कुक (Ćuk) कनवर्टर: Difference between revisions

From Vigyanwiki
m (Arti Shah moved page Đuk कनवर्टर to कुक (Ćuk) कनवर्टर without leaving a redirect)
m (15 revisions imported from alpha:कुक_(Ćuk)_कनवर्टर)
 
(12 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Type of buck-boost converter with low ripple current}}
{{Short description|Type of buck-boost converter with low ripple current}}
[[Image:Commutation cell in converters.svg|thumb|505x505px|गैर-पृथक स्विचिंग डीसी-टू-डीसी कनवर्टर टोपोलॉजी की तुलना: [[ बक कन्वर्टर ]], [[ बूस्ट कनर्वटर ]], बक-बूस्ट कनवर्टर|बक-बूस्ट, यूके। इनपुट बाईं ओर है, लोड के साथ आउटपुट दाईं ओर है। स्विच आमतौर पर [[MOSFET]], [[IGBT]], या [[BJT]] ट्रांजिस्टर होता है।]]Ćuk कनवर्टर (उच्चारण ''चूक''; कभी-कभी गलत तरीके से कुक, कुक या कुक लिखा जाता है) कम [[ तरंग (विद्युत) ]] के साथ बक-बूस्ट कनवर्टर का एक प्रकार है।<ref>{{Cite web|last=Anushree|first=Anushree|date=2020-08-03|title=What is a Ćuk Converter?|url=https://eepower.com/technical-articles/intro-to-cuk-converters-part-1/|url-status=live|archive-url=https://web.archive.org/web/20210203082056/https://eepower.com/technical-articles/intro-to-cuk-converters-part-1/ |archive-date=2021-02-03 |access-date=2021-01-28|website=eepower.com}}</ref> एक Ćuk कनवर्टर को बूस्ट कनवर्टर और हिरन कनवर्टर के संयोजन के रूप में देखा जा सकता है, जिसमें ऊर्जा को जोड़ने के लिए एक स्विचिंग डिवाइस और एक पारस्परिक संधारित्र होता है।
[[Image:Commutation cell in converters.svg|thumb|505x505px|बक-बूस्ट, यूके। इनपुट बाईं ओर है, लोड के साथ आउटपुट दाईं ओर है। स्विच सामान्यतः [[MOSFET|मोस्फेत]], [[IGBT|आईजीबीटी]], या [[BJT|बीजेटी]] ट्रांजिस्टर होता है।]]'''कुक कनवर्टर''' (उच्चारण कुक; कभी-कभी गलत विधियों से कुक, कुक या कुक लिखा जाता है) लघु [[ तरंग (विद्युत) |तरंग (विद्युत)]] के साथ बक-बूस्ट कनवर्टर का प्रकार होता है।<ref>{{Cite web|last=Anushree|first=Anushree|date=2020-08-03|title=What is a Ćuk Converter?|url=https://eepower.com/technical-articles/intro-to-cuk-converters-part-1/|url-status=live|archive-url=https://web.archive.org/web/20210203082056/https://eepower.com/technical-articles/intro-to-cuk-converters-part-1/ |archive-date=2021-02-03 |access-date=2021-01-28|website=eepower.com}}</ref> इस प्रकार कुक कनवर्टर को बूस्ट कनवर्टर और बक कनवर्टर के संयोजन के रूप में देखा जा सकता है, जिसमें ऊर्जा को जोड़ने के लिए स्विचिंग डिवाइस और पारस्परिक संधारित्र होता है।


इनवर्टिंग टोपोलॉजी के साथ बक-बूस्ट कनवर्टर | बक-बूस्ट कनवर्टर के समान, गैर-पृथक Ćuk कनवर्टर का आउटपुट वोल्टेज आमतौर पर उलटा होता है, जिसमें इनपुट वोल्टेज के संबंध में कम या अधिक मान होते हैं। आमतौर पर डीसी कन्वर्टर्स में, [[प्रारंभ करनेवाला]] का उपयोग मुख्य ऊर्जा-भंडारण घटक के रूप में किया जाता है। क्यूक कनवर्टर में, मुख्य ऊर्जा-भंडारण घटक संधारित्र है। इसका नाम [[कैलिफोर्निया प्रौद्योगिकी संस्थान]] के स्लोबोडन ज़ुक के नाम पर रखा गया है, जिन्होंने सबसे पहले डिज़ाइन प्रस्तुत किया था।<ref>{{cite conference | last1 = Ćuk | first1 = Slobodan | last2 = Middlebrook | first2 = R. D. | date = June 8, 1976 | title = स्विचिंग-कनवर्टर पावर चरणों की मॉडलिंग के लिए एक सामान्य एकीकृत दृष्टिकोण| conference = Proceedings of the IEEE Power Electronics Specialists Conference | pages = 73–86 | location = Cleveland, OH. | url = http://www.ee.bgu.ac.il/~kushnero/temp/guamicuk.pdf | format = PDF | accessdate = 2008-12-31}}</ref>
इनवर्टिंग टोपोलॉजी के साथ बक-बूस्ट कनवर्टर के समान, गैर-पृथक कुक कनवर्टर का आउटपुट वोल्टेज सामान्यतः विपरीत होता है, जिसमें इनपुट वोल्टेज के संबंध में लघु या अधिक मान होते हैं। सामान्यतः डीसी कन्वर्टर्स में, [[प्रारंभ करनेवाला|प्रेरक]] का उपयोग मुख्य ऊर्जा-भंडारण घटक के रूप में किया जाता है। जिससे कि कनवर्टर में, मुख्य ऊर्जा-भंडारण घटक संधारित्र होता है। इसका नाम [[कैलिफोर्निया प्रौद्योगिकी संस्थान]] के स्लोबोडन ज़ुक के नाम पर रखा गया है, जिन्होंने सबसे पहले डिज़ाइन प्रस्तुत किया था।<ref>{{cite conference | last1 = Ćuk | first1 = Slobodan | last2 = Middlebrook | first2 = R. D. | date = June 8, 1976 | title = स्विचिंग-कनवर्टर पावर चरणों की मॉडलिंग के लिए एक सामान्य एकीकृत दृष्टिकोण| conference = Proceedings of the IEEE Power Electronics Specialists Conference | pages = 73–86 | location = Cleveland, OH. | url = http://www.ee.bgu.ac.il/~kushnero/temp/guamicuk.pdf | format = PDF | accessdate = 2008-12-31}}</ref>
 
=='''गैर-पृथक कुक कनवर्टर'''==
 
मूलभूत कुक कनवर्टर पर भिन्नताएं होती हैं। उदाहरण के लिए, कॉइल एकल चुंबकीय कोर साझा कर सकते हैं, जो आउटपुट तरंग को गिरा देता है, और दक्षता बढ़ाता है। चूँकि संधारित्र के माध्यम से विद्युत स्थानांतरण निरंतर प्रवाहित होता है, इस प्रकार के स्विचर ने [[विद्युत चुम्बकीय विकिरण]] को न्यूनतम कर दिया है। इस आधार पर कुक कनवर्टर डायोड और स्विच का उपयोग करके ऊर्जा को द्विदिश रूप से प्रवाहित करने की अनुमति देता है।
==गैर-पृथक Ćuk कनवर्टर==
बुनियादी Ćuk कनवर्टर पर भिन्नताएं हैं। उदाहरण के लिए, कॉइल एकल चुंबकीय कोर साझा कर सकते हैं, जो आउटपुट तरंग को गिरा देता है, और दक्षता बढ़ाता है। चूँकि संधारित्र के माध्यम से विद्युत स्थानांतरण निरंतर प्रवाहित होता है, इस प्रकार के स्विचर ने [[विद्युत चुम्बकीय विकिरण]] को न्यूनतम कर दिया है। Ćuk कनवर्टर एक डायोड और एक स्विच का उपयोग करके ऊर्जा को द्विदिश रूप से प्रवाहित करने की अनुमति देता है।


===संचालन सिद्धांत===
===संचालन सिद्धांत===
एक गैर-पृथक Ćuk कनवर्टर में दो इंडक्टर्स, दो [[ संधारित्र ]], एक स्विच (आमतौर पर एक [[ट्रांजिस्टर]]), और एक [[डायोड]] शामिल होता है। इसका योजनाबद्ध चित्र 1 में देखा जा सकता है। यह एक इनवर्टिंग कनवर्टर है, इसलिए इनपुट वोल्टेज के संबंध में आउटपुट वोल्टेज नकारात्मक है।
गैर-पृथक कुक कनवर्टर में दो इंडक्टर्स, दो [[ संधारित्र |संधारित्र]], स्विच (सामान्यतः [[ट्रांजिस्टर]]), और [[डायोड]] सम्मिलित होता है। इसका योजनाबद्ध चित्र 1 में देखा जा सकता है। यह इनवर्टिंग कनवर्टर है, इसलिए इनपुट वोल्टेज के संबंध में आउटपुट वोल्टेज ऋणात्मक होता है।


इस कनवर्टर का मुख्य लाभ कनवर्टर के इनपुट और आउटपुट पर निरंतर धाराएं हैं। मुख्य नुकसान स्विच पर उच्च वर्तमान तनाव है।<ref>{{Cite book|last=Petrocelli|first=R.|url=https://cds.cern.ch/record/1641409|title=Proceedings of the CAS–CERN Accelerator School: Power Converters|publisher=[[CERN]]|year=2015|isbn=9789290834151|editor-last=Bailey|editor-first=R.|location=Geneva|page=131|pages=|chapter=One-Quadrant Switched-Mode Power Converters|arxiv=1607.02868|doi=10.5170/CERN-2015-003}}</ref>
इस कनवर्टर का मुख्य '''लाभ''' कनवर्टर के इनपुट और आउटपुट पर निरंतर धाराएं हैं। इस प्रकार मुख्य '''हानि''' स्विच पर उच्च वर्तमान तनाव है।<ref>{{Cite book|last=Petrocelli|first=R.|url=https://cds.cern.ch/record/1641409|title=Proceedings of the CAS–CERN Accelerator School: Power Converters|publisher=[[CERN]]|year=2015|isbn=9789290834151|editor-last=Bailey|editor-first=R.|location=Geneva|page=131|pages=|chapter=One-Quadrant Switched-Mode Power Converters|arxiv=1607.02868|doi=10.5170/CERN-2015-003}}</ref>
[[File:Cuk converter.png|center|thumb|640x640px|चित्र। 1. कूक कनवर्टर सर्किट आरेख।]]संधारित्र सी<sub>1</sub> ऊर्जा स्थानांतरित करने के लिए उपयोग किया जाता है। यह ट्रांजिस्टर और डायोड के कम्यूटेशन के माध्यम से कनवर्टर के इनपुट और आउटपुट से वैकल्पिक रूप से जुड़ा हुआ है (आंकड़े 2 और 3 देखें)।
[[File:Cuk converter.png|center|thumb|640x640px|चित्र। 1. कूक कनवर्टर परिपथ आरेख।]]संधारित्र C<sub>1</sub> ऊर्जा स्थानांतरित करने के लिए उपयोग किया जाता है। यह ट्रांजिस्टर और डायोड के न्यूनीकरण के माध्यम से कनवर्टर के इनपुट और आउटपुट से वैकल्पिक रूप से जुड़ा हुआ है (आंकड़े 2 और 3 देखें)।


दो प्रेरक एल<sub>1</sub> और मैं<sub>2</sub> क्रमशः इनपुट वोल्टेज स्रोत (वी) को परिवर्तित करने के लिए उपयोग किया जाता है<sub>s</sub>) और आउटपुट वोल्टेज स्रोत (V<sub>o</sub>) वर्तमान स्रोतों में। थोड़े समय के पैमाने पर, एक प्रारंभ करनेवाला को वर्तमान स्रोत के रूप में माना जा सकता है क्योंकि यह एक स्थिर धारा बनाए रखता है। यह रूपांतरण आवश्यक है क्योंकि यदि संधारित्र सीधे वोल्टेज स्रोत से जुड़ा होता, तो धारा केवल परजीवी प्रतिरोध द्वारा सीमित होती, जिसके परिणामस्वरूप उच्च ऊर्जा हानि होती। एक संधारित्र को वर्तमान स्रोत (प्रारंभ करनेवाला) के साथ चार्ज करने से प्रतिरोधक धारा सीमित होने और उससे जुड़ी ऊर्जा हानि को रोका जा सकता है।
दो प्रेरक L<sub>1</sub> और I<sub>2</sub> क्रमशः इनपुट वोल्टेज स्रोत (V<sub>S</sub>) को परिवर्तित करने के लिए उपयोग किया जाता है) और आउटपुट वोल्टेज स्रोत (V<sub>o</sub>) वर्तमान स्रोतों में थोड़े समय के पैमाने पर, प्रेरक को वर्तमान स्रोत के रूप में माना जा सकता है जिससे कि यह स्थिर धारा बनाए रखता है। यह रूपांतरण आवश्यक होता है जिससे कि यदि संधारित्र सीधे वोल्टेज स्रोत से जुड़ा होता है, तब धारा केवल परजीवी प्रतिरोध द्वारा सीमित होती है, जिसके परिणामस्वरूप उच्च ऊर्जा में हानि होती है। इस प्रकार संधारित्र को वर्तमान स्रोत (प्रारंभ करने वाला) के साथ चार्ज करने से प्रतिरोधक धारा सीमित होने और उससे जुड़ी ऊर्जा हानि को रोका जा सकता है।


अन्य कन्वर्टर्स (हिरन कन्वर्टर, बूस्ट कन्वर्टर, बक-बूस्ट कन्वर्टर) की तरह, Ćuk कन्वर्टर या तो निरंतर या असंतत वर्तमान मोड में काम कर सकता है। हालाँकि, इन कन्वर्टर्स के विपरीत, यह असंतत वोल्टेज मोड में भी काम कर सकता है (कम्यूटेशन चक्र के दौरान कैपेसिटर पर वोल्टेज शून्य हो जाता है)।
अन्य कन्वर्टर्स (बक कन्वर्टर, बूस्ट कन्वर्टर, बक-बूस्ट कन्वर्टर) की भांति, कुक कन्वर्टर या तब निरंतर या असंतत वर्तमान मोड में कार्य कर सकता है। चूँकि, इन कन्वर्टर्स के विपरीत, यह असंतत वोल्टेज मोड में भी कार्य कर सकता है (न्यूनीकरण चक्र के समय संधारित्र पर वोल्टेज शून्य हो जाता है)।


=== सतत मोड ===
=== सतत मोड ===
[[Image:Cuk operating.svg|thumb|300x300px| चित्र 2.: एक गैर-पृथक Ćuk कनवर्टर की दो ऑपरेटिंग अवस्थाएँ।]]स्थिर अवस्था में, प्रेरकों में संग्रहीत ऊर्जा को कम्यूटेशन चक्र की शुरुआत और अंत में समान रहना पड़ता है। एक प्रेरक में ऊर्जा निम्न द्वारा दी जाती है:
[[Image:Cuk operating.svg|thumb|232x232px| चित्र 2.: गैर-पृथक कुक कनवर्टर की दो ऑपरेटिंग अवस्थाएँ।]]स्थिर अवस्था में, प्रेरकों में संग्रहीत ऊर्जा को न्यूनीकरण चक्र के प्रारंभ और अंत में समान रहना पड़ता है। इस प्रकार प्रेरक में ऊर्जा निम्न द्वारा दी जाती है:


<math>E=\frac{1}{2}LI^2</math>
<math>E=\frac{1}{2}LI^2</math>
इसका तात्पर्य यह है कि प्रेरकों के माध्यम से धारा कम्यूटेशन चक्र की शुरुआत और अंत में समान होनी चाहिए। चूँकि किसी प्रारंभकर्ता के माध्यम से धारा का विकास उसके पार वोल्टेज से संबंधित होता है:
 
इसका तात्पर्य यह है कि प्रेरकों के माध्यम से धारा न्यूनीकरण चक्र के प्रारंभ और अंत में समान होती है। चूँकि किसी प्रेरक के माध्यम से धारा का विकास उसके पार वोल्टेज से संबंधित होता है:


<math>V_L=L\frac{dI}{dt}</math>
<math>V_L=L\frac{dI}{dt}</math>
यह देखा जा सकता है कि स्थिर-अवस्था की आवश्यकताओं को पूरा करने के लिए एक कम्यूटेशन अवधि में प्रारंभ करनेवाला वोल्टेज का औसत मूल्य शून्य होना चाहिए।


यदि हम मानते हैं कि कैपेसिटर सी<sub>1</sub>और सी<sub>2</sub>इतने बड़े होते हैं कि उन पर वोल्टेज तरंग नगण्य हो जाती है, प्रारंभ करनेवाला वोल्टेज बन जाते हैं:
यह देखा जा सकता है कि स्थिर-अवस्था की आवश्यकताओं को पूर्ण करने के लिए न्यूनीकरण अवधि में प्रारंभ करने वाला वोल्टेज का औसत मूल्य शून्य होता है।


* 'ऑफ़-स्टेट' में, प्रारंभकर्ता एल<sub>1</sub>V के साथ श्रृंखला में जुड़ा हुआ है<sub>s</sub>और सी<sub>1</sub>(चित्र 2 देखें)। इसलिए <math display="inline">V_{L1}=V_s-V_{C1}</math>. चूंकि डायोड डी आगे की ओर पक्षपाती है (हम शून्य वोल्टेज ड्रॉप पर विचार करते हैं), एल<sub>2</sub>सीधे आउटपुट कैपेसिटर से जुड़ा होता है। इसलिए <math>V_{L2}=V_o</math>
यदि हम मानते हैं कि संधारित्र C<sub>1</sub>और C<sub>2</sub> इतने बड़े होते हैं कि उन पर वोल्टेज तरंग नगण्य हो जाती है, अतः प्रारंभ करने वाला वोल्टेज बन जाते हैं:
* ऑन-स्टेट में, प्रारंभकर्ता ''एल<sub>1</sub>सीधे इनपुट स्रोत से जुड़ा है। इसलिए <math display="inline">V_{L1}=V_s</math>. प्रेरक एल<sub>2</sub>सी और आउटपुट कैपेसिटर के साथ श्रृंखला में जुड़ा हुआ है, इसलिए <math>V_{L2}=V_o+V_C</math>
 
[[Image:Cuk operating2.svg|thumb|640x640px| चित्र 3.: एक गैर-पृथक Ćuk कनवर्टर की दो ऑपरेटिंग अवस्थाएँ। इस चित्र में, डायोड और स्विच को या तो चालू होने पर शॉर्ट सर्किट द्वारा या बंद होने पर खुले सर्किट द्वारा बदल दिया जाता है। यह देखा जा सकता है कि जब ऑफ-स्टेट में, कैपेसिटर सी को प्रारंभकर्ता एल के माध्यम से इनपुट स्रोत द्वारा चार्ज किया जा रहा है<sub>1</sub>. जब ऑन-स्टेट में, कैपेसिटर सी इंडक्शन एल के माध्यम से ऊर्जा को आउटपुट कैपेसिटर में स्थानांतरित करता है<sub>2</sub>.|केंद्र]]कनवर्टर राज्य से संचालित होता है <math display="inline">t=0</math> को <math display="inline">t=DT</math> (डी कर्तव्य चक्र है), और डी·टी से टी तक ऑफ स्टेट में (अर्थात्, के बराबर अवधि के दौरान)। <math display="inline">(1-D)T</math>). V का औसत मान<sub>L1</sub>और वी<sub>L2</sub>इसलिए हैं:
* ''''ऑफ़-स्टेट'''<nowiki/>' में, प्रेरक L<sub>1</sub> V<sub>s</sub> के साथ श्रृंखला में जुड़ा हुआ है और C<sub>1</sub> (चित्र 2 देखें)। अतः <math display="inline">V_{L1}=V_s-V_{C1}</math>. चूंकि डायोड D आगे की ओर पक्षपाती है (हम शून्य वोल्टेज ड्रॉप पर विचार करते हैं), L<sub>2</sub> सीधे आउटपुट संधारित्र से जुड़ा होता है। इसलिए <math>V_{L2}=V_o</math>
* '''ऑन-स्टेट''' में, प्रेरक L<sub>1</sub>सीधे इनपुट स्रोत से जुड़ा है। इसलिए ''<math display="inline">V_{L1}=V_s</math>. ''प्रेरक L<sub>2</sub> C और आउटपुट संधारित्र के साथ श्रृंखला में जुड़ा हुआ है, इसलिए ''<math>V_{L2}=V_o+V_C</math>''
[[Image:Cuk operating2.svg|thumb|504x504px|केंद्र|center]]
 
कनवर्टर स्टेट से संचालित होता है <math display="inline">t=0</math> को <math display="inline">t=DT</math> (D कर्तव्य चक्र है), और D T से T तक ऑफ स्टेट में (अर्थात्, के सामान्तर अवधि के समय)। <math display="inline">(1-D)T</math>). का औसत मान V<sub>L1</sub> और V<sub>L2</sub> इसलिए होता हैं:


<math>\bar V_{L1}=D \cdot V_s +\left(1-D\right)\cdot\left(V_s-V_C\right) =\left(V_s-(1-D)\cdot V_C\right)</math>
<math>\bar V_{L1}=D \cdot V_s +\left(1-D\right)\cdot\left(V_s-V_C\right) =\left(V_s-(1-D)\cdot V_C\right)</math>


<math>\bar V_{L2}=D\left(V_o+V_C\right) + \left(1-D\right)\cdot V_o=\left(V_o + D\cdot V_C\right)</math>
<math>\bar V_{L2}=D\left(V_o+V_C\right) + \left(1-D\right)\cdot V_o=\left(V_o + D\cdot V_C\right)</math>
चूंकि स्थिर-अवस्था की स्थितियों को संतुष्ट करने के लिए दोनों औसत वोल्टेज शून्य होना चाहिए, अंतिम समीकरण का उपयोग करके हम लिख सकते हैं:
 
चूंकि स्थिर-अवस्था की स्थितियों को संतुष्ट करने के लिए दोनों औसत वोल्टेज शून्य होते है, अतः अंतिम समीकरण का उपयोग करके हम लिख सकते हैं:


<math>V_C=-\frac{V_o}{D}</math>
<math>V_C=-\frac{V_o}{D}</math>
तो L पर औसत वोल्टेज<sub>1</sub> बन जाता है:
 
तब L<sub>1</sub> पर औसत वोल्टेज बन जाता है:


<math>\bar V_{L1}=\left(V_s+(1-D)\cdot \frac{V_o}{D}\right)=0</math>
<math>\bar V_{L1}=\left(V_s+(1-D)\cdot \frac{V_o}{D}\right)=0</math>
जिसे इस प्रकार लिखा जा सकता है:
जिसे इस प्रकार लिखा जा सकता है:


<math>\frac{V_o}{V_s}=-\frac{D}{1-D}</math>
<math>\frac{V_o}{V_s}=-\frac{D}{1-D}</math>
यह देखा जा सकता है कि यह संबंध वही है जो हिरन-बूस्ट कनवर्टर के लिए प्राप्त किया गया है।
 
यह देखा जा सकता है कि यह संबंध वही है जो बक-बूस्ट कनवर्टर के लिए प्राप्त किया गया है।


=== असंतत मोड ===
=== असंतत मोड ===
सभी डीसी/डीसी कन्वर्टर्स की तरह, यूके कन्वर्टर्स निरंतर करंट प्रदान करने के लिए सर्किट में इंडक्टर्स की क्षमता पर निर्भर करते हैं, उसी तरह एक रेक्टिफायर फिल्टर में एक कैपेसिटर निरंतर वोल्टेज प्रदान करता है। यदि यह प्रारंभ करनेवाला बहुत छोटा है या महत्वपूर्ण प्रेरकत्व से नीचे है, तो जहां धारा शून्य हो जाती है वहां प्रारंभ करनेवाला धारा ढलान बंद हो जाएगा। ऑपरेशन की इस स्थिति का आमतौर पर अधिक गहराई से अध्ययन नहीं किया जाता है क्योंकि आमतौर पर इसका उपयोग यह प्रदर्शित करने से परे नहीं किया जाता है कि न्यूनतम प्रेरण क्यों महत्वपूर्ण है, हालांकि यह तब हो सकता है जब कनवर्टर के लिए डिज़ाइन किए गए की तुलना में बहुत कम वर्तमान पर स्टैंडबाय वोल्टेज बनाए रखा जाता है।
सभी डीसी/डीसी कन्वर्टर्स की भांति, यूके कन्वर्टर्स निरंतर धारा प्रदान करने के लिए परिपथ में इंडक्टर्स की क्षमता पर निर्भर करते हैं, उसी प्रकार रेक्टिफायर फिल्टर में संधारित्र निरंतर वोल्टेज प्रदान करता है। यदि यह प्रारंभ करने वाला बहुत छोटा है या महत्वपूर्ण प्रेरकत्व से नीचे होता है, तब जहां धारा शून्य हो जाती है वहां प्रारंभ करनेवाला धारा ढलान बंद हो जाता है। इस प्रकार ऑपरेशन की इस स्थिति का सामान्यतः अधिक गहराई से अध्ययन नहीं किया जाता है जिससे कि सामान्यतः इसका उपयोग यह प्रदर्शित करने से ऊपर नहीं किया जाता है कि न्यूनतम प्रेरण क्यों महत्वपूर्ण होता है, चूंकि यह तब हो सकता है जब कनवर्टर के लिए डिज़ाइन किए गए की तुलना में बहुत लघु वर्तमान पर स्टैंडबाय वोल्टेज बनाए रखा जाता है।


न्यूनतम प्रेरण किसके द्वारा दिया जाता है:
न्यूनतम प्रेरण किसके द्वारा दिया जाता है:


<math>L_1min=\frac{(1-D)^2R}{2Df_s}</math>
<math>L_1min=\frac{(1-D)^2R}{2Df_s}</math>
कहाँ <math>f_s</math> स्विचिंग आवृत्ति है.


==पृथक Ćuk कनवर्टर==
जहाँ <math>f_s</math> स्विचिंग आवृत्ति है।
 
=='''पृथक कुक कनवर्टर'''==
{{Multiple image
{{Multiple image
| align = right
| align = right
Line 62: Line 69:
| image1 = Zero-IO-ripple-isolated-cuk-converter.png
| image1 = Zero-IO-ripple-isolated-cuk-converter.png
| alt1 =  
| alt1 =  
| caption1 = Coupled inductor isolated Ćuk converter.
| caption1 = युग्मित प्रारंभ करनेवाला पृथक कुक कनवर्टर।
| image2 = Zero-ripple-isolated-cuk-converter.png
| image2 = Zero-ripple-isolated-cuk-converter.png
| caption2 = Integrated magnetics Ćuk converter.
| caption2 = इंटीग्रेटेड मैग्नेटिक्स कुक कनवर्टर।
}}
}}
Ćuk कनवर्टर के पृथक संस्करण के लिए, एक एसी ट्रांसफार्मर और एक अतिरिक्त संधारित्र जोड़ा जाना चाहिए।<ref>[https://web.archive.org/web/20160405041121/http://boostbuck.com/IsolationoftheCukConverter.html boostbuck.com: Easy Design of the Optimum Topology Boostbuck (Cuk) Family of Power Converters: How to Design the Transformer in a Cuk Converter]</ref> क्योंकि पृथक Ćuk कनवर्टर पृथक है, आउटपुट-वोल्टेज ध्रुवीयता को स्वतंत्र रूप से चुना जा सकता है।
कुक कनवर्टर के पृथक संस्करण के लिए, एसी ट्रांसफार्मर और अतिरिक्त संधारित्र जोड़ा जाता है।<ref>[https://web.archive.org/web/20160405041121/http://boostbuck.com/IsolationoftheCukConverter.html boostbuck.com: Easy Design of the Optimum Topology Boostbuck (Cuk) Family of Power Converters: How to Design the Transformer in a Cuk Converter]</ref> जिससे कि पृथक कुक कनवर्टर पृथक हो जाते है, अतः आउटपुट-वोल्टेज ध्रुवीयता को स्वतंत्र रूप से चुना जा सकता है।
[[File:Cuk converter with AC transformer.svg|center|thumb|640x640px|गैपलेस एसी ट्रांसफार्मर के साथ पृथक Ćuk कनवर्टर।]]गैर-पृथक Ćuk कनवर्टर के रूप में, पृथक Ćuk कनवर्टर में आउटपुट वोल्टेज परिमाण हो सकता है जो कि 1:1 एसी ट्रांसफार्मर के साथ भी, इनपुट वोल्टेज परिमाण से अधिक या कम हो सकता है। हालाँकि, इनपुट पक्ष पर डिवाइस तनाव को कम करने के लिए टर्न अनुपात को नियंत्रित किया जा सकता है। इसके अतिरिक्त, ट्रांसफार्मर के परजीवी तत्व, अर्थात् [[रिसाव प्रेरण]] और मैग्नेटाइजिंग इंडक्शन का उपयोग सर्किट को एक [[गुंजयमान कनवर्टर]] सर्किट में संशोधित करने के लिए किया जा सकता है, जिसकी दक्षता में काफी सुधार हुआ है।
[[File:Cuk converter with AC transformer.svg|center|thumb|640x640px|गैपलेस एसी ट्रांसफार्मर के साथ पृथक कुक कनवर्टर।]]गैर-पृथक कुक कनवर्टर के रूप में, पृथक कुक कनवर्टर में आउटपुट वोल्टेज परिमाण हो सकता है जो कि 1:1 एसी ट्रांसफार्मर के साथ भी, इनपुट वोल्टेज परिमाण से अधिक या लघु हो सकता है। चूँकि, इनपुट पक्ष पर डिवाइस तनाव को लघु करने के लिए टर्न अनुपात को नियंत्रित किया जा सकता है। इसके अतिरिक्त, ट्रांसफार्मर के परजीवी तत्व, अर्थात् [[रिसाव प्रेरण]] और मैग्नेटाइजिंग इंडक्शन का उपयोग परिपथ को [[गुंजयमान कनवर्टर|अनुनादी कनवर्टर]] परिपथ में संशोधित करने के लिए किया जा सकता है, जिसकी दक्षता में अधिक सुधार हुआ है।


==संबंधित संरचनाएं==
=='''संबंधित संरचनाएं'''==


===प्रेरक युग्मन===
===प्रेरक युग्मन===
दो अलग-अलग प्रारंभ करनेवाला घटकों का उपयोग करने के बजाय, कई डिजाइनर एक एकल चुंबकीय घटक का उपयोग करके एक युग्मित प्रारंभ करनेवाला कनवर्टर लागू करते हैं, जिसमें एक ही कोर पर दोनों प्रेरक शामिल होते हैं। उस घटक के अंदर इंडक्टर्स के बीच ट्रांसफॉर्मर क्रिया दो स्वतंत्र असतत प्रारंभ करनेवाला घटकों का उपयोग करके एक Ćuk कनवर्टर की तुलना में कम आउटपुट तरंग के साथ एक युग्मित प्रारंभ करनेवाला Ćuk कनवर्टर देती है।<ref>[https://web.archive.org/web/20160406002915/http://boostbuck.com/TheFourTopologies.html The Four Boostbuck Topologies]</ref>
दो भिन्न-भिन्न प्रेरक घटकों का उपयोग करने के अतिरिक्त, अनेक डिजाइनर एकल चुंबकीय घटक का उपयोग करके युग्मित प्रारंभ करनेवाला कनवर्टर क्रियान्वित करते हैं, जिसमें ही कोर पर दोनों प्रेरक सम्मिलित होते हैं। उस घटक के अंदर इंडक्टर्स के मध्य ट्रांसफॉर्मर क्रिया दो स्वतंत्र असतत प्रारंभ करने वाला घटकों का उपयोग करके कुक कनवर्टर की तुलना में लघु आउटपुट तरंग के साथ युग्मित प्रारंभ करने वाला कुक कनवर्टर देती है।<ref>[https://web.archive.org/web/20160406002915/http://boostbuck.com/TheFourTopologies.html The Four Boostbuck Topologies]</ref>
 
 
===ज़ेटा कनवर्टर===
===ज़ेटा कनवर्टर===
ज़ेटा कनवर्टर एक गैर-पृथक, गैर-इनवर्टिंग, हिरन-बूस्ट बिजली आपूर्ति टोपोलॉजी है।
ज़ेटा कनवर्टर गैर-पृथक, गैर-इनवर्टिंग, बक-बूस्ट विद्युत आपूर्ति टोपोलॉजी है।


===सिंगल-एंडेड प्राइमरी-इंडक्शन कन्वर्टर (SEPIC)===
===सिंगल-एंडेड प्राइमरी-इंडक्शन कन्वर्टर (एसईपीआईसी)===
{{main|SEPIC converter}}
{{main|एसईपीआईसी कनवर्टर}}
एक SEPIC कनवर्टर वोल्टेज को बढ़ाने या घटाने में सक्षम है।
एसईपीआईसी कनवर्टर वोल्टेज को बढ़ाने या घटाने में सक्षम है।


==पेटेंट==
==पेटेंट==
* यूएस पेटेंट 4257087,<ref name="Patent4257087">[https://www.google.com/patents/US4257087 U.S. Patent 4257087.]: "DC-to-DC switching converter with zero input and output current ripple and integrated magnetics circuits", filed 2 Apr 1979, retrieved 15 Jan 2017.</ref> 1979 में दायर, शून्य इनपुट और आउटपुट करंट रिपल और इंटीग्रेटेड मैग्नेटिक्स सर्किट के साथ डीसी-टू-डीसी स्विचिंग कनवर्टर, आविष्कारक स्लोबोदान Ćuk।
* यूएस पेटेंट 4257087,<ref name="Patent4257087">[https://www.google.com/patents/US4257087 U.S. Patent 4257087.]: "DC-to-DC switching converter with zero input and output current ripple and integrated magnetics circuits", filed 2 Apr 1979, retrieved 15 Jan 2017.</ref> 1979 में दायर, शून्य इनपुट और आउटपुट धारा रिपल और इंटीग्रेटेड मैग्नेटिक्स परिपथ के साथ डीसी-टू-डीसी स्विचिंग कनवर्टर, आविष्कारक स्लोबोदान कुक।
* यूएस पेटेंट 4274133,<ref name="Patent4274133">[https://www.google.com/patents/US4274133 U.S. Patent 4274133.]: "DC-to-DC Converter having reduced ripple without need for adjustments", filed 20 June 1979, retrieved 15 Jan 2017.</ref> 1979 में दायर किया गया, डीसी-टू-डीसी कन्वर्टर ने समायोजन की आवश्यकता के बिना तरंग को कम कर दिया, आविष्कारक स्लोबोदान Ćuk और आर. डी. मिडलब्रुक।
* यूएस पेटेंट 4274133,<ref name="Patent4274133">[https://www.google.com/patents/US4274133 U.S. Patent 4274133.]: "DC-to-DC Converter having reduced ripple without need for adjustments", filed 20 June 1979, retrieved 15 Jan 2017.</ref> 1979 में दायर किया गया, डीसी-टू-डीसी कन्वर्टर ने समायोजन की आवश्यकता के बिना तरंग को लघु कर दिया, आविष्कारक स्लोबोदान कुक और आर. डी. मिडलब्रुक।
* यूएस पेटेंट 4184197,<ref name="Patent4184197">[https://www.google.com/patents/US4184197 U.S. Patent 4184197.]: "DC-to-DC switching converter", filed 28 Sep 1977, retrieved 15 Jan 2017.</ref> 1977 में दायर, डीसी-टू-डीसी स्विचिंग कनवर्टर, आविष्कारक स्लोबोडन ज़ुक और आर. डी. मिडलब्रुक।
* यूएस पेटेंट 4184197,<ref name="Patent4184197">[https://www.google.com/patents/US4184197 U.S. Patent 4184197.]: "DC-to-DC switching converter", filed 28 Sep 1977, retrieved 15 Jan 2017.</ref> 1977 में दायर, डीसी-टू-डीसी स्विचिंग कनवर्टर, आविष्कारक स्लोबोडन ज़ुक और आर. डी. मिडलब्रुक।
{{clear}}


==अग्रिम पठन==
==अग्रिम पठन==
* ''Power Electronics, Vol. 4: State-Space Averaging and Ćuk Converters''; Ćuk Slobodan; 378 pages; 2016; {{ISBN|978-1519520289}}.
* ''पावर इलेक्ट्रॉनिक्स, वॉल्यूम। 4: स्टेट स्पेस औसत और कुक कनवर्टरस''; कुक स्लोबोदान; 378 पृष्ठ; 2016; {{ISBN|978-1519520289}}.
 
 
==संदर्भ==
==संदर्भ==
{{Reflist|30em}}
{{Reflist|30em}}


==बाहरी संबंध==
==बाहरी संबंध==
* [https://web.archive.org/web/20160407201928/http://www.boostbuck.com/PhilosophyofDesign.html Topology Background]
* [https://web.archive.org/web/20160407201928/http://www.boostbuck.com/PhilosophyofDesign.html टोपोलॉजी पृष्ठभूमि]
 
{{Commons category|Cuk converters}}


{{DEFAULTSORT:Cuk Converter}}[[Category: डीसी-टू-डीसी कनवर्टर्स]] [[Category: वोल्टेज अधिनियम]]  
{{DEFAULTSORT:Cuk Converter}}[[Category: डीसी-टू-डीसी कनवर्टर्स]] [[Category: वोल्टेज अधिनियम]]  
Line 108: Line 106:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 14/08/2023]]
[[Category:Created On 14/08/2023]]
[[Category:Vigyan Ready]]

Latest revision as of 21:52, 10 October 2023

बक-बूस्ट, यूके। इनपुट बाईं ओर है, लोड के साथ आउटपुट दाईं ओर है। स्विच सामान्यतः मोस्फेत, आईजीबीटी, या बीजेटी ट्रांजिस्टर होता है।

कुक कनवर्टर (उच्चारण कुक; कभी-कभी गलत विधियों से कुक, कुक या कुक लिखा जाता है) लघु तरंग (विद्युत) के साथ बक-बूस्ट कनवर्टर का प्रकार होता है।[1] इस प्रकार कुक कनवर्टर को बूस्ट कनवर्टर और बक कनवर्टर के संयोजन के रूप में देखा जा सकता है, जिसमें ऊर्जा को जोड़ने के लिए स्विचिंग डिवाइस और पारस्परिक संधारित्र होता है।

इनवर्टिंग टोपोलॉजी के साथ बक-बूस्ट कनवर्टर के समान, गैर-पृथक कुक कनवर्टर का आउटपुट वोल्टेज सामान्यतः विपरीत होता है, जिसमें इनपुट वोल्टेज के संबंध में लघु या अधिक मान होते हैं। सामान्यतः डीसी कन्वर्टर्स में, प्रेरक का उपयोग मुख्य ऊर्जा-भंडारण घटक के रूप में किया जाता है। जिससे कि कनवर्टर में, मुख्य ऊर्जा-भंडारण घटक संधारित्र होता है। इसका नाम कैलिफोर्निया प्रौद्योगिकी संस्थान के स्लोबोडन ज़ुक के नाम पर रखा गया है, जिन्होंने सबसे पहले डिज़ाइन प्रस्तुत किया था।[2]

गैर-पृथक कुक कनवर्टर

मूलभूत कुक कनवर्टर पर भिन्नताएं होती हैं। उदाहरण के लिए, कॉइल एकल चुंबकीय कोर साझा कर सकते हैं, जो आउटपुट तरंग को गिरा देता है, और दक्षता बढ़ाता है। चूँकि संधारित्र के माध्यम से विद्युत स्थानांतरण निरंतर प्रवाहित होता है, इस प्रकार के स्विचर ने विद्युत चुम्बकीय विकिरण को न्यूनतम कर दिया है। इस आधार पर कुक कनवर्टर डायोड और स्विच का उपयोग करके ऊर्जा को द्विदिश रूप से प्रवाहित करने की अनुमति देता है।

संचालन सिद्धांत

गैर-पृथक कुक कनवर्टर में दो इंडक्टर्स, दो संधारित्र, स्विच (सामान्यतः ट्रांजिस्टर), और डायोड सम्मिलित होता है। इसका योजनाबद्ध चित्र 1 में देखा जा सकता है। यह इनवर्टिंग कनवर्टर है, इसलिए इनपुट वोल्टेज के संबंध में आउटपुट वोल्टेज ऋणात्मक होता है।

इस कनवर्टर का मुख्य लाभ कनवर्टर के इनपुट और आउटपुट पर निरंतर धाराएं हैं। इस प्रकार मुख्य हानि स्विच पर उच्च वर्तमान तनाव है।[3]

चित्र। 1. कूक कनवर्टर परिपथ आरेख।

संधारित्र C1 ऊर्जा स्थानांतरित करने के लिए उपयोग किया जाता है। यह ट्रांजिस्टर और डायोड के न्यूनीकरण के माध्यम से कनवर्टर के इनपुट और आउटपुट से वैकल्पिक रूप से जुड़ा हुआ है (आंकड़े 2 और 3 देखें)।

दो प्रेरक L1 और I2 क्रमशः इनपुट वोल्टेज स्रोत (VS) को परिवर्तित करने के लिए उपयोग किया जाता है) और आउटपुट वोल्टेज स्रोत (Vo) वर्तमान स्रोतों में थोड़े समय के पैमाने पर, प्रेरक को वर्तमान स्रोत के रूप में माना जा सकता है जिससे कि यह स्थिर धारा बनाए रखता है। यह रूपांतरण आवश्यक होता है जिससे कि यदि संधारित्र सीधे वोल्टेज स्रोत से जुड़ा होता है, तब धारा केवल परजीवी प्रतिरोध द्वारा सीमित होती है, जिसके परिणामस्वरूप उच्च ऊर्जा में हानि होती है। इस प्रकार संधारित्र को वर्तमान स्रोत (प्रारंभ करने वाला) के साथ चार्ज करने से प्रतिरोधक धारा सीमित होने और उससे जुड़ी ऊर्जा हानि को रोका जा सकता है।

अन्य कन्वर्टर्स (बक कन्वर्टर, बूस्ट कन्वर्टर, बक-बूस्ट कन्वर्टर) की भांति, कुक कन्वर्टर या तब निरंतर या असंतत वर्तमान मोड में कार्य कर सकता है। चूँकि, इन कन्वर्टर्स के विपरीत, यह असंतत वोल्टेज मोड में भी कार्य कर सकता है (न्यूनीकरण चक्र के समय संधारित्र पर वोल्टेज शून्य हो जाता है)।

सतत मोड

चित्र 2.: गैर-पृथक कुक कनवर्टर की दो ऑपरेटिंग अवस्थाएँ।

स्थिर अवस्था में, प्रेरकों में संग्रहीत ऊर्जा को न्यूनीकरण चक्र के प्रारंभ और अंत में समान रहना पड़ता है। इस प्रकार प्रेरक में ऊर्जा निम्न द्वारा दी जाती है:

इसका तात्पर्य यह है कि प्रेरकों के माध्यम से धारा न्यूनीकरण चक्र के प्रारंभ और अंत में समान होती है। चूँकि किसी प्रेरक के माध्यम से धारा का विकास उसके पार वोल्टेज से संबंधित होता है:

यह देखा जा सकता है कि स्थिर-अवस्था की आवश्यकताओं को पूर्ण करने के लिए न्यूनीकरण अवधि में प्रारंभ करने वाला वोल्टेज का औसत मूल्य शून्य होता है।

यदि हम मानते हैं कि संधारित्र C1और C2 इतने बड़े होते हैं कि उन पर वोल्टेज तरंग नगण्य हो जाती है, अतः प्रारंभ करने वाला वोल्टेज बन जाते हैं:

  • 'ऑफ़-स्टेट' में, प्रेरक L1 Vs के साथ श्रृंखला में जुड़ा हुआ है और C1 (चित्र 2 देखें)। अतः . चूंकि डायोड D आगे की ओर पक्षपाती है (हम शून्य वोल्टेज ड्रॉप पर विचार करते हैं), L2 सीधे आउटपुट संधारित्र से जुड़ा होता है। इसलिए
  • ऑन-स्टेट में, प्रेरक L1सीधे इनपुट स्रोत से जुड़ा है। इसलिए . प्रेरक L2 C और आउटपुट संधारित्र के साथ श्रृंखला में जुड़ा हुआ है, इसलिए
केंद्र

कनवर्टर स्टेट से संचालित होता है को (D कर्तव्य चक्र है), और D T से T तक ऑफ स्टेट में (अर्थात्, के सामान्तर अवधि के समय)। ). का औसत मान VL1 और VL2 इसलिए होता हैं:

चूंकि स्थिर-अवस्था की स्थितियों को संतुष्ट करने के लिए दोनों औसत वोल्टेज शून्य होते है, अतः अंतिम समीकरण का उपयोग करके हम लिख सकते हैं:

तब L1 पर औसत वोल्टेज बन जाता है:

जिसे इस प्रकार लिखा जा सकता है:

यह देखा जा सकता है कि यह संबंध वही है जो बक-बूस्ट कनवर्टर के लिए प्राप्त किया गया है।

असंतत मोड

सभी डीसी/डीसी कन्वर्टर्स की भांति, यूके कन्वर्टर्स निरंतर धारा प्रदान करने के लिए परिपथ में इंडक्टर्स की क्षमता पर निर्भर करते हैं, उसी प्रकार रेक्टिफायर फिल्टर में संधारित्र निरंतर वोल्टेज प्रदान करता है। यदि यह प्रारंभ करने वाला बहुत छोटा है या महत्वपूर्ण प्रेरकत्व से नीचे होता है, तब जहां धारा शून्य हो जाती है वहां प्रारंभ करनेवाला धारा ढलान बंद हो जाता है। इस प्रकार ऑपरेशन की इस स्थिति का सामान्यतः अधिक गहराई से अध्ययन नहीं किया जाता है जिससे कि सामान्यतः इसका उपयोग यह प्रदर्शित करने से ऊपर नहीं किया जाता है कि न्यूनतम प्रेरण क्यों महत्वपूर्ण होता है, चूंकि यह तब हो सकता है जब कनवर्टर के लिए डिज़ाइन किए गए की तुलना में बहुत लघु वर्तमान पर स्टैंडबाय वोल्टेज बनाए रखा जाता है।

न्यूनतम प्रेरण किसके द्वारा दिया जाता है:

जहाँ स्विचिंग आवृत्ति है।

पृथक कुक कनवर्टर

युग्मित प्रारंभ करनेवाला पृथक कुक कनवर्टर।
इंटीग्रेटेड मैग्नेटिक्स कुक कनवर्टर।

कुक कनवर्टर के पृथक संस्करण के लिए, एसी ट्रांसफार्मर और अतिरिक्त संधारित्र जोड़ा जाता है।[4] जिससे कि पृथक कुक कनवर्टर पृथक हो जाते है, अतः आउटपुट-वोल्टेज ध्रुवीयता को स्वतंत्र रूप से चुना जा सकता है।

गैपलेस एसी ट्रांसफार्मर के साथ पृथक कुक कनवर्टर।

गैर-पृथक कुक कनवर्टर के रूप में, पृथक कुक कनवर्टर में आउटपुट वोल्टेज परिमाण हो सकता है जो कि 1:1 एसी ट्रांसफार्मर के साथ भी, इनपुट वोल्टेज परिमाण से अधिक या लघु हो सकता है। चूँकि, इनपुट पक्ष पर डिवाइस तनाव को लघु करने के लिए टर्न अनुपात को नियंत्रित किया जा सकता है। इसके अतिरिक्त, ट्रांसफार्मर के परजीवी तत्व, अर्थात् रिसाव प्रेरण और मैग्नेटाइजिंग इंडक्शन का उपयोग परिपथ को अनुनादी कनवर्टर परिपथ में संशोधित करने के लिए किया जा सकता है, जिसकी दक्षता में अधिक सुधार हुआ है।

संबंधित संरचनाएं

प्रेरक युग्मन

दो भिन्न-भिन्न प्रेरक घटकों का उपयोग करने के अतिरिक्त, अनेक डिजाइनर एकल चुंबकीय घटक का उपयोग करके युग्मित प्रारंभ करनेवाला कनवर्टर क्रियान्वित करते हैं, जिसमें ही कोर पर दोनों प्रेरक सम्मिलित होते हैं। उस घटक के अंदर इंडक्टर्स के मध्य ट्रांसफॉर्मर क्रिया दो स्वतंत्र असतत प्रारंभ करने वाला घटकों का उपयोग करके कुक कनवर्टर की तुलना में लघु आउटपुट तरंग के साथ युग्मित प्रारंभ करने वाला कुक कनवर्टर देती है।[5]

ज़ेटा कनवर्टर

ज़ेटा कनवर्टर गैर-पृथक, गैर-इनवर्टिंग, बक-बूस्ट विद्युत आपूर्ति टोपोलॉजी है।

सिंगल-एंडेड प्राइमरी-इंडक्शन कन्वर्टर (एसईपीआईसी)

एसईपीआईसी कनवर्टर वोल्टेज को बढ़ाने या घटाने में सक्षम है।

पेटेंट

  • यूएस पेटेंट 4257087,[6] 1979 में दायर, शून्य इनपुट और आउटपुट धारा रिपल और इंटीग्रेटेड मैग्नेटिक्स परिपथ के साथ डीसी-टू-डीसी स्विचिंग कनवर्टर, आविष्कारक स्लोबोदान कुक।
  • यूएस पेटेंट 4274133,[7] 1979 में दायर किया गया, डीसी-टू-डीसी कन्वर्टर ने समायोजन की आवश्यकता के बिना तरंग को लघु कर दिया, आविष्कारक स्लोबोदान कुक और आर. डी. मिडलब्रुक।
  • यूएस पेटेंट 4184197,[8] 1977 में दायर, डीसी-टू-डीसी स्विचिंग कनवर्टर, आविष्कारक स्लोबोडन ज़ुक और आर. डी. मिडलब्रुक।

अग्रिम पठन

  • पावर इलेक्ट्रॉनिक्स, वॉल्यूम। 4: स्टेट स्पेस औसत और कुक कनवर्टरस; कुक स्लोबोदान; 378 पृष्ठ; 2016; ISBN 978-1519520289.

संदर्भ

  1. Anushree, Anushree (2020-08-03). "What is a Ćuk Converter?". eepower.com. Archived from the original on 2021-02-03. Retrieved 2021-01-28.
  2. Ćuk, Slobodan; Middlebrook, R. D. (June 8, 1976). स्विचिंग-कनवर्टर पावर चरणों की मॉडलिंग के लिए एक सामान्य एकीकृत दृष्टिकोण (PDF). Proceedings of the IEEE Power Electronics Specialists Conference. Cleveland, OH. pp. 73–86. Retrieved 2008-12-31.
  3. Petrocelli, R. (2015). "One-Quadrant Switched-Mode Power Converters". In Bailey, R. (ed.). Proceedings of the CAS–CERN Accelerator School: Power Converters. Geneva: CERN. p. 131. arXiv:1607.02868. doi:10.5170/CERN-2015-003. ISBN 9789290834151.
  4. boostbuck.com: Easy Design of the Optimum Topology Boostbuck (Cuk) Family of Power Converters: How to Design the Transformer in a Cuk Converter
  5. The Four Boostbuck Topologies
  6. U.S. Patent 4257087.: "DC-to-DC switching converter with zero input and output current ripple and integrated magnetics circuits", filed 2 Apr 1979, retrieved 15 Jan 2017.
  7. U.S. Patent 4274133.: "DC-to-DC Converter having reduced ripple without need for adjustments", filed 20 June 1979, retrieved 15 Jan 2017.
  8. U.S. Patent 4184197.: "DC-to-DC switching converter", filed 28 Sep 1977, retrieved 15 Jan 2017.

बाहरी संबंध