहरण: [[ टेट्राकिस (ट्राइफेनिलफॉस्फीन) पैलेडियम (0) | टेट्राकिस (ट्राइफेनिलफॉस्फीन) पैलेडियम (0)]], [[ निकल कार्बोनिल |निकल कार्बोनिल]] । | ||
== संदर्भ == | == संदर्भ == | ||
{{reflist}} | {{reflist}} | ||
== बाहरी संबंध == | == बाहरी संबंध == | ||
* {{cite book|url=http://www.cond-mat.de/events/correl12/manuscripts/eder.pdf |chapter=Multiplets in Transition Metal Ions |editor1-first=E. |editor1-last=Pavarini |editor2-first=E. |editor2-last=Koch |editor3-first=F. |editor3-last=Anders |editor4-first=M. |editor4-last=Jarrell |title=Correlated Electrons: From Models to Materials |publisher=Jülich |date=2012 |ISBN=978-3-89336-796-2}} | * {{cite book|url=http://www.cond-mat.de/events/correl12/manuscripts/eder.pdf |chapter=Multiplets in Transition Metal Ions |editor1-first=E. |editor1-last=Pavarini |editor2-first=E. |editor2-last=Koch |editor3-first=F. |editor3-last=Anders |editor4-first=M. |editor4-last=Jarrell |title=Correlated Electrons: From Models to Materials |publisher=Jülich |date=2012 |ISBN=978-3-89336-796-2}} | ||
Line 98: | Line 96: | ||
{{organometallics}} | {{organometallics}} | ||
{{DEFAULTSORT:D Electron Count}} | {{DEFAULTSORT:D Electron Count}} | ||
[[Category: | [[Category:Articles with short description|D Electron Count]] | ||
[[Category:Created On 18/10/2022]] | [[Category:Collapse templates|D Electron Count]] | ||
[[Category:Created On 18/10/2022|D Electron Count]] | |||
[[Category:Machine Translated Page|D Electron Count]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|D Electron Count]] | |||
[[Category:Pages with script errors|D Electron Count]] | |||
[[Category:Short description with empty Wikidata description|D Electron Count]] | |||
[[Category:Sidebars with styles needing conversion|D Electron Count]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates generating microformats|D Electron Count]] | |||
[[Category:Templates that are not mobile friendly|D Electron Count]] | |||
[[Category:Templates using TemplateData|D Electron Count]] | |||
[[Category:Wikipedia metatemplates|D Electron Count]] | |||
[[Category:अकार्बनिक रसायन|D Electron Count]] | |||
[[Category:संक्रमण धातु|D Electron Count]] | |||
[[Category:समन्वय रसायन विज्ञान|D Electron Count]] |
Latest revision as of 10:14, 24 November 2022
डी (d) इलेक्ट्रॉन गणना रसायन शास्त्र की एक विचारधारा है जिसका उपयोग समन्वय परिसर में संक्रमण धातु केंद्र के रासायनिक संयोजन इलेक्ट्रॉन के इलेक्ट्रॉन विन्यास का वर्णन करने के लिए किया जाता है।[1][2] डी इलेक्ट्रॉन गणना संक्रमण धातु परिसरों की ज्यामिति और प्रतिक्रियाशीलता को समझने का एक प्रभावी तरीका है। विचारधारा को समन्वय परिसरों का वर्णन करने के लिए उपयोग किए जाने वाले दो प्रमुख मॉडलों में सम्मिलित किया गया है; क्रिस्टल क्षेत्र सिद्धांत और लिगैंड क्षेत्र सिद्धांत, जो आणविक कक्षीय सिद्धांत पर आधारित एक अधिक उन्नत संस्करण है।[3]
मानक इलेक्ट्रॉन विन्यास परिप्रेक्ष्य
सरल औफबौ सिद्धांत और मैडेलंग के नियम द्वारा भविष्यवाणी की गई कि संक्रमण धातुओं के लिए इलेक्ट्रॉन विन्यास में अधिकांश परिवेश परिस्तिथियों के तहत संक्रमण धातु केंद्रों के प्रयोगात्मक अवलोकनों के साथ गंभीर विरोधाभास है। अधिकांश परिस्थितियों में संक्रमण धातु केंद्र के सभी संयोजन इलेक्ट्रॉन d ऑर्बिटल्स में स्थित होते हैं, जबकि इलेक्ट्रॉन विन्यास का मानक मॉडल उनमें से कुछ को प्रासंगिक s ऑर्बिटल में होने का अनुमान लगाता है।
संक्रमण धातु केंद्र की संयोजकता को मानक क्वांटम संख्याओं द्वारा वर्णित किया जा सकता है। औफबौ सिद्धांत और मैडेलुंग का नियम n आवर्त के लिए भविष्यवाणी करता है कि ns ऑर्बिटल्स (n − 1)d ऑर्बिटल्स से पहले भरते हैं। उदाहरण के लिए 4s, आवर्त 4 में 3d से पहले भरता है। सामान्य रसायन शास्त्र की पाठ्यपुस्तकों में, कुछ अपवादों को ns ऑर्बिटल्स में केवल एक इलेक्ट्रॉन के साथ आधा या संपूर्ण d शेल पूरा करने के पक्ष में स्वीकार किया जाता है। सामान्य व्याख्या यह है कि आधे भरे या पूरी तरह से भरे हुए सबशेल्स विशेष रूप से इलेक्ट्रॉनों की स्थिर व्यवस्था हैं। एक उदाहरण क्रोमियम है जिसका इलेक्ट्रॉन विन्यास [Ar]4s13d5 है, आधे भरे हुए d सबशेल्स के साथ, हालांकि मैडेलुंग का नियम [Ar]4s23d4 इसी प्रकार तांबा [Ar]4s13d10 एक पूर्ण d उपकोश के साथ है, न कि [Ar]4s23d9[3]: 38
जब धातु केंद्रों का ऑक्सीकरण होता है तो मामले और जटिल हो जाते हैं। चूंकि (n − 1)d शेल में ns शेल की तुलना में अधिक ऊर्जा होने की भविष्यवाणी की गई है, यह उम्मीद की जा सकती है कि इलेक्ट्रॉनों को पहले (n − 1)d शेल से हटा दिया जाएगा। प्रायोगिक तौर पर यह देखा गया है कि न केवल पहले ns इलेक्ट्रॉनों को हटाया जाता है, यहां तक कि संघीकृत परिसरों के लिए भी सभी संयोजन इलेक्ट्रॉन (n − 1)d ऑर्बिटल्स में स्थित होते हैं।
इस घटना के लिए विभिन्न आधारहीन तर्क हैं जिनमें ns इलेक्ट्रॉन नाभिक से दूर हैं और इस प्रकार तटस्थ परिसरों के आधार पर परिणामों की अनदेखी करते हुए पहले आयनित होते हैं। यह खराब व्याख्या मानक इलेक्ट्रॉन विन्यास मॉडल के साथ बुनियादी समस्याओं से बचाती है। मानक इलेक्ट्रॉन विन्यास मॉडल अन्य सभी परमाणुओं से हाइड्रोजन जैसे हटाए गए परमाणु को मानता है। यह धारणा केवल गूढ़ स्थितियों के लिए ही सही मायने में प्रासंगिक है। धातु केंद्रों के लिए धात्विक बंधों या सहसंयोजक बंधों के माध्यम से अन्य परमाणुओं के साथ बंधन होना कहीं अधिक सामान्य है। ये बांड ऑर्बिटल्स की ऊर्जा को काफी हद तक बदल देते हैं जिसके लिए इलेक्ट्रॉन विन्यास की भविष्यवाणी की जाती है। इस प्रकार समन्वय परिसरों के लिए मानक इलेक्ट्रॉन विन्यास औपचारिकता अर्थहीन है और डी इलेक्ट्रॉन गणना औपचारिकता एक उपयुक्त विकल्प है।
लिगैंड क्षेत्र परिप्रेक्ष्य
क्रिस्टल क्षेत्र सिद्धांत कई भौतिक घटनाओं का अच्छी तरह से वर्णन करता है लेकिन बंधन का वर्णन नहीं करता है और न ही इस बात की व्याख्या करता है कि ns इलेक्ट्रॉनों को (n − 1)d इलेक्ट्रॉनों से पहले क्यों आयनित होते हैं। वर्तमान लिगैंड क्षेत्र सिद्धांत इस मॉडल घटना की अपेक्षाकृत अच्छी और सरल स्पष्टीकरण प्रदान करता है ।
लिगैंड फील्ड थ्योरी द्वारा प्रस्तुत मॉडल के अनुसार, ns ऑर्बिटल लिगैंड्स के साथ बॉन्डिंग में सम्मिलित होता है और एक मजबूत बॉन्डिंग ऑर्बिटल बनाता है जिसमें मुख्य रूप से लिगैंड कैरेक्टर होता है और इसके अनुरूप मजबूत एंटी-बॉन्डिंग ऑर्बिटल होता है जो कि खाली होता है और आमतौर पर सबसे निचले खाली मॉलिक्यूलर ऑर्बिटल (एलयूएम्वो) के ऊपर होता है। चूंकि ns ऑर्बिटल से उत्पन्न ऑर्बिटल्स या तो बॉन्डिंग में नीचे होते हैं या संयोजन से काफी ऊपर हैं और ns ऑर्बिटल्स संयोजन का वर्णन करने के लिए प्रासंगिक नहीं हैं। अंतिम परिसर की ज्यामिति के आधार पर, या तो तीनों np ऑर्बिटल्स या उनमें से कुछ, ns ऑर्बिटल्स की तरह बॉन्डिंग में सम्मिलित होते हैं। यदि कोई np ऑर्बिटल्स गैर-बंधन रह जाता है तो भी परिसर की संयोजन से अधिक होता है। यह (n − 1)d ऑर्बिटल्स को बॉन्डिंग के कुछ हिस्से में सम्मिलित होने के लिए छोड़ देता है और इस प्रक्रिया में मेटल कॉम्प्लेक्स के संयोजन इलेक्ट्रॉनों का भी वर्णन करता है। संयोजकता का अंतिम विवरण, परिसर की ज्यामिति पर अत्यधिक निर्भर है, जो बदले में d इलेक्ट्रॉन गणना और संबद्ध लिगेंड के चरित्र पर अत्यधिक निर्भर है।
उदाहरण के लिए, [Ti(H2O)6]3+ के लिए प्रदान किए गए MO आरेख में ns ऑर्बिटल - जिसे परमाणु ऑर्बिटल्स (AOs) के प्रतिनिधित्व में (n − 1)d के ऊपर रखा गया है - का उपयोग लिगैंड ऑर्बिटल्स के साथ एक रेखीय संयोजन में किया जाता है, जो महत्वपूर्ण लिगैंड के साथ एक बहुत ही स्थिर बॉन्डिंग ऑर्बिटल बनाता है, लिगैंड कॅरेक्टर के साथ-साथ एक खाली उच्च ऊर्जा एंटीबॉडी कक्षीय जो दिखाया नहीं गया है। इस स्थिति में जटिल ज्यामिति ऑक्टाहेड्रल आणविक ज्यामिति है, जिसका अर्थ है कि दो d ऑर्बिटल्स में बॉन्डिंग में सम्मिलित होने के लिए उचित ज्यामिति है। मूल मॉडल में अन्य तीन d ऑर्बिटल्स का लिगैंड के साथ महत्वपूर्ण अंतःक्रिया नहीं होता है और तीन डीजेनरेट नॉन-बॉन्डिंग ऑर्बिटल्स के रूप में बने रहते हैं। दो ऑर्बिटल्स जो बॉन्डिंग में सम्मिलित होते हैं, दो लिगैंड ऑर्बिटल्स के साथ उचित समरूपता के साथ एक रैखिक संयोजन बनाते हैं। इसके परिणामस्वरूप दो भरे हुए बॉन्डिंग ऑर्बिटल्स और दो ऑर्बिटल्स होते हैं जो आमतौर पर सबसे कम खाली मॉलिक्यूलर ऑर्बिटल्स (एलयूएम्वो) या उच्चतम आंशिक रूप से भरे हुए मॉलिक्यूलर ऑर्बिटल्स होते हैं - सबसे ज्यादा ऑक्यूपाइड मॉलिक्यूलर ऑर्बिटल्स (एचओएमओ ) पर भिन्नता होती है।
तानबे-सुगानो आरेख
दस संभावित d इलेक्ट्रॉन गणनाओं में से प्रत्येक में एक संबद्ध तानाबे-सुगानो आरेख है जो संभावित लिगैंड क्षेत्र के वातावरण के उन्नयन का वर्णन करता है, एक धातु केंद्र एक ऑक्टाहेड्रल आणविक ज्यामिति ज्यामिति में अनुभव कर सकता है। तनाबे-सुगानो आरेख थोड़ी मात्रा में जानकारी के साथ d से d कक्षीय इलेक्ट्रॉन संक्रमण के परिणामस्वरूप यूवी और दृश्यमान विद्युत चुम्बकीय स्पेक्ट्रम में अवशोषण की सटीक भविष्यवाणी करता है। ये ही d-d ट्रांज़िशन हैं, जो लिगैंड टू मेटल चार्ज ट्रांसफर (एलएमसीटी), या मेटल टू लिगैंड चार्ज ट्रांसफर (एमएलसीटी) जो आम तौर पर मेटल कॉम्प्लेक्स को उनके जीवंत रंग देते हैं।
सीमा
यह याद रखना महत्वपूर्ण है कि d इलेक्ट्रॉन गणना एक सिद्धांत है और कुछ परिसरों को दूसरों की तुलना में बेहतर तरीके से वर्णित करती है। धातु केंद्र या लिगैंड को इलेक्ट्रॉनों और चार्ज को प्रदान करना अक्सर मुश्किल या असंभव होता है। +4 चार्ज या इससे अधिक चार्ज वाले हाई-ऑक्सीडेशन-स्टेट मेटल सेंटर के लिए यह समझा जाता है कि वास्तविक चार्ज सेपरेशन बहुत छोटा है। लेकिन रसायन शास्त्र को समझने की कोशिश करते समय औपचारिक ऑक्सीकरण अवस्था और d इलेक्ट्रॉन गिनती का जिक्र करना अभी भी उपयोगी हो सकता है।
संभव डी इलेक्ट्रॉन गणना
हर संभव d इलेक्ट्रॉन विन्यास के कई उदाहरण हैं। प्रत्येक संभावित d इलेक्ट्रॉन गणना और प्रतिनिधि उदाहरणों की सामान्य ज्यामिति और विशेषताओं का संक्षिप्त विवरण निम्नानुसार है।
- d0
- आमतौर पर टेट्राहेड्रल आणविक ज्यामिति; हालाँकि यह d0 के लिए संभव है, कई इलेक्ट्रॉन जोड़े (बॉन्ड/समन्वय संख्या) को समायोजित करने के लिए कॉम्प्लेक्स क्योंकि उनके d ऑर्बिटल्स खाली हैं और18-इलेक्ट्रॉन सीमा से काफी दूर हैं। d से d संक्रमण की कमी के कारण अक्सर रंगहीन।
उदाहरण: टाइटेनियम टेट्राक्लोराइड, टाइटेनोसिन डाइक्लोराइड, श्वार्ट्ज का अभिकर्मक है।
- d1
- उदाहरण: मोलिब्डेनम (V) क्लोराइड, वैनाडिल एसिटाइलसेटोनेट, वैनाडोसीन डाइक्लोराइड, वैनेडियम टेट्राक्लोराइड ।
- d2
- उदाहरण: टाइटेनोसिन डाइकारबोनील
- d3
- उदाहरण: रीनेके का नमक।
- d4
- ऑक्टाहेड्रल हाई-स्पिन: 4 अयुग्मित इलेक्ट्रॉन, अनुचुंबकीय, प्रतिस्थापनीय रूप से लेबिल।
- ऑक्टाहेड्रल लो-स्पिन: 2 अयुग्मित इलेक्ट्रॉन, अनुचुंबकीय, स्थानापन्न रूप से निष्क्रिय।
- d5
ऑक्टाहेड्रल हाई-स्पिन: 5 अयुग्मित इलेक्ट्रॉन, अनुचुंबकीय, प्रतिस्थापनीय रूप से लेबिल।
- ऑक्टाहेड्रल लो-स्पिन: 1 अयुग्मित इलेक्ट्रॉन, अनुचुंबकीय, स्थानापन्न रूप से निष्क्रिय।
- उदाहरण: पोटेशियम फेरियोऑक्सालेट , वैनेडियम कार्बोनिल ।
- d6
- आम तौर पर ऑक्टाहेड्रल आणविक ज्यामिति उच्च स्पिन और कम स्पिन दोनों में जटिल होती है।
- ऑक्टाहेड्रल हाई-स्पिन: 4 अयुग्मित इलेक्ट्रॉन, अनुचुंबकीय, प्रतिस्थापनीय रूप से लेबिल।
- ऑक्टाहेड्रल लो-स्पिन: कोई अयुग्मित इलेक्ट्रॉन नहीं, प्रतिचुंबकीय, प्रतिस्थापन रूप से निष्क्रिय।
- उदाहरण: हेक्सामिनकोबाल्ट (III) क्लोराइड, सोडियम कोबाल्टिनिट्राइट , मोलिब्डेनम हेक्साकार्बोनिल , फेरोसीन , फेरोइन , क्रोमियम कार्बोनिल ।
- d7
- ऑक्टाहेड्रल उच्च स्पिन: 3 अयुग्मित इलेक्ट्रॉन, अनुचुंबकीय, प्रतिस्थापनीय रूप से प्रयोगशाला।
- ऑक्टाहेड्रल कम स्पिन: 1 अयुग्मित इलेक्ट्रॉन, अनुचुंबकीय, प्रतिस्थापनीय रूप से प्रयोगशाला।
- उदाहरण: कोबाल्टोसिन ।
- d8
- परिसर जो d8 हैं, हाई-स्पिन आमतौर पर ऑक्टाहेड्रल मॉलिक्यूलर ज्योमेट्री (या टेट्राहेड्रल मॉलिक्यूलर ज्योमेट्री) होते हैं जबकि लो-स्पिन d8 कॉम्प्लेक्स आमतौर पर 16-इलेक्ट्रॉन स्क्वायर प्लानर कॉम्प्लेक्स होते हैं। पहली पंक्ति संक्रमण धातु परिसरों जैसे Ni2+ के लिए और Cu+ पांच-समन्वित 18-इलेक्ट्रॉन प्रजातियां भी बनाती हैं जो वर्ग पिरामिड से लेकर त्रिकोणीय द्विपिरामिड आणविक ज्यामिति तक भिन्न होती हैं।
- अष्टफलकीय उच्च प्रचक्रण: 2 अयुग्मित इलेक्ट्रॉन, अनुचुंबकीय, प्रतिस्थापनीय रूप से लेबिल।
- स्क्वायर प्लानर कम स्पिन: कोई अयुग्मित इलेक्ट्रॉन नहीं, प्रतिचुंबकीय, प्रतिस्थापन रूप से निष्क्रिय।
उदाहरण: सिस्प्लैटिन , निकलोसीन , डाइक्लोरोबिस (एथिलीनडायमाइन) निकेल (II), आयरन पेंटाकार्बोनिल , ज़ीज़ का नमक, वास्का का कॉम्प्लेक्स, विल्किंसन का उत्प्रेरक।
- d9
- इस इलेक्ट्रॉन गणना के साथ स्थिर परिसर पहली पंक्ति (आवर्त चार) संक्रमण धातु केंद्र के लिए अधिक सामान्य हैं, क्योंकि वे दूसरी या तीसरी पंक्ति संक्रमण धातु केंद्रों के आधार पर परिसरों के लिए हैं। इनमें चार-समन्वय 17-इलेक्ट्रॉन प्रजातियां और पांच-समन्वय 19-इलेक्ट्रॉन प्रजातियां सम्मिलित हैं।
- उदाहरण: श्वाइज़र का अभिकर्मक।
- d10
- अक्सर टेट्राहेड्रल आणविक ज्यामिति परिसर 18-इलेक्ट्रॉन सीमा द्वारा 4 अतिरिक्त बांड (8 अतिरिक्त इलेक्ट्रॉन) बनाने तक सीमित होते हैं। d से d संक्रमण की कमी के कारण अक्सर रंगहीन।
उदाहरण: टेट्राकिस (ट्राइफेनिलफॉस्फीन) पैलेडियम (0), निकल कार्बोनिल ।
संदर्भ
- ↑ Green, Malcolm L. H. (1995-09-20). "तत्वों के सहसंयोजक यौगिकों के औपचारिक वर्गीकरण के लिए एक नया दृष्टिकोण". Journal of Organometallic Chemistry. 500 (1–2): 127–148. doi:10.1016/0022-328X(95)00508-N. ISSN 0022-328X.
- ↑ MLX Plots (Ged Parkin group website, Columbia University)
- ↑ 3.0 3.1 Miessler, Gary L.; Tarr, Donald A. (1998). अकार्बनिक रसायन शास्त्र (2nd ed.). Upper Saddle River, NJ: Pearson Education. ISBN 0-13-841891-8.
बाहरी संबंध
- Pavarini, E.; Koch, E.; Anders, F.; Jarrell, M., eds. (2012). "Multiplets in Transition Metal Ions". Correlated Electrons: From Models to Materials (PDF). Jülich. ISBN 978-3-89336-796-2.