अवमुख समष्टि: Difference between revisions

From Vigyanwiki
No edit summary
m (Abhishek moved page उत्तल स्थान to उत्तल समष्टि without leaving a redirect)
(No difference)

Revision as of 15:50, 4 October 2023

गणित में, उत्तल समष्टि (या बैरीसेंट्रिक बीजगणित) एक ऐसा समष्टि है जिसमें बिंदुओं के किसी भी समुच्चय का उत्तल संयोजन लेना संभव है।[1][2]

औपचारिक परिभाषा

उत्तल समष्टि को समुच्चय के रूप में परिभाषित किया जा सकता है जो प्रत्येक संतोषजनक के लिए बाइनरी उत्तल संयोजन संचालन से सुसज्जित है:

  • (के लिए )

इससे, n-एरी उत्तल संयोजन संचालन को परिभाषित करना संभव है, जो n-टुपल द्वारा पैरामीट्रिज्ड है, जहां

.

उदाहरण

कोई भी वास्तविक एफ़िन समष्टि एक उत्तल समष्टि होता है। अधिक सामान्यतः, वास्तविक एफ़िन समष्टि का कोई भी उत्तल उपसमुच्चय एक उत्तल समष्टि होता है।

इतिहास

उत्तल समष्टि का स्वतंत्र रूप से अनेक बार आविष्कार किया गया है और उन्हें कम से कम स्टोन (1949) से भिन्न-भिन्न नाम दिए गए हैं।[3] इनका अध्ययन वाल्टर न्यूमैन (1970) [4] और स्विर्ज़कज़ (1974) [5] द्वारा भी किया गया था।

संदर्भ

  1. "उत्तल स्थान". nLab. Retrieved 3 April 2023.
  2. Fritz, Tobias (2009). "Convex Spaces I: Definition and Examples". arXiv:0903.5522 [math.MG].
  3. Stone, Marshall Harvey (1949). "बैरीसेंट्रिक कैलकुलस के लिए अभिधारणाएँ". Annali di Matematica Pura ed Applicata. 29: 25–30. doi:10.1007/BF02413910. S2CID 122252152.
  4. Neumann, Walter David (1970). "एफ़िन रिक्त स्थान के उत्तल उपसमुच्चय की बहुविविधता पर". Archiv der Mathematik. 21: 11–16. doi:10.1007/BF01220869. S2CID 124051153.
  5. Świrszcz, Tadeusz (1974). "मोनैडिक फ़ंक्टर और उत्तलता". Bulletin l'Académie Polonaise des Science, Série des Sciences Mathématiques, Astronomiques et Physiques. 22: 39–42.