व्यवरोध (कम्प्यूटेशनल रसायन विज्ञान): Difference between revisions

From Vigyanwiki
No edit summary
Line 39: Line 39:


==लैग्रेंज गुणक-आधारित विधियाँ==
==लैग्रेंज गुणक-आधारित विधियाँ==
[[File:SHAKE algorithm.png|thumb|200px|right|लैग्रेंज मल्टीप्लायरों का उपयोग करके एक कठोर पानी के अणु की व्यवरोधओं को हल करना: ए) अप्रतिबंधित स्थिति एक सिमुलेशन समय-चरण के बाद प्राप्त की जाती है, बी) प्रत्येक कण पर प्रत्येक व्यवरोध के [[ढ़ाल]] की गणना की जाती है और सी) लैग्रेंज मल्टीप्लायरों की गणना प्रत्येक ग्रेडिएंट के लिए की जाती है जैसे कि व्यवरोधएँ संतुष्ट हैं।]]व्यवरोध एल्गोरिदम का उपयोग करने वाले अधिकांश आण्विक गतिकी सिमुलेशन में, लैग्रेंज मल्टीप्लायरों की विधि का उपयोग करके व्यवरोधओं को लागू किया जाता है। समय ''t'' पर ''n'' रैखिक (होलोनोमिक व्यवरोधएं) व्यवरोधओं का एक सेट दिया गया है,
[[File:SHAKE algorithm.png|thumb|200px|right|लैग्रेंज मल्टीप्लायरों का उपयोग करके एक दृढ़ पानी के अणु की व्यवरोधओं को हल करना: ए) अप्रतिबंधित स्थिति एक सिमुलेशन समय-चरण के बाद प्राप्त की जाती है, बी) प्रत्येक कण पर प्रत्येक व्यवरोध के [[ढ़ाल]] की गणना की जाती है और सी) लैग्रेंज मल्टीप्लायरों की गणना प्रत्येक ग्रेडिएंट के लिए की जाती है जैसे कि व्यवरोधएँ संतुष्ट हैं।]]व्यवरोध एल्गोरिदम का उपयोग करने वाले अधिकांश आण्विक गतिकी सिमुलेशन में, लैग्रेंज मल्टीप्लायरों की विधि का उपयोग करके व्यवरोधओं को लागू किया जाता है। समय ''t'' पर ''n'' रैखिक (होलोनोमिक व्यवरोधएं) व्यवरोधओं का एक सेट दिया गया है,


:<math>\sigma_k(t) := \| \mathbf x_{k\alpha}(t) - \mathbf x_{k\beta}(t) \|^2 - d_k^2 = 0, \quad k=1 \ldots n</math>
:<math>\sigma_k(t) := \| \mathbf x_{k\alpha}(t) - \mathbf x_{k\beta}(t) \|^2 - d_k^2 = 0, \quad k=1 \ldots n</math>
Line 98: Line 98:


:<math>\underline{\lambda} = -\mathbf J_\sigma^{-1} \underline{\sigma}.</math>
:<math>\underline{\lambda} = -\mathbf J_\sigma^{-1} \underline{\sigma}.</math>
यह ऐसा मानने के बराबर है <math>\mathbf J_\sigma</math> विकर्ण रूप से प्रभावशाली है और हल कर रहा है <math>k</math>th के लिए समीकरण <math>k</math> अज्ञात है। व्यवहार में, हम गणना करते हैं
यह ऐसा मानने के बराबर है <math>\mathbf J_\sigma</math> विकर्ण रूप से प्रभावशाली है और हल कर रहा है <math>k</math>वें  के लिए समीकरण <math>k</math> अज्ञात है। व्यवहार में, हम गणना करते हैं


: <math>
: <math>
Line 117: Line 117:
मूल शेक एल्गोरिदम  दृढ़ और लचीले दोनों अणुओं (जैसे पानी, बेंजीन और [[बाइफिनाइल]]) को नियंत्रित करने में सक्षम है और आण्विक गतिकी सिमुलेशन में नगण्य त्रुटि या [[ऊर्जा बहाव]] पेश करता है।<ref name="Hammonds_2020">{{cite journal | last = Hammonds | first = KD |author2=Heyes DM | year = 2020 | title = शास्त्रीय एनवीई आणविक गतिशीलता सिमुलेशन में छाया हैमिल्टनियन: लंबे समय तक स्थिरता का एक मार्ग| journal = Journal of Chemical Physics | volume = 152 | issue = 2 | pages = 024114_1–024114_15 | doi = 10.1063/1.5139708 | pmid = 31941339 | s2cid = 210333551 }}</ref> शेक के साथ एक मुद्दा यह है कि अभिसरण के एक निश्चित स्तर तक पहुंचने के लिए आवश्यक पुनरावृत्तियों की संख्या बढ़ जाती है क्योंकि आणविक ज्यामिति अधिक जटिल हो जाती है। 64 बिट कंप्यूटर सटीकता (सापेक्ष सहनशीलता) तक पहुंचने के लिए <math>\approx 10^{-16}</math>) 310K के तापमान पर एक विशिष्ट आण्विक गतिकी सिमुलेशन में, आणविक ज्यामिति को बनाए रखने के लिए 3 व्यवरोधओं वाले 3-साइट जल मॉडल को औसतन 9 पुनरावृत्तियों की आवश्यकता होती है (जो प्रति साइट प्रति समय-चरण 3 है)। 5 व्यवरोधओं वाले 4-साइट ब्यूटेन मॉडल को 17 पुनरावृत्तियों (22 प्रति साइट) की आवश्यकता होती है, 12 व्यवरोधओं वाले 6-साइट बेंजीन मॉडल को 36 पुनरावृत्तियों (72 प्रति साइट) की आवश्यकता होती है, जबकि 29 व्यवरोधओं वाले 12-साइट बाइफिनाइल मॉडल को 92 पुनरावृत्तियों की आवश्यकता होती है ( 229 प्रति साइट प्रति समय-चरण)।<ref name="Hammonds_2020">{{cite journal | last = Hammonds | first = KD |author2=Heyes DM | year = 2020 | title = शास्त्रीय एनवीई आणविक गतिशीलता सिमुलेशन में छाया हैमिल्टनियन: लंबे समय तक स्थिरता का एक मार्ग| journal = Journal of Chemical Physics | volume = 152 | issue = 2 | pages = 024114_1–024114_15 | doi = 10.1063/1.5139708 | pmid = 31941339 | s2cid = 210333551 }}</ref> इसलिए शेक एल्गोरिदम की सीपीयू आवश्यकताएं महत्वपूर्ण हो सकती हैं, खासकर अगर आणविक मॉडल में उच्च स्तर की  दृढता हो।
मूल शेक एल्गोरिदम  दृढ़ और लचीले दोनों अणुओं (जैसे पानी, बेंजीन और [[बाइफिनाइल]]) को नियंत्रित करने में सक्षम है और आण्विक गतिकी सिमुलेशन में नगण्य त्रुटि या [[ऊर्जा बहाव]] पेश करता है।<ref name="Hammonds_2020">{{cite journal | last = Hammonds | first = KD |author2=Heyes DM | year = 2020 | title = शास्त्रीय एनवीई आणविक गतिशीलता सिमुलेशन में छाया हैमिल्टनियन: लंबे समय तक स्थिरता का एक मार्ग| journal = Journal of Chemical Physics | volume = 152 | issue = 2 | pages = 024114_1–024114_15 | doi = 10.1063/1.5139708 | pmid = 31941339 | s2cid = 210333551 }}</ref> शेक के साथ एक मुद्दा यह है कि अभिसरण के एक निश्चित स्तर तक पहुंचने के लिए आवश्यक पुनरावृत्तियों की संख्या बढ़ जाती है क्योंकि आणविक ज्यामिति अधिक जटिल हो जाती है। 64 बिट कंप्यूटर सटीकता (सापेक्ष सहनशीलता) तक पहुंचने के लिए <math>\approx 10^{-16}</math>) 310K के तापमान पर एक विशिष्ट आण्विक गतिकी सिमुलेशन में, आणविक ज्यामिति को बनाए रखने के लिए 3 व्यवरोधओं वाले 3-साइट जल मॉडल को औसतन 9 पुनरावृत्तियों की आवश्यकता होती है (जो प्रति साइट प्रति समय-चरण 3 है)। 5 व्यवरोधओं वाले 4-साइट ब्यूटेन मॉडल को 17 पुनरावृत्तियों (22 प्रति साइट) की आवश्यकता होती है, 12 व्यवरोधओं वाले 6-साइट बेंजीन मॉडल को 36 पुनरावृत्तियों (72 प्रति साइट) की आवश्यकता होती है, जबकि 29 व्यवरोधओं वाले 12-साइट बाइफिनाइल मॉडल को 92 पुनरावृत्तियों की आवश्यकता होती है ( 229 प्रति साइट प्रति समय-चरण)।<ref name="Hammonds_2020">{{cite journal | last = Hammonds | first = KD |author2=Heyes DM | year = 2020 | title = शास्त्रीय एनवीई आणविक गतिशीलता सिमुलेशन में छाया हैमिल्टनियन: लंबे समय तक स्थिरता का एक मार्ग| journal = Journal of Chemical Physics | volume = 152 | issue = 2 | pages = 024114_1–024114_15 | doi = 10.1063/1.5139708 | pmid = 31941339 | s2cid = 210333551 }}</ref> इसलिए शेक एल्गोरिदम की सीपीयू आवश्यकताएं महत्वपूर्ण हो सकती हैं, खासकर अगर आणविक मॉडल में उच्च स्तर की  दृढता हो।


विधि का एक बाद का विस्तार, QSHAKE ([[चार का समुदाय]] शेक) को कठोर इकाइयों से बने अणुओं के लिए एक तेज़ विकल्प के रूप में विकसित किया गया था, लेकिन यह सामान्य उद्देश्य के रूप में नहीं है।<ref name="forester_1998" >{{cite journal | last = Forester | first = TR |author2=Smith W | year = 1998 | title = शेक, रैटल और रोल: लिंक्ड कठोर निकायों के लिए कुशल बाधा एल्गोरिदम| journal = Journal of Computational Chemistry | volume = 19 | pages = 102–111 | doi = 10.1002/(SICI)1096-987X(19980115)19:1<102::AID-JCC9>3.0.CO;2-T }}</ref> यह [[सुगंधित अंगूठी]] सिस्टम जैसे कठोर लूप के लिए संतोषजनक ढंग से काम करता है लेकिन QSHAKE लचीले लूप के लिए विफल रहता है, जैसे कि जब [[प्रोटीन]] में डाइसल्फ़ाइड बॉन्ड होता है।
विधि का एक बाद का विस्तार,क्यूशेक (QSHAKE) ([[क्वाटरनियन शेक]]) को दृढ़ इकाइयों से बने अणुओं के लिए एक तेज़ विकल्प के रूप में विकसित किया गया था, लेकिन यह सामान्य उद्देश्य के रूप में नहीं है।<ref name="forester_1998" >{{cite journal | last = Forester | first = TR |author2=Smith W | year = 1998 | title = शेक, रैटल और रोल: लिंक्ड कठोर निकायों के लिए कुशल बाधा एल्गोरिदम| journal = Journal of Computational Chemistry | volume = 19 | pages = 102–111 | doi = 10.1002/(SICI)1096-987X(19980115)19:1<102::AID-JCC9>3.0.CO;2-T }}</ref> यह [[सुगंधित अंगूठी|एरोमेटिक  रिंग]] सिस्टम जैसे दृढ़ लूप के लिए संतोषजनक ढंग से काम करता है लेकिन क्यूशेक लचीले लूप के लिए विफल रहता है, जैसे कि जब [[प्रोटीन]] में डाइसल्फ़ाइड बॉन्ड होता है।




जबकि रैटल शेक की तरह ही काम करता है, फिर भी [[वेलोसिटी वेरलेट]] समय एकीकरण योजना का उपयोग करते हुए, WIGGLE लैग्रेंज मल्टीप्लायरों के लिए प्रारंभिक अनुमान का उपयोग करके SHAKE और RATTLE का विस्तार करता है <math>\lambda_k</math> कण वेग के आधार पर. उल्लेखनीय है कि MSHAKE बेहतर अभिसरण प्राप्त करने के लिए व्यवरोध बलों पर सुधार की गणना करता है।


SHAKE एल्गोरिथम का अंतिम संशोधन P-SHAKE एल्गोरिथम है<ref name="p-shake">{{cite journal| first=Pedro | last=Gonnet | title=P-SHAKE: A quadratically convergent SHAKE in <math>\mathcal O(n^2)</math> | journal=Journal of Computational Physics | volume=220 | year=2007| issue=2 | pages=740–750 | doi=10.1016/j.jcp.2006.05.032 |bibcode = 2007JCoPh.220..740G }}</ref> जिसे बहुत दृढ या अर्ध-दृढ [[अणु]]ओं पर लागू किया जाता है। P-SHAKE एक प्री-कंडीशनर की गणना और अद्यतन करता है जो SHAKE पुनरावृत्ति से पहले व्यवरोध ग्रेडिएंट्स पर लागू होता है, जिससे जैकोबियन होता है <math>\mathbf J_\sigma</math> विकर्ण या दृढ़ता से विकर्ण रूप से प्रभावशाली बनना। इस प्रकार वियुग्मित व्यवरोधएं बहुत तेजी से (रैखिक रूप से विपरीत द्विघात रूप से) एकाग्र होती हैं <math>\mathcal O(n^2)</math>.
जबकि रैटल शेक की तरह ही काम करता है, फिर भी [[वेलोसिटी वेरलेट]] समय एकीकरण योजना का उपयोग करते हुए, विग्गल (WIGGLE) लैग्रेंज मल्टीप्लायरों के लिए प्रारंभिक अनुमान का उपयोग करके शेक और रैटेल (RATTLE) का विस्तार करता है <math>\lambda_k</math> कण वेग के आधार पर उल्लेखनीय है कि एमशेक (MSHAKE) बेहतर अभिसरण प्राप्त करने के लिए व्यवरोध बलों पर सुधार की गणना करता है।


===M-शेक एल्गोरिदम===
शेक एल्गोरिथम का अंतिम संशोधन पी-शेक (P-SHAKE) एल्गोरिथम है<ref name="p-shake">{{cite journal| first=Pedro | last=Gonnet | title=P-SHAKE: A quadratically convergent SHAKE in <math>\mathcal O(n^2)</math> | journal=Journal of Computational Physics | volume=220 | year=2007| issue=2 | pages=740–750 | doi=10.1016/j.jcp.2006.05.032 |bibcode = 2007JCoPh.220..740G }}</ref> जिसे बहुत दृढ या अर्ध-दृढ [[अणु]]ओं पर लागू किया जाता है। पी-शेक एक प्री-कंडीशनर की गणना और अद्यतन करता है जो शेक पुनरावृत्ति से पहले व्यवरोध ग्रेडिएंट्स पर लागू होता है, जिससे जैकोबियन होता है <math>\mathbf J_\sigma</math> विकर्ण या दृढ़ता से विकर्ण रूप से प्रभावशाली बनना। इस प्रकार वियुग्मित व्यवरोधएं बहुत तेजी से (रैखिक रूप से विपरीत द्विघात रूप से) एकाग्र होती हैं <math>\mathcal O(n^2)</math>.
M-शेक एल्गोरिदम<ref name=kraeutler_2001>{{cite journal|last=Kräutler|first=Vincent|author2=W. F. van Gunsteren |author3=P. H. Hünenberger |title=आणविक गतिशीलता सिमुलेशन में छोटे अणुओं के लिए दूरी बाधा समीकरणों को हल करने के लिए एक तेज़ शेक एल्गोरिदम|journal=Journal of Computational Chemistry|volume=22|issue=5|pages=501–508|year=2001|doi=10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V|s2cid=6187100 }}</ref> सीधे न्यूटन की विधि का उपयोग करके समीकरणों की गैर-रेखीय प्रणाली को हल करता है। प्रत्येक पुनरावृत्ति में, समीकरणों की रैखिक प्रणाली
 
===एम-शेक एल्गोरिदम===
एम-शेक एल्गोरिदम<ref name=kraeutler_2001>{{cite journal|last=Kräutler|first=Vincent|author2=W. F. van Gunsteren |author3=P. H. Hünenberger |title=आणविक गतिशीलता सिमुलेशन में छोटे अणुओं के लिए दूरी बाधा समीकरणों को हल करने के लिए एक तेज़ शेक एल्गोरिदम|journal=Journal of Computational Chemistry|volume=22|issue=5|pages=501–508|year=2001|doi=10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V|s2cid=6187100 }}</ref> सीधे न्यूटन की विधि का उपयोग करके समीकरणों की गैर-रेखीय प्रणाली को हल करता है। प्रत्येक पुनरावृत्ति में, समीकरणों की रैखिक प्रणाली


:<math>\underline{\lambda} = -\mathbf J_\sigma^{-1} \underline{\sigma}</math>
:<math>\underline{\lambda} = -\mathbf J_\sigma^{-1} \underline{\sigma}</math>
[[एलयू अपघटन]] का उपयोग करके बिल्कुल हल किया जाता है। प्रत्येक पुनरावृत्ति की लागत होती है <math>\mathcal O(n^3)</math> संचालन, फिर भी समाधान [[द्विघात अभिसरण]] को अभिसरण करता है, जिसके लिए SHAKE की तुलना में कम पुनरावृत्तियों की आवश्यकता होती है।
[[एलयू अपघटन]] का उपयोग करके बिल्कुल हल किया जाता है। प्रत्येक पुनरावृत्ति की लागत होती है <math>\mathcal O(n^3)</math> संचालन, फिर भी समाधान [[द्विघात अभिसरण]] को अभिसरण करता है, जिसके लिए शेक की तुलना में कम पुनरावृत्तियों की आवश्यकता होती है।


यह समाधान पहली बार 1986 में जियोवन्नी सिस्कोटी और रेकैर्ट द्वारा प्रस्तावित किया गया था<ref name=ciccotti_1986>{{cite journal|last=Ciccotti|first=G.|author2=J. P. Ryckaert|title=कठोर अणुओं का आणविक गतिशीलता सिमुलेशन|journal=Computer Physics Reports|volume=4|year=1986|issue=6|pages=345–392|doi=10.1016/0167-7977(86)90022-5|bibcode = 1986CoPhR...4..346C }}</ref> शीर्षक के तहत आव्यूह विधि, फिर भी समीकरणों की रैखिक प्रणाली के समाधान में भिन्नता है। सिस्कोटी और रेकैर्ट आव्यूह को उलटने का सुझाव देते हैं <math>\mathbf J_\sigma</math> प्रत्यक्ष रूप से, फिर भी ऐसा केवल एक बार, पहली पुनरावृत्ति में। पहले पुनरावृत्ति की लागत होती है <math>\mathcal O(n^3)</math> संचालन, जबकि निम्नलिखित पुनरावृत्तियों की लागत केवल है <math>\mathcal O(n^2)</math> संचालन (आव्यूह-सदिश गुणन के लिए)। हालाँकि यह सुधार एक लागत पर आता है, क्योंकि जैकोबियन अब अद्यतन नहीं है, अभिसरण केवल रैखिक अभिसरण है, भले ही SHAKE एल्गोरिथ्म की तुलना में बहुत तेज़ दर पर हो।
यह समाधान पहली बार 1986 में जियोवन्नी सिस्कोटी और रेकैर्ट द्वारा प्रस्तावित किया गया था<ref name=ciccotti_1986>{{cite journal|last=Ciccotti|first=G.|author2=J. P. Ryckaert|title=कठोर अणुओं का आणविक गतिशीलता सिमुलेशन|journal=Computer Physics Reports|volume=4|year=1986|issue=6|pages=345–392|doi=10.1016/0167-7977(86)90022-5|bibcode = 1986CoPhR...4..346C }}</ref> शीर्षक के तहत <nowiki>''आव्यूह विधि''</nowiki>, फिर भी समीकरणों की रैखिक प्रणाली के समाधान में भिन्नता है। सिस्कोटी और रेकैर्ट आव्यूह को उलटने का सुझाव देते हैं <math>\mathbf J_\sigma</math> प्रत्यक्ष रूप से, फिर भी ऐसा केवल एक बार, पहली पुनरावृत्ति में। पहले पुनरावृत्ति की लागत होती है <math>\mathcal O(n^3)</math> संचालन, जबकि निम्नलिखित पुनरावृत्तियों की लागत केवल है <math>\mathcal O(n^2)</math> संचालन (आव्यूह-सदिश गुणन के लिए)। हालाँकि यह सुधार एक लागत पर आता है, क्योंकि जैकोबियन अब अद्यतन नहीं है, अभिसरण केवल रैखिक अभिसरण है, भले ही शेक एल्गोरिथ्म की तुलना में बहुत तेज़ दर पर हो।


विरल आव्यूह तकनीकों पर आधारित इस दृष्टिकोण के कई प्रकारों का अध्ययन बार्थ एट अल द्वारा किया गया था।<ref name=barthkuczeraetal>{{cite journal|last=Barth|first=Eric|author2=K. Kuczera |author3=B. Leimkuhler |author4=R. Skeel |title=बाधित आणविक गतिशीलता के लिए एल्गोरिदम|journal=Journal of Computational Chemistry|volume=16|issue=10|pages=1192–1209|year=1995|doi=10.1002/jcc.540161003|s2cid=38109923 }}</ref>
विरल आव्यूह तकनीकों पर आधारित इस दृष्टिकोण के कई प्रकारों का अध्ययन बार्थ एट अल द्वारा किया गया था।<ref name=barthkuczeraetal>{{cite journal|last=Barth|first=Eric|author2=K. Kuczera |author3=B. Leimkuhler |author4=R. Skeel |title=बाधित आणविक गतिशीलता के लिए एल्गोरिदम|journal=Journal of Computational Chemistry|volume=16|issue=10|pages=1192–1209|year=1995|doi=10.1002/jcc.540161003|s2cid=38109923 }}</ref>
 
===शेप एल्गोरिथ्म===
 
शेप (SHAPE) एल्गोरिथ्म<ref name=Tao_2012>{{cite journal|last=Tao|first=Peng|author2=Xiongwu Wu |author3=Bernard R. Brooks |title= वेरलेट आधारित कार्टेशियन आणविक गतिशीलता सिमुलेशन में कठोर संरचनाएं बनाए रखें|journal= The Journal of Chemical Physics|volume=137|issue=13|pages= 134110|year=2012|doi= 10.1063/1.4756796|pmid=23039588|bibcode = 2012JChPh.137m4110T |pmc=3477181}}</ref> तीन या अधिक केंद्रों के दृढ़ पिंडों को बाधित करने के लिए शेक का एक बहुकेंद्रीय एनालॉग है। शेक की तरह, एक अनियंत्रित कदम उठाया जाता है और फिर सीधे रिजिड बॉडी रोटेशन मैट्रिक्स (दृढ़ पिंड परिक्रमण आव्यूह) की गणना और लागू करके सही किया जाता है जो संतुष्ट करता है:
===आकार (SHAPE) एल्गोरिथ्म===
आकार एल्गोरिथ्म<ref name=Tao_2012>{{cite journal|last=Tao|first=Peng|author2=Xiongwu Wu |author3=Bernard R. Brooks |title= वेरलेट आधारित कार्टेशियन आणविक गतिशीलता सिमुलेशन में कठोर संरचनाएं बनाए रखें|journal= The Journal of Chemical Physics|volume=137|issue=13|pages= 134110|year=2012|doi= 10.1063/1.4756796|pmid=23039588|bibcode = 2012JChPh.137m4110T |pmc=3477181}}</ref> तीन या अधिक केंद्रों के दृढ़ पिंडों को बाधित करने के लिए SHAKE का एक बहुकेंद्रीय एनालॉग है। SHAKE की तरह, एक अनियंत्रित कदम उठाया जाता है और फिर सीधे   रिजिड बॉडी रोटेशन मैट्रिक्स (दृढ़ पिंड परिक्रमण आव्यूह) की गणना और लागू करके सही किया जाता है जो संतुष्ट करता है:


: <math> L^\text{rigid} \left( t + \frac{\Delta t} 2 \right) = L^\text{nonrigid} \left( t + \frac{\Delta t} 2 \right)</math>
: <math> L^\text{rigid} \left( t + \frac{\Delta t} 2 \right) = L^\text{nonrigid} \left( t + \frac{\Delta t} 2 \right)</math>
इस दृष्टिकोण में रोटेशन आव्यूह को निर्धारित करने के लिए तीन या चार तीव्र न्यूटन पुनरावृत्तियों के बाद एक एकल 3×3 आव्यूह विकर्णीकरण सम्मिलित है। SHAPE समान प्रक्षेपवक्र प्रदान करता है जो पूरी तरह से अभिसरण पुनरावृत्त SHAKE के साथ प्रदान किया जाता है, फिर भी तीन या अधिक केंद्रों वाले सिस्टम पर लागू होने पर इसे SHAKE की तुलना में अधिक कुशल और अधिक सटीक पाया जाता है। यह SHAKE जैसी व्यवरोधओं की क्षमता को तीन या अधिक परमाणुओं वाली रैखिक प्रणालियों, चार या अधिक परमाणुओं वाली तलीय प्रणालियों और महत्वपूर्ण रूप से बड़ी कठोर संरचनाओं तक विस्तारित करता है जहां SHAKE असाध्य है। यह दृढ़ पिंडों को उसी मूल तरीके से पुनरावर्ती रूप से हल करके दृढ़ पिंडों को एक या दो सामान्य केंद्रों (जैसे पेप्टाइड विमानों) से जोड़ने की अनुमति देता है, जैसे SHAKE का उपयोग एक से अधिक SHAKE अवरोध वाले परमाणुओं के लिए किया जाता है।
इस दृष्टिकोण में रोटेशन आव्यूह को निर्धारित करने के लिए तीन या चार तीव्र न्यूटन पुनरावृत्तियों के बाद एक एकल 3×3 आव्यूह विकर्णीकरण सम्मिलित है। शेप समान प्रक्षेपवक्र प्रदान करता है जो पूरी तरह से अभिसरण पुनरावृत्त शेक के साथ प्रदान किया जाता है, फिर भी तीन या अधिक केंद्रों वाले सिस्टम पर लागू होने पर इसे शेक की तुलना में अधिक कुशल और अधिक सटीक पाया जाता है। यह शेक जैसी व्यवरोधओं की क्षमता को तीन या अधिक परमाणुओं वाली रैखिक प्रणालियों, चार या अधिक परमाणुओं वाली तलीय प्रणालियों और महत्वपूर्ण रूप से बड़ी दृढ़ संरचनाओं तक विस्तारित करता है जहां शेकअसाध्य है। यह दृढ़ पिंडों को उसी मूल तरीके से पुनरावर्ती रूप से हल करके दृढ़ पिंडों को एक या दो सामान्य केंद्रों (जैसे पेप्टाइड विमानों) से जोड़ने की अनुमति देता है, जैसे शेक का उपयोग एक से अधिक शेक अवरोध वाले परमाणुओं के लिए किया जाता है।


===लिंक्स एल्गोरिदम===
===लिंक्स एल्गोरिदम===
एक वैकल्पिक व्यवरोध विधि, LINCS (रैखिक व्यवरोध सॉल्वर) 1997 में हेस, बेकर, बेरेन्डसेन और फ्रैजे द्वारा विकसित की गई थी।<ref name="hess_1997" >{{cite journal | last = Hess | first = B |author2=Bekker H |author3=Berendsen HJC |author4=Fraaije JGEM  | year = 1997 | title = LINCS: आणविक सिमुलेशन के लिए एक रैखिक बाधा सॉल्वर| journal = Journal of Computational Chemistry | volume = 18 | issue = 12 | pages = 1463–1472 | doi = 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H| citeseerx = 10.1.1.48.2727 }}</ref> और यह एडबर्ग, इवांस और मॉरिस (ईईएम) की 1986 पद्धति पर आधारित था।  
एक वैकल्पिक व्यवरोध विधि, लिंक्स (LINCS) (रैखिक व्यवरोध सॉल्वर) 1997 में हेस, बेकर, बेरेन्डसेन और फ्रैजे द्वारा विकसित की गई थी।<ref name="hess_1997" >{{cite journal | last = Hess | first = B |author2=Bekker H |author3=Berendsen HJC |author4=Fraaije JGEM  | year = 1997 | title = LINCS: आणविक सिमुलेशन के लिए एक रैखिक बाधा सॉल्वर| journal = Journal of Computational Chemistry | volume = 18 | issue = 12 | pages = 1463–1472 | doi = 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H| citeseerx = 10.1.1.48.2727 }}</ref> और यह एडबर्ग, इवांस और मॉरिस (ईईएम) की 1986 पद्धति पर आधारित था।  


LINCS लैग्रेंज मल्टीप्लायरों को व्यवरोध बलों पर लागू करता है और जैकोबियन के व्युत्क्रम का अनुमान लगाने के लिए श्रृंखला विस्तार का उपयोग करके मल्टीप्लायरों का समाधान करता है। <math>\mathbf J_\sigma</math>:
लिंक्स लैग्रेंज मल्टीप्लायरों को व्यवरोध बलों पर लागू करता है और जैकोबियन के व्युत्क्रम का अनुमान लगाने के लिए श्रृंखला विस्तार का उपयोग करके मल्टीप्लायरों का समाधान करता है। <math>\mathbf J_\sigma</math>:


:<math>(\mathbf I - \mathbf J_\sigma)^{-1} = \mathbf I + \mathbf J_\sigma + \mathbf J_\sigma^2 + \mathbf J_\sigma^3 + \cdots</math>
:<math>(\mathbf I - \mathbf J_\sigma)^{-1} = \mathbf I + \mathbf J_\sigma + \mathbf J_\sigma^2 + \mathbf J_\sigma^3 + \cdots</math>
न्यूटन पुनरावृत्ति के प्रत्येक चरण में। यह सन्निकटन केवल 1 से छोटे [[eigenvalues]] ​​​​वाले आव्यूह के लिए काम करता है, जिससे LINCS एल्गोरिदम केवल कम कनेक्टिविटी वाले अणुओं के लिए उपयुक्त हो जाता है।
न्यूटन पुनरावृत्ति के प्रत्येक चरण में। यह सन्निकटन केवल 1 से छोटे [[eigenvalues|आइगेनवैल्यूज़]] ​​​​वाले आव्यूह के लिए काम करता है, जिससे लिंक्स एल्गोरिदम केवल कम कनेक्टिविटी वाले अणुओं के लिए उपयुक्त हो जाता है।


बताया गया है कि LINCS, SHAKE से 3-4 गुना तेज़ है।<ref name="hess_1997" />
बताया गया है कि लिंक्स, शेक से 3-4 गुना तेज़ है।<ref name="hess_1997" />




==हाइब्रिड विधियाँ==
==हाइब्रिड विधियाँ==


हाइब्रिड तरीकों को भी पेश किया गया है जिसमें व्यवरोधओं को दो समूहों में विभाजित किया गया है; पहले समूह की व्यवरोधओं को आंतरिक निर्देशांक का उपयोग करके हल किया जाता है जबकि दूसरे समूह की व्यवरोधओं को व्यवरोध बलों का उपयोग करके हल किया जाता है, उदाहरण के लिए, लैग्रेंज गुणक या प्रक्षेपण विधि द्वारा।<ref name="mazur_1999" >{{cite journal | last = Mazur | first = AK | year = 1999 | title = गति के आंतरिक समन्वय समीकरणों के साथ बंद श्रृंखला कठोर शरीर की गतिशीलता का प्रतीकात्मक एकीकरण| journal = Journal of Chemical Physics | volume = 111 | issue = 4 | pages = 1407–1414 | doi = 10.1063/1.479399|bibcode = 1999JChPh.111.1407M }}</ref><ref>{{cite journal | last = Bae | first = D-S |author2=Haug EJ | year = 1988 | title = A Recursive Formulation for Constrained Mechanical System Dynamics: Part II. Closed Loop Systems | journal = Mechanics of Structures and Machines | volume = 15 | issue = 4 | pages = 481–506| doi = 10.1080/08905458708905130 }}</ref><ref>{{cite journal | last = Rodriguez | first = G |author2=Jain A|author3=Kreutz-Delgado K | year = 1991 | title = मैनिपुलेटर मॉडलिंग और नियंत्रण के लिए एक स्थानिक ऑपरेटर बीजगणित| journal = The International Journal of Robotics Research | volume = 10 | issue = 4 | pages = 371–381 | doi = 10.1177/027836499101000406| hdl = 2060/19900020578 | hdl-access = free }}</ref> इस दृष्टिकोण की प्रांरम्भ लैग्रेंज ने की थी,<ref name="lagrange_1788" />और इसका परिणाम मिश्रित प्रकार के लैग्रेंज समीकरणों में होता है।<ref>{{cite book | last = Sommerfeld | first = Arnold | authorlink = Arnold Sommerfeld | year = 1952 | title = [[Lectures on Theoretical Physics#Mechanics|Lectures on Theoretical Physics, Vol. I: Mechanics]] | publisher = Academic Press | location = New York | isbn = 978-0-12-654670-5}}</ref>
हाइब्रिड तरीकों को भी पेश किया गया है जिसमें व्यवरोधओं को दो समूहों में विभाजित किया गया है; पहले समूह की व्यवरोधओं को आंतरिक निर्देशांक का उपयोग करके हल किया जाता है जबकि दूसरे समूह की व्यवरोधओं को व्यवरोध बलों का उपयोग करके हल किया जाता है, उदाहरण के लिए, लैग्रेंज गुणक या प्रक्षेपण विधि द्वारा।<ref name="mazur_1999" >{{cite journal | last = Mazur | first = AK | year = 1999 | title = गति के आंतरिक समन्वय समीकरणों के साथ बंद श्रृंखला कठोर शरीर की गतिशीलता का प्रतीकात्मक एकीकरण| journal = Journal of Chemical Physics | volume = 111 | issue = 4 | pages = 1407–1414 | doi = 10.1063/1.479399|bibcode = 1999JChPh.111.1407M }}</ref><ref>{{cite journal | last = Bae | first = D-S |author2=Haug EJ | year = 1988 | title = A Recursive Formulation for Constrained Mechanical System Dynamics: Part II. Closed Loop Systems | journal = Mechanics of Structures and Machines | volume = 15 | issue = 4 | pages = 481–506| doi = 10.1080/08905458708905130 }}</ref><ref>{{cite journal | last = Rodriguez | first = G |author2=Jain A|author3=Kreutz-Delgado K | year = 1991 | title = मैनिपुलेटर मॉडलिंग और नियंत्रण के लिए एक स्थानिक ऑपरेटर बीजगणित| journal = The International Journal of Robotics Research | volume = 10 | issue = 4 | pages = 371–381 | doi = 10.1177/027836499101000406| hdl = 2060/19900020578 | hdl-access = free }}</ref> इस दृष्टिकोण की प्रांरम्भ लैग्रेंज ने की थी,<ref name="lagrange_1788" />और इसका परिणाम ''मिश्रित प्रकार के लैग्रेंज समीकरणों'' में होता है।<ref>{{cite book | last = Sommerfeld | first = Arnold | authorlink = Arnold Sommerfeld | year = 1952 | title = [[Lectures on Theoretical Physics#Mechanics|Lectures on Theoretical Physics, Vol. I: Mechanics]] | publisher = Academic Press | location = New York | isbn = 978-0-12-654670-5}}</ref>





Revision as of 22:44, 26 September 2023

कम्प्यूटेशनल रसायन विज्ञान में, व्यवरोध एल्गोरिथ्म (कॉन्सट्रेंट एल्गोरिथ्म) एक दृढ़ पिंड की न्यूटोनियन गति को संतुष्ट करने की एक विधि है जिसमें द्रव्यमान बिंदु होते हैं। यह सुनिश्चित करने के लिए कि द्रव्यमान बिंदुओं के बीच की दूरी बनी रहे, एक संयम एल्गोरिथ्म का उपयोग किया जाता है। इसमें सम्मिलित सामान्य चरण हैं: (i) नवीन अप्रतिबंधित निर्देशांक (आंतरिक निर्देशांक) चुनें, (ii) स्पष्ट व्यवरोध बलों का परिचय दें, (iii) लैग्रेंज गुणक या प्रक्षेपण विधियों की तकनीक द्वारा व्यवरोध बलों को न्यूनतमीकृत करें।

व्यवरोध एल्गोरिदम प्रायः आण्विक गतिकी सिमुलेशन पर लागू होते हैं। हालाँकि ऐसे सिमुलेशन कभी-कभी आंतरिक निर्देशांक का उपयोग करके किए जाते हैं जो स्वचालित रूप से बॉन्ड-लंबाई, बॉन्ड-कोण और मरोड़-कोण व्यवरोधओं को संतुष्ट करते हैं, इन तीन व्यवरोधओं के लिए स्पष्ट या अंतर्निहित व्यवरोध बलों का उपयोग करके भी सिमुलेशन किया जा सकता है। हालाँकि, स्पष्ट व्यवरोध बल अक्षमता को उत्पत्ति देती हैं; किसी दी गई लंबाई का प्रक्षेपवक्र प्राप्त करने के लिए अधिक कम्प्यूटेशनल शक्ति की आवश्यकता होती है। इसलिए, आंतरिक निर्देशांक और अंतर्निहित-बल व्यवरोध सॉल्वर को सामान्यतः प्राथमिकता दी जाती है।

व्यवरोध एल्गोरिदम स्वतंत्रता की कुछ डिग्री के साथ गति की उपेक्षा करके कम्प्यूटेशनल दक्षता प्राप्त करते हैं। उदाहरण के लिए, परमाणु आण्विक गतिकी में, सामान्यतः हाइड्रोजन के सहसंयोजक बंधोकी लंबाई सीमित होती है; हालाँकि, व्यवरोध एल्गोरिदम का उपयोग नहीं किया जाना चाहिए यदि अध्ययन की जा रही घटना के लिए स्वतंत्रता की इन डिग्री के साथ कंपन महत्वपूर्ण हैं।

गणितीय पृष्ठभूमि

N कणों के एक सेट की गति को दूसरे क्रम के साधारण अंतर समीकरणों, न्यूटन के दूसरे नियम के एक सेट द्वारा वर्णित किया जा सकता है, जिसे आव्यूह रूप में लिखा जा सकता है

जहां M एक द्रव्यमान आव्यूह (मास मैट्रिक्स ) है और q सामान्यीकृत निर्देशांक का सदिश (ज्यामितीय) है जो कणों की स्थिति का वर्णन करता है। उदाहरण के लिए, सदिश q कण स्थितियों rk का 3N कार्टेशियन निर्देशांक हो सकता है, जहां k 1 से N तक चलता है; व्यवरोधओं की अनुपस्थिति में, 'M' कण द्रव्यमान का 3Nx3N विकर्ण वर्ग आव्यूह होगा। सदिश 'f' सामान्यीकृत बलों का प्रतिनिधित्व करता है और अदिश V('q') संभावित ऊर्जा का प्रतिनिधित्व करता है, ये दोनों सामान्यीकृत निर्देशांक 'q' के कार्य हैं।

यदि M व्यवरोधएं उपलब्ध हैं, तो निर्देशांक को M समय-स्वतंत्र बीजगणितीय समीकरणों को भी संतुष्ट करना होगा

जहां सूचकांक j 1 से M तक चलता है। संक्षिप्तता के लिए, ये फलन gi हैं नीचे M-आयामी सदिश 'g' में समूहीकृत किया गया है। कार्य न्यूटन के दूसरे नियम के सामान्य अंतर समीकरणों (ओडीई) के बजाय अंतर-बीजगणितीय (डीएई) समीकरणों के संयुक्त सेट को हल करना है।

इस समस्या का विस्तार से अध्ययन जोसेफ लुई लैग्रेंज ने किया, जिन्होंने इसे हल करने के लिए अधिकांश तरीके बताए।[1] सबसे सरल तरीका नए सामान्यीकृत निर्देशांक को परिभाषित करना है जो अप्रतिबंधित हैं; यह दृष्टिकोण बीजगणितीय समीकरणों को समाप्त कर देता है और समस्या को एक बार फिर सामान्य अंतर समीकरण को हल करने तक सीमित कर देता है। इस तरह के दृष्टिकोण का उपयोग, उदाहरण के लिए, किसी दृढ़ पिंड की गति का वर्णन करने में किया जाता है; एक दृढ़ पिंड की स्थिति और अभिविन्यास को इसे बनाने वाले कणों की स्थिति और उनके बीच की व्यवरोधओं का वर्णन करने के बजाय छह स्वतंत्र, अप्रतिबंधित निर्देशांक द्वारा वर्णित किया जा सकता है जो उनकी सापेक्ष दूरी बनाए रखते हैं। इस दृष्टिकोण का दोष यह है कि समीकरण बोझिल और जटिल हो सकते हैं; उदाहरण के लिए, द्रव्यमान आव्यूह M गैर-विकर्ण हो सकता है और सामान्यीकृत निर्देशांक पर निर्भर हो सकता है।

दूसरा दृष्टिकोण स्पष्ट बल का परिचय देना है जो व्यवरोध को बनाए रखने के लिए काम करते हैं; उदाहरण के लिए, कोई सशक्त स्प्रिंग बल का परिचय दे सकता है जो एक ''दृढ़'' पिंड के भीतर द्रव्यमान बिंदुओं के बीच की दूरी को लागू करता है। इस दृष्टिकोण की दो कठिनाइयाँ यह हैं कि व्यवरोधएँ बिल्कुल संतुष्ट नहीं हैं, और सशक्त बलों को बहुत निम्न समय-चरणों की आवश्यकता हो सकती है, जिससे सिमुलेशन कम्प्यूटेशनल रूप से अक्षम हो जाता है।

तीसरा दृष्टिकोण व्यवरोधओं को पूरा करने के लिए आवश्यक समन्वय समायोजन निर्धारित करने के लिए लैग्रेंज मल्टीप्लायरों या व्यवरोध मैनिफोल्ड के प्रक्षेपण जैसी विधि का उपयोग करना है।

अंत में, विभिन्न संकर दृष्टिकोण हैं जिनमें व्यवरोधओं के विभिन्न सेटों को विभिन्न तरीकों से संतुष्ट किया जाता है, उदाहरण के लिए, आंतरिक निर्देशांक, स्पष्ट बल और अंतर्निहित-बल समाधान।

आंतरिक समन्वय विधियाँ

ऊर्जा न्यूनीकरण और आण्विक गतिकी में व्यवरोधओं को संतुष्ट करने का सबसे सरल तरीका सिस्टम की स्वतंत्रता की अप्रतिबंधित स्वतंत्र डिग्री के अनुरूप तथाकथित आंतरिक निर्देशांक में यांत्रिक प्रणाली का प्रतिनिधित्व करना है। उदाहरण के लिए, एक प्रोटीन के डायहेड्रल कोण निर्देशांक का एक स्वतंत्र सेट है जो बिना किसी व्यवरोध के सभी परमाणुओं की स्थिति निर्दिष्ट करता है। ऐसे आंतरिक-समन्वय दृष्टिकोण की कठिनाई दोगुनी है: गति के न्यूटोनियन समीकरण बहुत अधिक जटिल हो जाते हैं और आंतरिक निर्देशांक व्यवरोधओं की चक्रीय प्रणालियों के लिए परिभाषित करना कठिन हो सकता है, उदाहरण के लिए, रिंग पकरिंग में या जब प्रोटीन में डाइसल्फ़ाइड बंधन होता है।

आंतरिक निर्देशांक में कुशल पुनरावर्ती ऊर्जा न्यूनीकरण के लिए मूल तरीके Gō और सहकर्मियों द्वारा विकसित किए गए थे।[2][3]

कुशल पुनरावर्ती, आंतरिक-समन्वय व्यवरोध सॉल्वर को आण्विक गतिकी तक बढ़ाया गया था।[4][5] एनालॉग पद्धतियां बाद में अन्य प्रणालियों में लागू की गईं।[6][7][8]

लैग्रेंज गुणक-आधारित विधियाँ

लैग्रेंज मल्टीप्लायरों का उपयोग करके एक दृढ़ पानी के अणु की व्यवरोधओं को हल करना: ए) अप्रतिबंधित स्थिति एक सिमुलेशन समय-चरण के बाद प्राप्त की जाती है, बी) प्रत्येक कण पर प्रत्येक व्यवरोध के ढ़ाल की गणना की जाती है और सी) लैग्रेंज मल्टीप्लायरों की गणना प्रत्येक ग्रेडिएंट के लिए की जाती है जैसे कि व्यवरोधएँ संतुष्ट हैं।

व्यवरोध एल्गोरिदम का उपयोग करने वाले अधिकांश आण्विक गतिकी सिमुलेशन में, लैग्रेंज मल्टीप्लायरों की विधि का उपयोग करके व्यवरोधओं को लागू किया जाता है। समय t पर n रैखिक (होलोनोमिक व्यवरोधएं) व्यवरोधओं का एक सेट दिया गया है,

जहाँ और समय t और पर kवें व्यवरोध में सम्मिलित दो कणों की स्थिति हैं निर्धारित अंतर-कण दूरी है।

इन व्यवरोधओं के कारण बलों को गति के समीकरणों में जोड़ा जाता है, जिसके परिणामस्वरूप, सिस्टम में प्रत्येक N कण के लिए

व्यवरोध बलों को जोड़ने से कुल ऊर्जा में परिवर्तन नहीं होता है, क्योंकि व्यवरोध बलों (कणों के समूह पर लिया गया जिन पर व्यवरोधएं कार्य करती हैं) द्वारा किया गया शुद्ध कार्य शून्य है। ध्यान दें कि साइन ऑन है स्वच्छंद है और कुछ संदर्भ[9] एक विपरीत चिन्ह है.

समय के संबंध में समीकरण के दोनों पक्षों को एकीकृत करने से, उस समय कणों के बाधित निर्देशांक, , दिया जाता है,

जहाँ गति के अप्रतिबंधित समीकरणों को एकीकृत करने के बाद iवें कण की अप्रतिबंधित (या असंशोधित) स्थिति है।

व्यवरोधओं को पूरा करने के लिए अगले समय चरण में, लैग्रेंज गुणक को निम्नलिखित समीकरण के रूप में निर्धारित किया जाना चाहिए,

इसका तात्पर्य एक प्रणाली को हल करना है गैर-रैखिक समीकरण

के लिए एक साथ अज्ञात लैग्रेंज गुणक .

की यह व्यवस्था गैर-रैखिक समीकरण अज्ञात को सामान्यतः न्यूटन की विधि| न्यूटन-रेफसन विधि का उपयोग करके हल किया जाता है जहां समाधान सदिश होता है का उपयोग कर अद्यतन किया जाता है

जहाँ जैकोबियन आव्यूह और समीकरणों का निर्धारक है σk:

चूँकि सभी कण सभी व्यवरोधओं में योगदान नहीं करते हैं, एक ब्लॉक आव्यूह है और इसे आव्यूह की ब्लॉक-यूनिट में व्यक्तिगत रूप से हल किया जा सकता है। दूसरे शब्दों में, प्रत्येक अणु के लिए व्यक्तिगत रूप से हल किया जा सकता है।

सदिश को लगातार अपडेट करने के बजाय , से पुनरावृत्ति प्रारंभ की जा सकती है , जिसके परिणामस्वरूप सरल अभिव्यक्तियाँ प्राप्त होती हैं और . इस मामले में

तब को अद्यतन किया गया है

प्रत्येक पुनरावृत्ति के बाद, अप्रतिबंधित कण स्थितियों का उपयोग करके अद्यतन किया जाता है

फिर सदिश को रीसेट कर दिया जाता है

उपरोक्त प्रक्रिया व्यवरोध समीकरणों के समाधान होने तक दोहराई जाती है, , एक संख्यात्मक त्रुटि की निर्धारित सहनशीलता में परिवर्तित हो जाता है।

हालाँकि लैग्रेंज मल्टीप्लायरों की गणना करने के लिए कई एल्गोरिदम हैं, लेकिन ये अंतर केवल समीकरणों की प्रणाली को हल करने के तरीकों पर निर्भर करते हैं। इस विधि के लिए सामान्यतः अर्ध-न्यूटन विधियों का उपयोग किया जाता है।

सेटल एल्गोरिदम

सेटल (SETTLE) एल्गोरिथम[10] गैर-रैखिक समीकरणों की प्रणाली को विश्लेषणात्मक रूप से हल करता है निरंतर समय में व्यवरोधएँ. यद्यपि यह बड़ी संख्या में व्यवरोधओं को मापता नहीं है, इसका उपयोग प्रायः दृढ़ जल के अणुओं को बाधित करने के लिए किया जाता है, जो लगभग सभी जैविक सिमुलेशन में उपलब्ध होते हैं और सामान्यतः तीन व्यवरोधओं (जैसे एसपीसी/ई और टीआईपी3पी जल मॉडल) का उपयोग करके तैयार किए जाते हैं।

शेक एल्गोरिदम

शेक (SHAKE) एल्गोरिथ्म को पहली बार आण्विक गतिकी सिमुलेशन के दौरान एक बंधन ज्यामिति व्यवरोध को संतुष्ट करने के लिए विकसित किया गया था।[11] किसी भी होलोनोमिक व्यवरोध को संभालने के लिए विधि को सामान्यीकृत किया गया था, जैसे कि निरंतर बंधन कोण, या आणविक दृढता को बनाए रखने के लिए आवश्यक।[12]

शेक एल्गोरिथ्म में, गैर-रैखिक व्यवरोध समीकरणों की प्रणाली को गॉस-सीडेल विधि का उपयोग करके हल किया जाता है जो न्यूटन पुनरावृत्तिl न्यूटन-रेफसन विधि का उपयोग करके समीकरणों की रैखिक प्रणाली के समाधान का अनुमान लगाता है;

यह ऐसा मानने के बराबर है विकर्ण रूप से प्रभावशाली है और हल कर रहा है वें के लिए समीकरण अज्ञात है। व्यवहार में, हम गणना करते हैं

सभी के लिए व्यवरोध समीकरणों तक पुनरावर्ती रूप से एक निश्चित सहिष्णुता के अनुसार हल किया जाता है।

प्रत्येक पुनरावृत्ति की गणना लागत है , और पुनरावृत्तियाँ स्वयं रैखिक रूप से अभिसरण होती हैं।

बाद में शेक का एक अपुनरावृत्तीय रूप विकसित किया गया।[13]

शेक एल्गोरिथम के कई प्रकार उपलब्ध हैं। यद्यपि वे स्वयं व्यवरोधओं की गणना या लागू करने के तरीके में भिन्न हैं, फिर भी व्यवरोधओं को लैग्रेंज मल्टीप्लायरों का उपयोग करके तैयार किया जाता है जिनकी गणना गॉस-सीडेल विधि का उपयोग करके की जाती है।

मूल शेक एल्गोरिदम दृढ़ और लचीले दोनों अणुओं (जैसे पानी, बेंजीन और बाइफिनाइल) को नियंत्रित करने में सक्षम है और आण्विक गतिकी सिमुलेशन में नगण्य त्रुटि या ऊर्जा बहाव पेश करता है।[14] शेक के साथ एक मुद्दा यह है कि अभिसरण के एक निश्चित स्तर तक पहुंचने के लिए आवश्यक पुनरावृत्तियों की संख्या बढ़ जाती है क्योंकि आणविक ज्यामिति अधिक जटिल हो जाती है। 64 बिट कंप्यूटर सटीकता (सापेक्ष सहनशीलता) तक पहुंचने के लिए ) 310K के तापमान पर एक विशिष्ट आण्विक गतिकी सिमुलेशन में, आणविक ज्यामिति को बनाए रखने के लिए 3 व्यवरोधओं वाले 3-साइट जल मॉडल को औसतन 9 पुनरावृत्तियों की आवश्यकता होती है (जो प्रति साइट प्रति समय-चरण 3 है)। 5 व्यवरोधओं वाले 4-साइट ब्यूटेन मॉडल को 17 पुनरावृत्तियों (22 प्रति साइट) की आवश्यकता होती है, 12 व्यवरोधओं वाले 6-साइट बेंजीन मॉडल को 36 पुनरावृत्तियों (72 प्रति साइट) की आवश्यकता होती है, जबकि 29 व्यवरोधओं वाले 12-साइट बाइफिनाइल मॉडल को 92 पुनरावृत्तियों की आवश्यकता होती है ( 229 प्रति साइट प्रति समय-चरण)।[14] इसलिए शेक एल्गोरिदम की सीपीयू आवश्यकताएं महत्वपूर्ण हो सकती हैं, खासकर अगर आणविक मॉडल में उच्च स्तर की दृढता हो।

विधि का एक बाद का विस्तार,क्यूशेक (QSHAKE) (क्वाटरनियन शेक) को दृढ़ इकाइयों से बने अणुओं के लिए एक तेज़ विकल्प के रूप में विकसित किया गया था, लेकिन यह सामान्य उद्देश्य के रूप में नहीं है।[15] यह एरोमेटिक  रिंग सिस्टम जैसे दृढ़ लूप के लिए संतोषजनक ढंग से काम करता है लेकिन क्यूशेक लचीले लूप के लिए विफल रहता है, जैसे कि जब प्रोटीन में डाइसल्फ़ाइड बॉन्ड होता है।


जबकि रैटल शेक की तरह ही काम करता है, फिर भी वेलोसिटी वेरलेट समय एकीकरण योजना का उपयोग करते हुए, विग्गल (WIGGLE) लैग्रेंज मल्टीप्लायरों के लिए प्रारंभिक अनुमान का उपयोग करके शेक और रैटेल (RATTLE) का विस्तार करता है कण वेग के आधार पर उल्लेखनीय है कि एमशेक (MSHAKE) बेहतर अभिसरण प्राप्त करने के लिए व्यवरोध बलों पर सुधार की गणना करता है।

शेक एल्गोरिथम का अंतिम संशोधन पी-शेक (P-SHAKE) एल्गोरिथम है[16] जिसे बहुत दृढ या अर्ध-दृढ अणुओं पर लागू किया जाता है। पी-शेक एक प्री-कंडीशनर की गणना और अद्यतन करता है जो शेक पुनरावृत्ति से पहले व्यवरोध ग्रेडिएंट्स पर लागू होता है, जिससे जैकोबियन होता है विकर्ण या दृढ़ता से विकर्ण रूप से प्रभावशाली बनना। इस प्रकार वियुग्मित व्यवरोधएं बहुत तेजी से (रैखिक रूप से विपरीत द्विघात रूप से) एकाग्र होती हैं .

एम-शेक एल्गोरिदम

एम-शेक एल्गोरिदम[17] सीधे न्यूटन की विधि का उपयोग करके समीकरणों की गैर-रेखीय प्रणाली को हल करता है। प्रत्येक पुनरावृत्ति में, समीकरणों की रैखिक प्रणाली

एलयू अपघटन का उपयोग करके बिल्कुल हल किया जाता है। प्रत्येक पुनरावृत्ति की लागत होती है संचालन, फिर भी समाधान द्विघात अभिसरण को अभिसरण करता है, जिसके लिए शेक की तुलना में कम पुनरावृत्तियों की आवश्यकता होती है।

यह समाधान पहली बार 1986 में जियोवन्नी सिस्कोटी और रेकैर्ट द्वारा प्रस्तावित किया गया था[12] शीर्षक के तहत ''आव्यूह विधि'', फिर भी समीकरणों की रैखिक प्रणाली के समाधान में भिन्नता है। सिस्कोटी और रेकैर्ट आव्यूह को उलटने का सुझाव देते हैं प्रत्यक्ष रूप से, फिर भी ऐसा केवल एक बार, पहली पुनरावृत्ति में। पहले पुनरावृत्ति की लागत होती है संचालन, जबकि निम्नलिखित पुनरावृत्तियों की लागत केवल है संचालन (आव्यूह-सदिश गुणन के लिए)। हालाँकि यह सुधार एक लागत पर आता है, क्योंकि जैकोबियन अब अद्यतन नहीं है, अभिसरण केवल रैखिक अभिसरण है, भले ही शेक एल्गोरिथ्म की तुलना में बहुत तेज़ दर पर हो।

विरल आव्यूह तकनीकों पर आधारित इस दृष्टिकोण के कई प्रकारों का अध्ययन बार्थ एट अल द्वारा किया गया था।[18]

शेप एल्गोरिथ्म

शेप (SHAPE) एल्गोरिथ्म[19] तीन या अधिक केंद्रों के दृढ़ पिंडों को बाधित करने के लिए शेक का एक बहुकेंद्रीय एनालॉग है। शेक की तरह, एक अनियंत्रित कदम उठाया जाता है और फिर सीधे रिजिड बॉडी रोटेशन मैट्रिक्स (दृढ़ पिंड परिक्रमण आव्यूह) की गणना और लागू करके सही किया जाता है जो संतुष्ट करता है:

इस दृष्टिकोण में रोटेशन आव्यूह को निर्धारित करने के लिए तीन या चार तीव्र न्यूटन पुनरावृत्तियों के बाद एक एकल 3×3 आव्यूह विकर्णीकरण सम्मिलित है। शेप समान प्रक्षेपवक्र प्रदान करता है जो पूरी तरह से अभिसरण पुनरावृत्त शेक के साथ प्रदान किया जाता है, फिर भी तीन या अधिक केंद्रों वाले सिस्टम पर लागू होने पर इसे शेक की तुलना में अधिक कुशल और अधिक सटीक पाया जाता है। यह शेक जैसी व्यवरोधओं की क्षमता को तीन या अधिक परमाणुओं वाली रैखिक प्रणालियों, चार या अधिक परमाणुओं वाली तलीय प्रणालियों और महत्वपूर्ण रूप से बड़ी दृढ़ संरचनाओं तक विस्तारित करता है जहां शेकअसाध्य है। यह दृढ़ पिंडों को उसी मूल तरीके से पुनरावर्ती रूप से हल करके दृढ़ पिंडों को एक या दो सामान्य केंद्रों (जैसे पेप्टाइड विमानों) से जोड़ने की अनुमति देता है, जैसे शेक का उपयोग एक से अधिक शेक अवरोध वाले परमाणुओं के लिए किया जाता है।

लिंक्स एल्गोरिदम

एक वैकल्पिक व्यवरोध विधि, लिंक्स (LINCS) (रैखिक व्यवरोध सॉल्वर) 1997 में हेस, बेकर, बेरेन्डसेन और फ्रैजे द्वारा विकसित की गई थी।[20] और यह एडबर्ग, इवांस और मॉरिस (ईईएम) की 1986 पद्धति पर आधारित था।

लिंक्स लैग्रेंज मल्टीप्लायरों को व्यवरोध बलों पर लागू करता है और जैकोबियन के व्युत्क्रम का अनुमान लगाने के लिए श्रृंखला विस्तार का उपयोग करके मल्टीप्लायरों का समाधान करता है। :

न्यूटन पुनरावृत्ति के प्रत्येक चरण में। यह सन्निकटन केवल 1 से छोटे आइगेनवैल्यूज़ ​​​​वाले आव्यूह के लिए काम करता है, जिससे लिंक्स एल्गोरिदम केवल कम कनेक्टिविटी वाले अणुओं के लिए उपयुक्त हो जाता है।

बताया गया है कि लिंक्स, शेक से 3-4 गुना तेज़ है।[20]


हाइब्रिड विधियाँ

हाइब्रिड तरीकों को भी पेश किया गया है जिसमें व्यवरोधओं को दो समूहों में विभाजित किया गया है; पहले समूह की व्यवरोधओं को आंतरिक निर्देशांक का उपयोग करके हल किया जाता है जबकि दूसरे समूह की व्यवरोधओं को व्यवरोध बलों का उपयोग करके हल किया जाता है, उदाहरण के लिए, लैग्रेंज गुणक या प्रक्षेपण विधि द्वारा।[21][22][23] इस दृष्टिकोण की प्रांरम्भ लैग्रेंज ने की थी,[1]और इसका परिणाम मिश्रित प्रकार के लैग्रेंज समीकरणों में होता है।[24]


यह भी देखें

संदर्भ और फ़ुटनोट

  1. 1.0 1.1 Lagrange, GL (1788). विश्लेषणात्मक यांत्रिकी.
  2. Noguti T, Toshiyuki; Gō N (1983). "बड़े अणुओं के लिए गठनात्मक ऊर्जा के दूसरे व्युत्पन्न मैट्रिक्स की तीव्र गणना की एक विधि". Journal of the Physical Society of Japan. 52 (10): 3685–3690. Bibcode:1983JPSJ...52.3685N. doi:10.1143/JPSJ.52.3685.
  3. Abe, H; Braun W; Noguti T; Gō N (1984). "प्रोटीन के लिए डायहेड्रल कोणों के संबंध में गठनात्मक ऊर्जा के पहले और दूसरे व्युत्पन्न की तीव्र गणना: सामान्य आवर्ती समीकरण". Computers and Chemistry. 8 (4): 239–247. doi:10.1016/0097-8485(84)85015-9.
  4. Bae, D-S; Haug EJ (1988). "प्रतिबंधित यांत्रिक प्रणाली गतिशीलता के लिए एक पुनरावर्ती सूत्रीकरण: भाग I. ओपन लूप सिस्टम". Mechanics of Structures and Machines. 15 (3): 359–382. doi:10.1080/08905458708905124.
  5. Jain, A; Vaidehi N; Rodriguez G (1993). "आणविक गतिशीलता सिमुलेशन के लिए एक तेज़ पुनरावर्ती एल्गोरिदम". Journal of Computational Physics. 106 (2): 258–268. Bibcode:1993JCoPh.106..258J. doi:10.1006/jcph.1993.1106.
  6. Rice, LM; Brünger AT (1994). "मरोड़ कोण गतिशीलता: कम परिवर्तनीय गठनात्मक नमूनाकरण क्रिस्टलोग्राफिक संरचना शोधन को बढ़ाता है". Proteins: Structure, Function, and Genetics. 19 (4): 277–290. doi:10.1002/prot.340190403. PMID 7984624. S2CID 25080482.
  7. Mathiowetz, AM; Jain A; Karasawa N; Goddard III, WA (1994). "Protein Simulations Using Techniques Suitable for Very Large Systems: The Cell Multipole Method for Nonbond Interactions and the Newton-Euler Inverse Mass Operator Method for Internal Coordinate Dynamics". Proteins: Structure, Function, and Genetics. 20 (3): 227–247. doi:10.1002/prot.340200304. PMID 7892172. S2CID 25753031.
  8. Mazur, AK (1997). "पॉलिमर के आंतरिक समन्वय आणविक गतिशीलता के लिए गति के अर्ध-हैमिल्टनियन समीकरण". Journal of Computational Chemistry. 18 (11): 1354–1364. arXiv:physics/9703019. doi:10.1002/(SICI)1096-987X(199708)18:11<1354::AID-JCC3>3.0.CO;2-K.
  9. Miyamoto, S; Kollman PA (1992). "SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithm for Rigid Water Models". Journal of Computational Chemistry. 13 (8): 952–962. doi:10.1002/jcc.540130805. S2CID 122506495.
  10. Miyamoto, S; Kollman PA (1992). "SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithm for Rigid Water Models". Journal of Computational Chemistry. 13 (8): 952–962. doi:10.1002/jcc.540130805. S2CID 122506495.
  11. Ryckaert, J-P; Ciccotti G; Berendsen HJC (1977). "बाधाओं के साथ एक प्रणाली की गति के कार्टेशियन समीकरणों का संख्यात्मक एकीकरण: एन-अल्केन्स की आणविक गतिशीलता". Journal of Computational Physics. 23 (3): 327–341. Bibcode:1977JCoPh..23..327R. CiteSeerX 10.1.1.399.6868. doi:10.1016/0021-9991(77)90098-5.
  12. 12.0 12.1 Ciccotti, G.; J. P. Ryckaert (1986). "कठोर अणुओं का आणविक गतिशीलता सिमुलेशन". Computer Physics Reports. 4 (6): 345–392. Bibcode:1986CoPhR...4..346C. doi:10.1016/0167-7977(86)90022-5.
  13. Yoneya, M; Berendsen HJC; Hirasawa K (1994). "बाधा आण्विक-गतिशीलता सिमुलेशन के लिए एक गैर-अनिवार्य मैट्रिक्स विधि". Molecular Simulations. 13 (6): 395–405. doi:10.1080/08927029408022001.
  14. 14.0 14.1 Hammonds, KD; Heyes DM (2020). "शास्त्रीय एनवीई आणविक गतिशीलता सिमुलेशन में छाया हैमिल्टनियन: लंबे समय तक स्थिरता का एक मार्ग". Journal of Chemical Physics. 152 (2): 024114_1–024114_15. doi:10.1063/1.5139708. PMID 31941339. S2CID 210333551.
  15. Forester, TR; Smith W (1998). "शेक, रैटल और रोल: लिंक्ड कठोर निकायों के लिए कुशल बाधा एल्गोरिदम". Journal of Computational Chemistry. 19: 102–111. doi:10.1002/(SICI)1096-987X(19980115)19:1<102::AID-JCC9>3.0.CO;2-T.
  16. Gonnet, Pedro (2007). "P-SHAKE: A quadratically convergent SHAKE in ". Journal of Computational Physics. 220 (2): 740–750. Bibcode:2007JCoPh.220..740G. doi:10.1016/j.jcp.2006.05.032.
  17. Kräutler, Vincent; W. F. van Gunsteren; P. H. Hünenberger (2001). "आणविक गतिशीलता सिमुलेशन में छोटे अणुओं के लिए दूरी बाधा समीकरणों को हल करने के लिए एक तेज़ शेक एल्गोरिदम". Journal of Computational Chemistry. 22 (5): 501–508. doi:10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V. S2CID 6187100.
  18. Barth, Eric; K. Kuczera; B. Leimkuhler; R. Skeel (1995). "बाधित आणविक गतिशीलता के लिए एल्गोरिदम". Journal of Computational Chemistry. 16 (10): 1192–1209. doi:10.1002/jcc.540161003. S2CID 38109923.
  19. Tao, Peng; Xiongwu Wu; Bernard R. Brooks (2012). "वेरलेट आधारित कार्टेशियन आणविक गतिशीलता सिमुलेशन में कठोर संरचनाएं बनाए रखें". The Journal of Chemical Physics. 137 (13): 134110. Bibcode:2012JChPh.137m4110T. doi:10.1063/1.4756796. PMC 3477181. PMID 23039588.
  20. 20.0 20.1 Hess, B; Bekker H; Berendsen HJC; Fraaije JGEM (1997). "LINCS: आणविक सिमुलेशन के लिए एक रैखिक बाधा सॉल्वर". Journal of Computational Chemistry. 18 (12): 1463–1472. CiteSeerX 10.1.1.48.2727. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H.
  21. Mazur, AK (1999). "गति के आंतरिक समन्वय समीकरणों के साथ बंद श्रृंखला कठोर शरीर की गतिशीलता का प्रतीकात्मक एकीकरण". Journal of Chemical Physics. 111 (4): 1407–1414. Bibcode:1999JChPh.111.1407M. doi:10.1063/1.479399.
  22. Bae, D-S; Haug EJ (1988). "A Recursive Formulation for Constrained Mechanical System Dynamics: Part II. Closed Loop Systems". Mechanics of Structures and Machines. 15 (4): 481–506. doi:10.1080/08905458708905130.
  23. Rodriguez, G; Jain A; Kreutz-Delgado K (1991). "मैनिपुलेटर मॉडलिंग और नियंत्रण के लिए एक स्थानिक ऑपरेटर बीजगणित". The International Journal of Robotics Research. 10 (4): 371–381. doi:10.1177/027836499101000406. hdl:2060/19900020578.
  24. Sommerfeld, Arnold (1952). Lectures on Theoretical Physics, Vol. I: Mechanics. New York: Academic Press. ISBN 978-0-12-654670-5.