ऐडमिसिबल हेयुरिस्टिक: Difference between revisions

From Vigyanwiki
No edit summary
Line 11: Line 11:


== सर्च (सर्च) एल्गोरिदम ==
== सर्च (सर्च) एल्गोरिदम ==
[[सूचित खोज एल्गोरिदम|सूचित सर्च एल्गोरिदम]] में लक्ष्य स्थिति तक पहुंचने की लागत का अनुमान लगाने के लिए एक स्वीकार्य अनुमान का उपयोग किया जाता है। सर्च समस्या के लिए स्वीकार्य अनुमान के लिए, अनुमानित लागत हमेशा लक्ष्य स्थिति तक पहुंचने की वास्तविक लागत से कम या बराबर होनी चाहिए। सर्च एल्गोरिदम वर्तमान नोड से लक्ष्य स्थिति के लिए अनुमानित इष्टतम पथ खोजने के लिए स्वीकार्य अनुमानी का उपयोग करता है। उदाहरण के लिए, A* सर्च में मूल्यांकन फ़ंक्शन (जहां <math>n</math> वर्तमान नोड है) है:
[[सूचित खोज एल्गोरिदम|सूचित सर्च एल्गोरिदम]] में लक्ष्य स्थिति तक पहुंचने की लागत का अनुमान लगाने के लिए स्वीकार्य अनुमान का उपयोग किया जाता है। सर्च समस्या के लिए स्वीकार्य अनुमान के लिए, अनुमानित लागत हमेशा लक्ष्य स्थिति तक पहुंचने की वास्तविक लागत से कम या बराबर होनी चाहिए। सर्च एल्गोरिदम वर्तमान नोड से लक्ष्य स्थिति के लिए अनुमानित इष्टतम पथ खोजने के लिए स्वीकार्य अनुमानी का उपयोग करता है। उदाहरण के लिए, A* सर्च में मूल्यांकन फ़ंक्शन (जहां <math>n</math> वर्तमान नोड है) है:


<math>f(n) = g(n) + h(n)</math>
<math>f(n) = g(n) + h(n)</math>
Line 20: Line 20:
:<math>h(n)</math> = वर्तमान नोड से लक्ष्य तक अनुमानित लागत
:<math>h(n)</math> = वर्तमान नोड से लक्ष्य तक अनुमानित लागत


<math>h(n)</math> की गणना ह्यूरिस्टिक फ़ंक्शन का उपयोग करके की जाती है। एक गैर-स्वीकार्य अनुमान के साथ, A* एल्गोरिदम <math>f(n)</math> में अधिक अनुमान के कारण सर्च समस्या के इष्टतम समाधान को अनदेखा कर सकता है।
<math>h(n)</math> की गणना ह्यूरिस्टिक फ़ंक्शन का उपयोग करके की जाती है। गैर-स्वीकार्य अनुमान के साथ, A* एल्गोरिदम <math>f(n)</math> में अधिक अनुमान के कारण सर्च समस्या के इष्टतम समाधान को अनदेखा कर सकता है।


==निरूपण==
==निरूपण==
Line 31: Line 31:
:: <math>h(n) \leq h^*(n)</math>
:: <math>h(n) \leq h^*(n)</math>
==निर्माण==
==निर्माण==
एक स्वीकार्य अनुमान समस्या के एक आरामदायक संस्करण से, या पैटर्न डेटाबेस से जानकारी द्वारा प्राप्त किया जा सकता है जो समस्या की उप-समस्याओं के सटीक समाधान संग्रहीत करता है, या आगमनात्मक शिक्षण विधियों का उपयोग करना है।
स्वीकार्य अनुमान समस्या के सुविधाजनक संस्करण से, या पैटर्न डेटाबेस से जानकारी द्वारा प्राप्त किया जा सकता है जो समस्या की उप-समस्याओं के सटीक समाधान संग्रहीत करता है, या आगमनात्मक शिक्षण विधियों का उपयोग करना है।


==उदाहरण==
==उदाहरण==
पंद्रह पजल समस्या पर स्वीकार्य अनुमान के दो अलग-अलग उदाहरण लागू होते हैं:
पंद्रह पजल समस्या पर स्वीकार्य अनुमान के दो अलग-अलग उदाहरण प्रयुक्त होते हैं:
* [[हैमिंग दूरी]]
* [[हैमिंग दूरी]]
*[[मैनहट्टन दूरी]]
*[[मैनहट्टन दूरी]]


हैमिंग दूरी गलत रखे गए टाइल्स की कुल संख्या है। यह स्पष्ट है कि यह अनुमान स्वीकार्य है क्योंकि टाइलों को सही ढंग से व्यवस्थित करने के लिए चालों की कुल संख्या कम से कम गलत जगह पर रखी गई टाइलों की संख्या है (प्रत्येक टाइल जो अपनी जगह पर नहीं है उसे कम से कम एक बार स्थानांतरित किया जाना चाहिए)। लक्ष्य ( क्रम में की गई पजल) की लागत (चालों की संख्या) कम से कम पहेली की हैमिंग दूरी है।
हैमिंग दूरी गलत रखे गए टाइल्स की कुल संख्या है। यह स्पष्ट है कि यह अनुमान स्वीकार्य है क्योंकि टाइलों को सही ढंग से व्यवस्थित करने के लिए चालों की कुल संख्या कम से कम गलत जगह पर रखी गई टाइलों की संख्या है (प्रत्येक टाइल जो अपनी जगह पर नहीं है उसे कम से कम एक बार स्थानांतरित किया जाना चाहिए)। लक्ष्य ( क्रम में की गई पजल) की लागत (चालों की संख्या) कम से कम पजल की हैमिंग दूरी है।


पजल की मैनहट्टन दूरी इस प्रकार परिभाषित की गई है:
पजल की मैनहट्टन दूरी इस प्रकार परिभाषित की गई है:


:<math>h(n)=\sum_\text{all tiles} \mathit{distance}(\text{tile, correct position})</math>
:<math>h(n)=\sum_\text{all tiles} \mathit{distance}(\text{tile, correct position})</math>
नीचे दी गई पहेली पर विचार करें जिसमें खिलाड़ी प्रत्येक टाइल को इस प्रकार हिलाना चाहता है कि संख्याएँ क्रमबद्ध हों। मैनहट्टन की दूरी इस मामले में एक स्वीकार्य अनुमान है क्योंकि प्रत्येक टाइल को अपने और उसकी सही स्थिति के बीच कम से कम स्थानों की संख्या को स्थानांतरित करना होगा।<ref name="Korf,2000">{{cite conference |mode=cs2 |first=Richard E. |last=Korf |url=https://www.aaai.org/Papers/AAAI/2000/AAAI00-212.pdf |doi=10.1007/3-540-44914-0_3 |title=स्वीकार्य अनुमानी कार्यों के डिजाइन और विश्लेषण में हालिया प्रगति|editor-first=Berthe Y. |editor-last=Choueiry |editor2-first=Toby |editor2-last=Walsh |book-title=Abstraction, Reformulation, and Approximation: 4th International Symposium, SARA 2000 Horseshoe Bay, USA, July 26-29, 2000 Proceedings |pages=45–55 |publisher=Springer |year=2000 |isbn=978-3-540-67839-7 |access-date=2010-04-26 |volume=1864|citeseerx=10.1.1.124.817 }}</ref>  
नीचे दी गई पजल पर विचार करें जिसमें खिलाड़ी प्रत्येक टाइल को इस प्रकार हिलाना चाहता है कि संख्याएँ क्रमबद्ध हों। मैनहट्टन की दूरी इस स्थिति में स्वीकार्य अनुमान है क्योंकि प्रत्येक टाइल को अपने और उसकी सही स्थिति के बीच कम से कम स्थानों की संख्या को स्थानांतरित करना होगा।<ref name="Korf,2000">{{cite conference |mode=cs2 |first=Richard E. |last=Korf |url=https://www.aaai.org/Papers/AAAI/2000/AAAI00-212.pdf |doi=10.1007/3-540-44914-0_3 |title=स्वीकार्य अनुमानी कार्यों के डिजाइन और विश्लेषण में हालिया प्रगति|editor-first=Berthe Y. |editor-last=Choueiry |editor2-first=Toby |editor2-last=Walsh |book-title=Abstraction, Reformulation, and Approximation: 4th International Symposium, SARA 2000 Horseshoe Bay, USA, July 26-29, 2000 Proceedings |pages=45–55 |publisher=Springer |year=2000 |isbn=978-3-540-67839-7 |access-date=2010-04-26 |volume=1864|citeseerx=10.1.1.124.817 }}</ref>  
{| class="wikitable" style="text-align:right"
{| class="wikitable" style="text-align:right"
|-
|-
Line 57: Line 57:
:<math>h(n)=3+1+0+1+2+3+3+4+3+2+4+4+4+1+1=36</math>
:<math>h(n)=3+1+0+1+2+3+3+4+3+2+4+4+4+1+1=36</math>
==सर्वोत्तमता का प्रमाण==
==सर्वोत्तमता का प्रमाण==
यदि किसी एल्गोरिदम में एक स्वीकार्य अनुमान का उपयोग किया जाता है, जो प्रति पुनरावृत्ति, केवल कई उम्मीदवार पथों के सबसे कम मूल्यांकन (वर्तमान लागत + अनुमानी) के पथ पर आगे बढ़ता है, तो उस क्षण समाप्त हो जाता है जब इसका अन्वेषण लक्ष्य तक पहुंचता है और, महत्वपूर्ण रूप से, समाप्त होने से पहले कभी भी सभी इष्टतम पथों को बंद नहीं किया जाता है (ऐसा कुछ जो A* सर्च एल्गोरिदम के साथ संभव है यदि विशेष देखभाल नहीं की जाती है <ref name="Misconceptions">{{cite journal|
यदि किसी एल्गोरिदम में स्वीकार्य अनुमान का उपयोग किया जाता है, जो प्रति पुनरावृत्ति, केवल कई उम्मीदवार पथों के सबसे कम मूल्यांकन (वर्तमान लागत + अनुमानी) के पथ पर आगे बढ़ता है, तो उस क्षण समाप्त हो जाता है जब इसका अन्वेषण लक्ष्य तक पहुंचता है और, महत्वपूर्ण रूप से, समाप्त होने से पहले कभी भी सभी इष्टतम पथों को बंद नहीं किया जाता है (ऐसा कुछ जो A* सर्च एल्गोरिदम के साथ संभव है यदि विशेष देखभाल नहीं की जाती है <ref name="Misconceptions">{{cite journal|
last=Holte|
last=Holte|
first=Robert|
first=Robert|
Line 65: Line 65:
journal=Proceedings of the Third Annual Symposium on Combinatorial Search (SoCS)}}</ref>), तो यह एल्गोरिदम केवल एक इष्टतम पथ पर समाप्त हो सकता है। यह देखने के लिए कि, विरोधाभास द्वारा निम्नलिखित प्रमाण पर विचार करें:
journal=Proceedings of the Third Annual Symposium on Combinatorial Search (SoCS)}}</ref>), तो यह एल्गोरिदम केवल एक इष्टतम पथ पर समाप्त हो सकता है। यह देखने के लिए कि, विरोधाभास द्वारा निम्नलिखित प्रमाण पर विचार करें:


मान लें कि इस तरह का एक एल्गोरिदम वास्तविक लागत के साथ पथ T पर समाप्त होने में कामयाब रहा, जो '''T<sub>true</sub>''' के साथ इष्टतम पथ S से अधिक है। इसका मतलब यह है कि समाप्त होने से पहले, T की मूल्यांकन '''S<sub>true</sub>''' की मूल्यांकन लागत से कम या उसके बराबर थी (अन्यथा S को चुना गया होता)। इन मूल्यांकन की गई लागतों को क्रमशः '''T<sub>eval</sub>''' और '''S<sub>eval</sub>''' निरूपित करें। उपर्युक्त को संक्षेप में इस प्रकार प्रस्तुत किया जा सकता है,
मान लें कि इस तरह का एल्गोरिदम वास्तविक लागत के साथ पथ T पर समाप्त होने में कामयाब रहा, जो '''T<sub>true</sub>''' के साथ इष्टतम पथ S से अधिक है। इसका मतलब यह है कि समाप्त होने से पहले, T की मूल्यांकन '''S<sub>true</sub>''' की मूल्यांकन लागत से कम या उसके बराबर थी (अन्यथा S को चुना गया होता)। इन मूल्यांकन की गई लागतों को क्रमशः '''T<sub>eval</sub>''' और '''S<sub>eval</sub>''' निरूपित करें। उपर्युक्त को संक्षेप में इस प्रकार प्रस्तुत किया जा सकता है,


: '''S<sub>true</sub>''' < '''T<sub>true</sub>'''
: '''S<sub>true</sub>''' < '''T<sub>true</sub>'''
: '''T<sub>eval</sub>''' ≤ '''S<sub>eval</sub>'''
: '''T<sub>eval</sub>''' ≤ '''S<sub>eval</sub>'''
यदि हमारा अनुमान स्वीकार्य है तो यह इस प्रकार है कि इस अंतिम चरण में '''T<sub>eval</sub>''' = '''T<sub>true</sub>''' है क्योंकि टी पर अनुमान द्वारा वास्तविक लागत में कोई भी वृद्धि अस्वीकार्य होगी और अनुमान नकारात्मक नहीं हो सकता है। दूसरी ओर, एक स्वीकार्य अनुमान के लिए '''S<sub>eval</sub>''' ≤ '''S<sub>true</sub>''' की आवश्यकता होगी जो उपरोक्त असमानताओं के साथ मिलकर हमें टेवल '''T<sub>eval</sub>''' ≠ '''T<sub>true</sub>''' और अधिक विशेष रूप से '''T<sub>eval</sub>''' < '''T<sub>true</sub>''' देता है। चूँकि '''T<sub>eval</sub>''' और '''T<sub>true</sub>''' समान और असमान दोनों नहीं हो सकते हैं, हमारी धारणा गलत रही होगी और इसलिए इष्टतम पथ से अधिक महंगे मार्ग पर समाप्त करना असंभव होगा।
यदि हमारा अनुमान स्वीकार्य है तो यह इस प्रकार है कि इस अंतिम चरण में '''T<sub>eval</sub>''' = '''T<sub>true</sub>''' है क्योंकि टी पर अनुमान द्वारा वास्तविक लागत में कोई भी वृद्धि अस्वीकार्य होगी और अनुमान नकारात्मक नहीं हो सकता है। दूसरी ओर, स्वीकार्य अनुमान के लिए '''S<sub>eval</sub>''' ≤ '''S<sub>true</sub>''' की आवश्यकता होगी जो उपरोक्त असमानताओं के साथ मिलकर हमें टेवल '''T<sub>eval</sub>''' ≠ '''T<sub>true</sub>''' और अधिक विशेष रूप से '''T<sub>eval</sub>''' < '''T<sub>true</sub>''' देता है। चूँकि '''T<sub>eval</sub>''' और '''T<sub>true</sub>''' समान और असमान दोनों नहीं हो सकते हैं, हमारी धारणा गलत रही होगी और इसलिए इष्टतम पथ से अधिक महंगे मार्ग पर समाप्त करना असंभव होगा।


उदाहरण के तौर पर, <ref>{{Cite web |url=https://stackoverflow.com/questions/23970588/why-do-admissable-heuristics-guarantee-optimality |title=Why do {{sic|admis|sable|nolink=y}} heuristics guarantee optimality? |website=Stack Overflow |access-date=2018-12-11 |department=algorithm}}</ref> मान लें कि हमारी लागत इस प्रकार है: (नोड के ऊपर/नीचे की लागत अनुमानी है, किनारे पर लागत वास्तविक लागत है)
उदाहरण के तौर पर, <ref>{{Cite web |url=https://stackoverflow.com/questions/23970588/why-do-admissable-heuristics-guarantee-optimality |title=Why do {{sic|admis|sable|nolink=y}} heuristics guarantee optimality? |website=Stack Overflow |access-date=2018-12-11 |department=algorithm}}</ref> मान लें कि हमारी लागत इस प्रकार है: (नोड के ऊपर/नीचे की लागत अनुमानी है, किनारे पर लागत वास्तविक लागत है)
Line 81: Line 81:
  100  1    100  1  100
  100  1    100  1  100


तो स्पष्ट रूप से हम शीर्ष मध्य नोड पर जाना शुरू करेंगे, क्योंकि अपेक्षित कुल लागत, अर्थात <math>f(n)</math>, <math>10 + 0 = 10</math> है तब लक्ष्य एक उम्मीदवार होगा, जिसमें <math>f(n)</math><math>10+100+0=110</math> के बराबर होगा। फिर हम स्पष्ट रूप से एक के बाद एक नीचे के नोड्स को चुनेंगे, उसके बाद अद्यतन लक्ष्य, क्योंकि उन सभी का <math>f(n)</math> वर्तमान लक्ष्य के <math>f(n)</math> से कम है, अर्थात उनका <math>f(n)</math> <math>100, 101, 102, 102</math> है। इसलिए भले ही लक्ष्य एक उम्मीदवार था, हम उसे नहीं चुन सके क्योंकि वहां अभी भी बेहतर रास्ते मौजूद थे। इस तरह, एक स्वीकार्य अनुमान अनुकूलता सुनिश्चित कर सकता है।  
तो स्पष्ट रूप से हम शीर्ष मध्य नोड पर जाना शुरू करेंगे, क्योंकि अपेक्षित कुल लागत, अर्थात <math>f(n)</math>, <math>10 + 0 = 10</math> है तब लक्ष्य एक उम्मीदवार होगा, जिसमें <math>f(n)</math><math>10+100+0=110</math> के बराबर होगा। फिर हम स्पष्ट रूप से एक के बाद एक नीचे के नोड्स को चुनेंगे, उसके बाद अद्यतन लक्ष्य, क्योंकि उन सभी का <math>f(n)</math> वर्तमान लक्ष्य के <math>f(n)</math> से कम है, अर्थात उनका <math>f(n)</math> <math>100, 101, 102, 102</math> है। इसलिए भले ही लक्ष्य एक उम्मीदवार था, हम उसे नहीं चुन सके क्योंकि वहां अभी भी बेहतर रास्ते उपस्थित थे। इस तरह, स्वीकार्य अनुमान अनुकूलता सुनिश्चित कर सकता है।  


हालाँकि, ध्यान दें कि यद्यपि एक स्वीकार्य अनुमान अंतिम इष्टतमता की गारंटी दे सकता है, लेकिन यह आवश्यक रूप से कुशल नहीं है।
हालाँकि, ध्यान दें कि यद्यपि स्वीकार्य अनुमान अंतिम इष्टतमता की गारंटी दे सकता है, लेकिन यह आवश्यक रूप से कुशल नहीं है।


==संदर्भ==
==संदर्भ==

Revision as of 10:23, 6 August 2023

कंप्यूटर विज्ञान में, विशेष रूप से पाथफाइंडिंग से संबंधित एल्गोरिदम में, एक अनुमानी फ़ंक्शन को स्वीकार्य कहा जाता है यदि यह लक्ष्य तक पहुंचने की लागत को कभी भी कम नहीं करता है, यानी लक्ष्य तक पहुंचने के लिए यह जिस लागत का अनुमान लगाता है, वह पथ में वर्तमान बिंदु से न्यूनतम संभव लागत से अधिक नहीं है।[1]

यह सतत अनुमानी की अवधारणा से संबंधित है। हालाँकि सभी सुसंगत अनुमान स्वीकार्य हैं, लेकिन सभी स्वीकार्य अनुमान सुसंगत नहीं हैं।

सर्च (सर्च) एल्गोरिदम

सूचित सर्च एल्गोरिदम में लक्ष्य स्थिति तक पहुंचने की लागत का अनुमान लगाने के लिए स्वीकार्य अनुमान का उपयोग किया जाता है। सर्च समस्या के लिए स्वीकार्य अनुमान के लिए, अनुमानित लागत हमेशा लक्ष्य स्थिति तक पहुंचने की वास्तविक लागत से कम या बराबर होनी चाहिए। सर्च एल्गोरिदम वर्तमान नोड से लक्ष्य स्थिति के लिए अनुमानित इष्टतम पथ खोजने के लिए स्वीकार्य अनुमानी का उपयोग करता है। उदाहरण के लिए, A* सर्च में मूल्यांकन फ़ंक्शन (जहां वर्तमान नोड है) है:

जहाँ

= मूल्यांकन फंक्शन.
= प्रारंभ नोड से वर्तमान नोड तक की लागत
= वर्तमान नोड से लक्ष्य तक अनुमानित लागत

की गणना ह्यूरिस्टिक फ़ंक्शन का उपयोग करके की जाती है। गैर-स्वीकार्य अनुमान के साथ, A* एल्गोरिदम में अधिक अनुमान के कारण सर्च समस्या के इष्टतम समाधान को अनदेखा कर सकता है।

निरूपण

एक नोड है
एक अनुमानी है
से किसी लक्ष्य तक पहुंचने के लिए द्वारा दर्शायी गई लागत है
से किसी लक्ष्य तक पहुँचने के लिए इष्टतम लागत है
स्वीकार्य है यदि,

निर्माण

स्वीकार्य अनुमान समस्या के सुविधाजनक संस्करण से, या पैटर्न डेटाबेस से जानकारी द्वारा प्राप्त किया जा सकता है जो समस्या की उप-समस्याओं के सटीक समाधान संग्रहीत करता है, या आगमनात्मक शिक्षण विधियों का उपयोग करना है।

उदाहरण

पंद्रह पजल समस्या पर स्वीकार्य अनुमान के दो अलग-अलग उदाहरण प्रयुक्त होते हैं:

हैमिंग दूरी गलत रखे गए टाइल्स की कुल संख्या है। यह स्पष्ट है कि यह अनुमान स्वीकार्य है क्योंकि टाइलों को सही ढंग से व्यवस्थित करने के लिए चालों की कुल संख्या कम से कम गलत जगह पर रखी गई टाइलों की संख्या है (प्रत्येक टाइल जो अपनी जगह पर नहीं है उसे कम से कम एक बार स्थानांतरित किया जाना चाहिए)। लक्ष्य ( क्रम में की गई पजल) की लागत (चालों की संख्या) कम से कम पजल की हैमिंग दूरी है।

पजल की मैनहट्टन दूरी इस प्रकार परिभाषित की गई है:

नीचे दी गई पजल पर विचार करें जिसमें खिलाड़ी प्रत्येक टाइल को इस प्रकार हिलाना चाहता है कि संख्याएँ क्रमबद्ध हों। मैनहट्टन की दूरी इस स्थिति में स्वीकार्य अनुमान है क्योंकि प्रत्येक टाइल को अपने और उसकी सही स्थिति के बीच कम से कम स्थानों की संख्या को स्थानांतरित करना होगा।[2]

43 61 30 81
72 123 93 144
153 132 14 54
24 101 111

सबस्क्रिप्ट प्रत्येक टाइल के लिए मैनहट्टन की दूरी दर्शाती है। प्रदर्शित पजल के लिए कुल मैनहट्टन दूरी है:

सर्वोत्तमता का प्रमाण

यदि किसी एल्गोरिदम में स्वीकार्य अनुमान का उपयोग किया जाता है, जो प्रति पुनरावृत्ति, केवल कई उम्मीदवार पथों के सबसे कम मूल्यांकन (वर्तमान लागत + अनुमानी) के पथ पर आगे बढ़ता है, तो उस क्षण समाप्त हो जाता है जब इसका अन्वेषण लक्ष्य तक पहुंचता है और, महत्वपूर्ण रूप से, समाप्त होने से पहले कभी भी सभी इष्टतम पथों को बंद नहीं किया जाता है (ऐसा कुछ जो A* सर्च एल्गोरिदम के साथ संभव है यदि विशेष देखभाल नहीं की जाती है [3]), तो यह एल्गोरिदम केवल एक इष्टतम पथ पर समाप्त हो सकता है। यह देखने के लिए कि, विरोधाभास द्वारा निम्नलिखित प्रमाण पर विचार करें:

मान लें कि इस तरह का एल्गोरिदम वास्तविक लागत के साथ पथ T पर समाप्त होने में कामयाब रहा, जो Ttrue के साथ इष्टतम पथ S से अधिक है। इसका मतलब यह है कि समाप्त होने से पहले, T की मूल्यांकन Strue की मूल्यांकन लागत से कम या उसके बराबर थी (अन्यथा S को चुना गया होता)। इन मूल्यांकन की गई लागतों को क्रमशः Teval और Seval निरूपित करें। उपर्युक्त को संक्षेप में इस प्रकार प्रस्तुत किया जा सकता है,

Strue < Ttrue
TevalSeval

यदि हमारा अनुमान स्वीकार्य है तो यह इस प्रकार है कि इस अंतिम चरण में Teval = Ttrue है क्योंकि टी पर अनुमान द्वारा वास्तविक लागत में कोई भी वृद्धि अस्वीकार्य होगी और अनुमान नकारात्मक नहीं हो सकता है। दूसरी ओर, स्वीकार्य अनुमान के लिए SevalStrue की आवश्यकता होगी जो उपरोक्त असमानताओं के साथ मिलकर हमें टेवल TevalTtrue और अधिक विशेष रूप से Teval < Ttrue देता है। चूँकि Teval और Ttrue समान और असमान दोनों नहीं हो सकते हैं, हमारी धारणा गलत रही होगी और इसलिए इष्टतम पथ से अधिक महंगे मार्ग पर समाप्त करना असंभव होगा।

उदाहरण के तौर पर, [4] मान लें कि हमारी लागत इस प्रकार है: (नोड के ऊपर/नीचे की लागत अनुमानी है, किनारे पर लागत वास्तविक लागत है)

  0     10   0   100   0
START ----  O  ----- GOAL
 |                   |
0|                   |100
 |                   | 
 O ------- O  ------ O
100   1    100   1   100

तो स्पष्ट रूप से हम शीर्ष मध्य नोड पर जाना शुरू करेंगे, क्योंकि अपेक्षित कुल लागत, अर्थात , है तब लक्ष्य एक उम्मीदवार होगा, जिसमें के बराबर होगा। फिर हम स्पष्ट रूप से एक के बाद एक नीचे के नोड्स को चुनेंगे, उसके बाद अद्यतन लक्ष्य, क्योंकि उन सभी का वर्तमान लक्ष्य के से कम है, अर्थात उनका है। इसलिए भले ही लक्ष्य एक उम्मीदवार था, हम उसे नहीं चुन सके क्योंकि वहां अभी भी बेहतर रास्ते उपस्थित थे। इस तरह, स्वीकार्य अनुमान अनुकूलता सुनिश्चित कर सकता है।

हालाँकि, ध्यान दें कि यद्यपि स्वीकार्य अनुमान अंतिम इष्टतमता की गारंटी दे सकता है, लेकिन यह आवश्यक रूप से कुशल नहीं है।

संदर्भ

  1. Russell, S.J.; Norvig, P. (2002). Artificial Intelligence: A Modern Approach. Prentice Hall. ISBN 0-13-790395-2.
  2. Korf, Richard E. (2000), "स्वीकार्य अनुमानी कार्यों के डिजाइन और विश्लेषण में हालिया प्रगति" (PDF), in Choueiry, Berthe Y.; Walsh, Toby (eds.), Abstraction, Reformulation, and Approximation: 4th International Symposium, SARA 2000 Horseshoe Bay, USA, July 26-29, 2000 Proceedings, vol. 1864, Springer, pp. 45–55, CiteSeerX 10.1.1.124.817, doi:10.1007/3-540-44914-0_3, ISBN 978-3-540-67839-7, retrieved 2010-04-26
  3. Holte, Robert (2005). "Common Misconceptions Concerning Heuristic Search". Proceedings of the Third Annual Symposium on Combinatorial Search (SoCS).
  4. "Why do admissable [sic] heuristics guarantee optimality?". algorithm. Stack Overflow. Retrieved 2018-12-11.

यह भी देखें

श्रेणी:ह्यूरिस्टिक्स श्रेणी:कृत्रिम बुद्धि