फोटोइलेक्ट्रोकैमिस्ट्री: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 89: | Line 89: | ||
[[Category:Sidebars with styles needing conversion]] | [[Category:Sidebars with styles needing conversion]] | ||
[[Category:Template documentation pages|Documentation/doc]] | [[Category:Template documentation pages|Documentation/doc]] | ||
[[Category:Vigyan Ready]] |
Revision as of 12:22, 6 October 2023
फोटोइलेक्ट्रोकैमिस्ट्री भौतिक रसायन विज्ञान के भीतर अध्ययन का एक उपक्षेत्र है जो विद्युत् रसायन के साथ प्रकाश की पारस्परिक क्रिया से संबंधित है।[1][2] यह जांच का एक सक्रिय क्षेत्र है। विद्युत् रसायन के इस क्षेत्र के अग्रदूतों में से एक जर्मन इलेक्ट्रोकैमिस्ट हेंज गेरिशर थे। नवीकरणीय ऊर्जा परिवर्तन और ऊर्जा भंडारण प्रौद्योगिकी के विकास के संदर्भ में इस क्षेत्र में रुचि अधिक है।
ऐतिहासिक दृष्टिकोण
1970 के दशक के ऊर्जा संकट के कारण 1970-80 के दशक में फोटोइलेक्ट्रोकैमिस्ट्री का गहन अध्ययन किया गया है। चूँकि जीवाश्म ईंधन गैर-नवीकरणीय हैं, इसलिए नवीकरणीय संसाधनों को प्राप्त करने और स्वच्छ ऊर्जा का उपयोग करने के लिए प्रक्रियाओं को विकसित करना आवश्यक है। कृत्रिम प्रकाश संश्लेषण, फोटोइलेक्ट्रोकेमिकल जल विभाजन और पुनर्योजी सौर सेल इस संदर्भ में विशेष रुचि रखते हैं। प्रकाशवोल्टीय प्रभाव की खोज अलेक्जेंड्रे एडमंड बेकरेल ने की थी।
हेंज गेरिस्चर, एच. ट्रिबुत्श, ए.जे. नोज़िक, ए.जे. बार्ड, ए. फुजीशिमा, के. होंडा, पीई. लाइबिनिस, के. राजेश्वर, टीजे मेयर, पी.वी. कामत, एन.एस. लुईस, आर. मेमिंग, जॉन बॉक्रिस ऐसे शोधकर्ता हैं जिन्होंने फोटोइलेक्ट्रोकैमिस्ट्री के क्षेत्र में बहुत योगदान दिया है।
सेमीकंडक्टर इलेक्ट्रोकैमिस्ट्री
परिचय
सेमीकंडक्टर पदार्थों में ऊर्जा बैंड अंतराल होते हैं, और यदि फोटॉन की ऊर्जा अर्धचालक की बैंड अंतराल ऊर्जा से अधिक है, तो प्रत्येक अवशोषित फोटॉन के लिए इलेक्ट्रॉन और छेद की एक जोड़ी उत्पन्न होगी। अर्धचालक पदार्थों के इस गुण का उपयोग सौर सेल द्वारा सौर ऊर्जा को विद्युत ऊर्जा में परिवर्तित करने के लिए सफलतापूर्वक किया गया है।
फोटोकैटलिसिस में इलेक्ट्रॉन-छेद जोड़ी का उपयोग तुरंत रेडॉक्स अभिक्रिया को चलाने के लिए किया जाता है। यद्यपि, इलेक्ट्रॉन-छिद्र जोड़े तेजी से पुनर्संयोजन से पीड़ित हैं। फोटोइलेक्ट्रोकैटलिसिस में, इलेक्ट्रॉनों और छिद्रों के बीच पुनर्संयोजन की संख्या को कम करने के लिए एक विभेदक क्षमता लागू की जाती है। इससे प्रकाश के रासायनिक ऊर्जा में रूपांतरण की उपज में वृद्धि हो सकती है।
सेमीकंडक्टर-इलेक्ट्रोलाइट अंतरापृष्ठ
जब एक अर्धचालक एक तरल (रिडॉक्स प्रजाति) के संपर्क में आता है, तो स्थिर वैद्युत संतुलन बनाए रखने के लिए, अर्धचालक और तरल चरण के बीच चार्ज ट्रांसफर होगा यदि रेडॉक्स प्रजातियों की रेडॉक्स क्षमता अर्धचालक बैंड गैप के अंदर होती है। ऊष्मागतिक संतुलन पर, अर्धचालक का फर्मी स्तर और रेडॉक्स प्रजातियों की औपचारिक रेडॉक्स क्षमता अर्धचालक और रेडॉक्स प्रजातियों के बीच अंतरापृष्ठ पर संरेखित होती है। यह एन-प्रकार अर्धचालक/तरल जंक्शन (चित्रा 1 (ए)) के लिए एन-प्रकार अर्धचालक में एक ऊपर की ओर झुकने वाले बैंड और पी-प्रकार अर्धचालक/तरल जंक्शन (चित्रा 1) के लिए पी-प्रकार अर्धचालक में एक नीचे की ओर झुकने वाले बैंड का परिचय देता है। (बी))। अर्धचालक/तरल जंक्शनों की यह विशेषता एक सुधारक अर्धचालक/धातु जंक्शन या धातु-अर्धचालक जंक्शन के समान है। आदर्श रूप से अर्धचालक/तरल अंतरापृष्ठ पर एक अच्छा पी-एन जंक्शन प्राप्त करने के लिए, औपचारिक रेडॉक्स क्षमता एन-प्रकार अर्धचालक के लिए अर्धचालक के संयोजन बैंड के करीब होनी चाहिए और पी-प्रकार के लिए अर्धचालक के चालन बैंड के करीब होनी चाहिए। अर्धचालक. सुधारक अर्धचालक/धातु जंक्शन की तुलना में अर्धचालक/तरल जंक्शन का एक लाभ यह है कि प्रकाश अधिक परावर्तन के बिना अर्धचालक सतह तक यात्रा करने में सक्षम है; जबकि अधिकांश प्रकाश अर्धचालक/धातु जंक्शन पर धातु की सतह से वापस परावर्तित होता है। इसलिए, अर्धचालक/तरल जंक्शनों का उपयोग ठोस अवस्था पी-एन जंक्शन उपकरणों के समान सौर सेल के रूप में भी किया जा सकता है। एन-प्रकार और पी-प्रकार अर्धचालक/तरल जंक्शन दोनों का उपयोग सौर ऊर्जा को विद्युत ऊर्जा में परिवर्तित करने के लिए प्रकाशवोल्टीय उपकरणों के रूप में किया जा सकता है और इन्हें फोटोइलेक्ट्रोकेमिकल कोशिकाएं कहा जाता है। इसके अतिरिक्त, अर्धचालक/तरल जंक्शन पर फोटोइलेक्ट्रोलिसिस के आधार पर सौर ऊर्जा को सीधे रासायनिक ऊर्जा में परिवर्तित करने के लिए अर्धचालक/तरल जंक्शन का भी उपयोग किया जा सकता है।
चित्र 1(ए) एन-प्रकार अर्धचालक/तरल जंक्शन का बैंड आरेख
प्रायोगिक व्यवस्था
अर्धचालकों का अध्ययन सामान्यतः फोटोइलेक्ट्रोकेमिकल सेल में किया जाता है। तीन इलेक्ट्रोड डिवाइस के साथ विभिन्न विन्यास उपस्थित हैं। अध्ययन की जाने वाली घटना कार्यशील इलेक्ट्रोड WE पर घटित होती है, जबकि अंतर क्षमता WE और एक संदर्भ इलेक्ट्रोड RE (संतृप्त कैलोमेल, Ag/AgCl) के बीच लागू होती है। करंट को WE और काउंटर इलेक्ट्रोड CE (कार्बन विटेरस, प्लैटिनम गॉज) के बीच मापा जाता है। कार्यशील इलेक्ट्रोड अर्धचालक पदार्थ है और इलेक्ट्रोलाइट एक विलायक, एक इलेक्ट्रोलाइट और एक रेडॉक्स प्रजाति से बना होता है।
एक यूवी-विज़ लैंप का उपयोग सामान्यतः कार्यशील इलेक्ट्रोड को रोशन करने के लिए किया जाता है। फोटोइलेक्ट्रोकेमिकल सेल सामान्यतः स्फटिक गवाक्ष से बना होता है क्योंकि यह प्रकाश को अवशोषित नहीं करता है। WE को भेजी गई तरंग दैर्ध्य को नियंत्रित करने के लिए एक एकवर्णक का उपयोग किया जा सकता है।
फोटोइलेक्ट्रोकैमिस्ट्री में प्रयुक्त मुख्य अवशोषक
अर्धचालक चतुर्थ
C(हीरा),Si, Ge, SiC सिलिकन कार्बाइड, SiGe
सेमीकंडक्टर III-V
BN, BP, BAs, AlN, AlP, AlAs, GaN, GaP, GaAs, InN, InP, InAs...
अर्धचालक II-VI
CdS, CdSe, CdTe, ZnO, ZnS, ZnSe, ZnTe, MoS2, MoSe2, MoTe2, WS2, WSe2
धातु ऑक्साइड
TiO2, Fe2O3, Cu2O
जैविक रंग
मेथिलीन ब्लू...
कार्बधात्विक रंग
पेरोवस्काइट
अनुप्रयोग
फोटोइलेक्ट्रोकेमिकल जल विभाजन
जल और सौर ऊर्जा से हाइड्रोजन उत्पादन के क्षेत्र में फोटोइलेक्ट्रोकैमिस्ट्री का गहन अध्ययन किया गया है। जल के फोटोइलेक्ट्रोकेमिकल विभाजन की खोज ऐतिहासिक रूप से फुजीशिमा और होंडा द्वारा 1972 में TiO2 पर की गई थी। इलेक्ट्रोड हाल ही में कई पदार्थों ने कुशलतापूर्वक जल को विभाजित करने के लिए आशाजनक गुण दिखाए हैं लेकिन TiO2 फोटो-संक्षारण के विरुद्ध सस्ता, प्रचुर, स्थिर रहता है। TiO2 की मुख्य समस्या इसका बैंडगैप है जो इसकी क्रिस्टलीयता (एनाटेज़ या रूटाइल) के अनुसार 3 या 3.2 eV है। ये मान बहुत अधिक हैं और केवल यूवी क्षेत्र में तरंग दैर्ध्य को ही अवशोषित किया जा सकता है। सौर तरंग दैर्ध्य के साथ जल को विभाजित करने के लिए इस पदार्थ के प्रदर्शन को बढ़ाने के लिए, TiO2 को संवेदनशील बनाना आवश्यक है। वर्तमान में क्वांटम चिन्ह संवेदीकरण बहुत आशाजनक है लेकिन प्रकाश को कुशलतापूर्वक अवशोषित करने में सक्षम नई पदार्थों को खोजने के लिए और अधिक शोध की आवश्यकता है।
कार्बन डाइऑक्साइड का फोटोइलेक्ट्रोकेमिकल अपचयन
प्रकाश संश्लेषण एक प्राकृतिक प्रक्रिया है जो CO2 को परिवर्तित करती है चीनी जैसे हाइड्रोकार्बन यौगिकों का उत्पादन करने के लिए प्रकाश का उपयोग करती है। जीवाश्म ईंधन की कमी वैज्ञानिकों को हाइड्रोकार्बन यौगिकों के उत्पादन के विकल्प खोजने के लिए प्रोत्साहित करती है। कृत्रिम प्रकाश संश्लेषण ऐसे यौगिकों का उत्पादन करने के लिए प्राकृतिक प्रकाश संश्लेषण की नकल करने वाली एक आशाजनक विधि है। विश्वव्यापी प्रभाव के कारण CO2 की फोटोइलेक्ट्रोकेमिकल कमी का बहुत अध्ययन किया गया है। कई शोधकर्ताओं का लक्ष्य स्थिर और कुशल फोटो-एनोड और फोटो-कैथोड विकसित करने के लिए नए अर्धचालक ढूंढना है।
पुनर्योजी कोशिकाएं या डाई-सेंसिटाइज़्ड सौर सेल (ग्रेट्ज़ेल सेल)
डाई-सेंसिटाइज़्ड सौर सेल या डीएसएससी प्रकाश को अवशोषित करने के लिए TiO2 और रंगों का उपयोग करते हैं। यह अवशोषण इलेक्ट्रॉन-छिद्र युग्मों के निर्माण को प्रेरित करता है जिनका उपयोग समान रेडॉक्स युग्म सामान्यतः I−/I3−को ऑक्सीकरण और अपचयन करने के लिए किया जाता है,।परिणामस्वरूप, एक विभेदक क्षमता निर्मित होती है जो धारा को प्रेरित करती है।
संदर्भ
बाहरी संबंध
- Complete review about semiconductor's photoelectrochemistry
- Review about semiconductor's photoelectrochemistry
- Electrochemistry Encyclopedia at the Library of Congress Web Archives (archived 2001-11-25)