कम्प्यूटेशनल इंटेलिजेंस: Difference between revisions
(Created page with "{{Short description|Ability of a computer to learn a specific task from data or experimental observation}} {{for|the journal|Computational Intelligence (journal)}} {{broader|A...") |
m (17 revisions imported from alpha:कम्प्यूटेशनल_इंटेलिजेंस) |
||
(16 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Ability of a computer to learn a specific task from data or experimental observation}} | {{Short description|Ability of a computer to learn a specific task from data or experimental observation}} | ||
{{for| | {{for|जर्नल|कम्प्यूटेशनल इंटेलिजेंस (जर्नल)}} | ||
{{broader| | {{broader|आर्टिफिशियल इंटेलिजेंस}} | ||
अभिव्यक्ति '''कम्प्यूटेशनल इंटेलिजेंस''' (सीआई) सामान्यतः डेटा या प्रयोगात्मक अवलोकन से एक विशिष्ट कार्य सीखने के लिए कंप्यूटर की क्षमता को संदर्भित करता है। हालाँकि इसे सामान्यतः [[सॉफ्ट कंप्यूटिंग]] का पर्याय माना जाता है, फिर भी कम्प्यूटेशनल इंटेलिजेंस की कोई सामान्यतः स्वीकृत परिभाषा नहीं है। | |||
सामान्यतः कम्प्यूटेशनल इंटेलिजेंस जटिल वास्तविक दुनिया की समस्याओं को संबोधित करने के लिए प्रकृति-प्रेरित कम्प्यूटेशनल कार्यप्रणाली और दृष्टिकोण का एक सेट है, जिसके लिए गणितीय या पारंपरिक मॉडलिंग कुछ कारणों से बेकार हो सकती है: गणितीय तर्क के लिए प्रक्रियाएँ बहुत जटिल हो सकती हैं, इसमें प्रक्रिया के दौरान कुछ अनिश्चितताएँ हो सकती हैं, या प्रक्रिया केवल प्रकृति में स्टोकेस्टिक हो सकती है।<ref name="Siddique & Adeli">{{Cite book|title = Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing|last1 = Siddique |first1 = Nazmul |last2=Adeli |first2=Hojjat |publisher = John Wiley & Sons|year = 2013|isbn = 978-1-118-53481-6}}</ref> वास्तव में, वास्तविक जीवन की कई समस्याओं को कंप्यूटर द्वारा संसाधित करने के लिए बाइनरी भाषा (0 और 1 के अद्वितीय मान) में अनुवादित नहीं किया जा सकता है। कम्प्यूटेशनल इंटेलिजेंस ऐसी समस्याओं का समाधान प्रदान करता है। | |||
उपयोग की जाने वाली विधियाँ मानव के तर्क करने के तरीके के करीब हैं, अर्थात यह अचूक और अधूरे ज्ञान का उपयोग करता है, और यह अनुकूली तरीके से नियंत्रण क्रियाएँ उत्पन्न करने में सक्षम है। इसलिए सीआई पाँच मुख्य पूरक तकनीकों के संयोजन का उपयोग करता है।<ref name="Siddique & Adeli" /> [[फजी लॉजिक]] कंप्यूटर को प्राकृतिक भाषा,<ref>{{Cite book|title = Computational Intelligence: Methods and Techniques|last = Rutkowski|first = Leszek|publisher = Springer|year = 2008|isbn = 978-3-540-76288-1}}</ref><ref name="फजी लॉजिक">{{Cite web|url = http://whatis.techtarget.com/definition/fuzzy-logic|title = फजी लॉजिक|date = July 2006 |website = WhatIs.com|publisher = Margaret Rouse}}</ref> आर्टिफिशियल (कृत्रिम) न्यूरल नेटवर्क को समझने में सक्षम बनाता है जो सिस्टम को जैविक भाषा, विकासवादी कंप्यूटिंग की तरह संचालित करके अनुभवात्मक डेटा सीखने की अनुमति देता है जो प्राकृतिक चयन की प्रक्रिया, सीखने के सिद्धांत और संभाव्य विधियों पर आधारित है जो अनिश्चितता की अनिश्चितता से निपटने में मदद करता है।<ref name="Siddique & Adeli" /> | |||
उन मुख्य सिद्धांतों को छोड़कर, वर्तमान में लोकप्रिय दृष्टिकोणों में जैविक रूप से प्रेरित एल्गोरिदम जैसे स्वार्म इंटेलिजेंस <ref>Beni, G., Wang, J. Swarm Intelligence in Cellular Robotic Systems, Proceed. NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy, June 26–30 (1989)</ref> और आर्टिफिशियल प्रतिरक्षा सिस्टम सम्मिलित हैं, जिन्हें इवोल्यूशनरी कम्प्यूटेशन, इमेज प्रोसेसिंग, डेटा माइनिंग, नेचुरल लैंग्वेज प्रोसेसिंग और आर्टिफिशियल इंटेलिजेंस के एक भाग के रूप में देखा जा सकता है जिसे कम्प्यूटेशनल इंटेलिजेंस के साथ भ्रमित किया जा सकता है। लेकिन यद्यपि कम्प्यूटेशनल इंटेलिजेंस (सीआई) और आर्टिफिशियल इंटेलिजेंस (एआई) दोनों समान लक्ष्यों की खोज करते हैं, उनके बीच एक स्पष्ट अंतर है। | |||
कम्प्यूटेशनल इंटेलिजेंस इस प्रकार मनुष्य की तरह प्रदर्शन करने का एक तरीका है। वास्तव में, "इंटेलिजेंस" की विशेषता का श्रेय सामान्यतः मनुष्यों को दिया जाता है। अभी हाल ही में, कई उत्पाद और आइटम भी "इंटेलिजेंस" होने का दावा करते हैं, एक ऐसा गुण जो सीधे तौर पर तर्क और निर्णय लेने से जुड़ा होता है। | |||
== '''इतिहास''' == | |||
सोर्स:<ref>{{Cite web|url = http://ethw.org/IEEE_Computational_Intelligence_Society_History|title = आईईईई कम्प्यूटेशनल इंटेलिजेंस सोसायटी इतिहास|date = July 22, 2014|access-date = 2015-10-30|website = Engineering and Technology history Wiki}}</ref> कम्प्यूटेशनल इंटेलिजेंस की धारणा का उपयोग पहली बार 1990 में आईईईई न्यूरल नेटवर्क काउंसिल द्वारा किया गया था। इस परिषद की स्थापना 1980 के दशक में जैविक और आर्टिफिशियल न्यूरल नेटवर्क के विकास में दिलचस्पी रखने वाले शोधकर्ताओं के एक समूह द्वारा की गई थी। 21 नवंबर, 2001 को, आईईईई न्यूरल नेटवर्क्स काउंसिल, आईईईई न्यूरल नेटवर्क्स सोसाइटी बन गई, जो दो साल बाद फजी सिस्टम और इवोल्यूशनरी कम्प्यूटेशन जैसे रुचि के नए क्षेत्रों को सम्मिलित करके [[आईईईई कम्प्यूटेशनल इंटेलिजेंस सोसायटी]] बन गई जिसे उन्होंने 2011 में कम्प्यूटेशनल इंटेलिजेंस (डोटे और ओवास्का) से संबंधित किया था। | |||
लेकिन कम्प्यूटेशनल इंटेलिजेंस की पहली स्पष्ट परिभाषा 1994 में बेजडेक द्वारा प्रस्तुत की गई थी:<ref name="Siddique & Adeli" /> एक सिस्टम को कम्प्यूटेशनल रूप से इंटेलिजेंस कहा जाता है यदि यह संख्यात्मक डेटा जैसे निम्न-स्तरीय डेटा से निपटता है, इसमें एक पैटर्न-पहचान घटक होता है और इसमें ज्ञान का उपयोग नहीं किया जाता है। एआई सेंस, और इसके अतिरिक्त जब यह कम्प्यूटेशनल रूप से अनुकूली रूप से प्रदर्शित होना प्रारम्भ होता है, दोष सहिष्णुता, मानव-जैसे बदलाव की गति और त्रुटि दर जो मानव प्रदर्शन को अनुमानित करती है। | |||
बेजडेक और मार्क्स (1993) ने स्पष्ट रूप से सीआई को एआई से अलग किया, यह तर्क देकर कि पहला सॉफ्ट कंप्यूटिंग विधियों पर आधारित है, जबकि एआई हार्ड कंप्यूटिंग विधियों पर आधारित है। | |||
== '''कम्प्यूटेशनल और आर्टिफिशियल इंटेलिजेंस के बीच अंतर''' == | |||
हालाँकि आर्टिफिशियल इंटेलिजेंस और कम्प्यूटेशनल इंटेलिजेंस एक समान दीर्घकालिक लक्ष्य की खोज करते हैं: सामान्य इंटेलिजेंस तक पहुँचना, जो एक मशीन की इंटेलिजेंस है जो किसी भी बौद्धिक कार्य को कर सकती है जो एक इंसान कर सकता है; उनके बीच स्पष्ट अंतर है. बेजडेक (1994) के अनुसार, कम्प्यूटेशनल इंटेलिजेंस आर्टिफिशियल इंटेलिजेंस का एक उपसमुच्चय है। | |||
हालाँकि आर्टिफिशियल इंटेलिजेंस और कम्प्यूटेशनल इंटेलिजेंस एक समान दीर्घकालिक लक्ष्य की | |||
मशीन इंटेलिजेंस दो प्रकार | मशीन इंटेलिजेंस के दो प्रकार हैं: हार्ड कंप्यूटिंग तकनीकों पर आधारित आर्टिफिशियल और सॉफ्ट कंप्यूटिंग विधियों पर आधारित कम्प्यूटेशनल, जो कई स्थितियों में अनुकूलन को सक्षम बनाता है। | ||
हार्ड कंप्यूटिंग तकनीकें केवल दो मानों (बूलियन सही या गलत, 0 या 1) पर | हार्ड कंप्यूटिंग तकनीकें केवल दो मानों (बूलियन सही या गलत, 0 या 1) के आधार पर बाइनरी लॉजिक का पालन करते हुए काम करती हैं, जिस पर आधुनिक कंप्यूटर आधारित होते हैं। इस तर्क के साथ एक समस्या यह है कि हमारी प्राकृतिक भाषा को हमेशा 0 और 1 के पूर्ण शब्दों में आसानी से अनुवादित नहीं किया जा सकता है। फजी लॉजिक पर आधारित सॉफ्ट कंप्यूटिंग तकनीकें यहां उपयोगी हो सकती हैं।<ref>{{Cite web|title = Artificial Intelligence, Computational Intelligence, SoftComputing, Natural Computation - what's the difference? - ANDATA|url = http://www.andata.at/en/answer/artificial-intelligence-computational-intelligence-softcomputing-natural-computation-whats-the-difference.html|website = www.andata.at|access-date = 2015-11-05}}</ref> मानव मस्तिष्क जिस तरह से डेटा को आंशिक सत्य (क्रिस्प/फजी सिस्टम) में एकत्रित करके काम करता है, उसके बहुत करीब, यह तर्क सीआई के मुख्य विशिष्ट पहलुओं में से एक है। | ||
फजी और बाइनरी लॉजिक्स के समान सिद्धांतों के भीतर क्रिस्पी और फजी सिस्टम का पालन किया जाता है।<ref>{{Cite web|title = फ़ज़ी सेट और पैटर्न पहचान|url = http://www.cs.princeton.edu/courses/archive/fall07/cos436/HIDDEN/Knapp/fuzzy002.htm|website = www.cs.princeton.edu|access-date = 2015-11-05}}</ref> क्रिस्प लॉजिक आर्टिफिशियल इंटेलिजेंस सिद्धांतों का एक हिस्सा है और इसमें या तो एक तत्व को एक सेट में सम्मिलित किया जाता है या नहीं, जबकि फजी सिस्टम (सीआई) तत्वों को आंशिक रूप से एक सेट में सम्मिलित करने में सक्षम बनाता है। इस तर्क का पालन करते हुए, प्रत्येक तत्व को सदस्यता की डिग्री दी जा सकती है (0 से 1 तक), इन दो मूल्यों में से केवल एक में प्रतिबद्ध नहीं किया जा रहा है।<ref>R. Pfeifer. 2013. Chapter 5: FUZZY Logic. Lecture notes on "Real-world computing". Zurich. University of Zurich.</ref> | |||
== '''सीआई के पांच मुख्य सिद्धांत और इसके अनुप्रयोग''' == | |||
कम्प्यूटेशनल इंटेलिजेंस के मुख्य अनुप्रयोगों में [[कंप्यूटर विज्ञान]], इंजीनियरिंग, [[डेटा विश्लेषण]] और जैव-चिकित्सा सम्मिलित हैं। | |||
== | === फजी लॉजिक === | ||
जैसा कि पहले बताया गया है, फजी लॉजिक, सीआई के मुख्य सिद्धांतों में से एक, वास्तविक जीवन की जटिल प्रक्रियाओं के लिए किए गए माप और प्रक्रिया मॉडलिंग में सम्मिलित है। आर्टिफिशियल इंटेलिजेंस के विपरीत, इसे प्रक्रिया मॉडल में अपूर्णता और सबसे महत्वपूर्ण रूप से डेटा की अज्ञानता का सामना करना पड़ सकता है, जिसके लिए सटीक ज्ञान की आवश्यकता होती है। | |||
यह तकनीक नियंत्रण, इमेज प्रोसेसिंग और निर्णय लेने जैसे डोमेन की एक विस्तृत श्रृंखला पर लागू होती है। लेकिन इसे वॉशिंग मशीन, माइक्रोवेव ओवन आदि जैसे घरेलू उपकरणों के क्षेत्र में भी अच्छी तरह से प्रस्तुत किया गया है। हम वीडियो कैमरे का उपयोग करते समय भी इसका सामना कर सकते हैं, जहां यह कैमरे को अस्थिर रूप से पकड़ने पर छवि को स्थिर करने में मदद करता है। चिकित्सा निदान, विदेशी मुद्रा व्यापार और व्यापार रणनीति चयन जैसे अन्य क्षेत्र इस सिद्धांत के अनुप्रयोगों की संख्या से अलग हैं।<ref name="Siddique & Adeli" /> | |||
फजी लॉजिक मुख्य रूप से अनुमानित तर्क के लिए उपयोगी है, और इसमें सीखने की क्षमता नहीं होती है,<ref name="Siddique & Adeli" /> एक अत्यंत आवश्यक योग्यता जो मनुष्य के पास है। यह उन्हें अपनी पिछली गलतियों से सीखकर खुद को बेहतर बनाने में सक्षम बनाता है। | |||
=== न्यूरल नेटवर्क्स === | |||
यही कारण है कि सीआई विशेषज्ञ [[जैविक तंत्रिका नेटवर्क|जैविक न्यूरल नेटवर्क]] पर आधारित आर्टिफिशियल न्यूरल नेटवर्क के विकास पर काम करते हैं, जिसे 3 मुख्य घटकों द्वारा परिभाषित किया जा सकता है: कोशिका-शरीर जो सूचना को संसाधित करता है, अक्षतंतु, जो सिग्नल संचालन को सक्षम करने वाला एक उपकरण है, और सिनैप्स, जो संकेतों को नियंत्रित करता है। इसलिए, आर्टिफिशियल न्यूरल नेटवर्क वितरित सूचना प्रसंस्करण प्रणालियों से युक्त हैं,<ref>{{Cite journal |title = तंत्रिका - तंत्र|url = http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html |last1 = Stergiou |first1 = Christos |last2 = Siganos |first2 = Dimitrios |journal = SURPRISE 96 Journal |publisher = [[Imperial College London]] |access-date = March 11, 2015 |archive-url = https://web.archive.org/web/20091216110504/http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html |archive-date = December 16, 2009 |url-status = dead }}</ref> अनुभवात्मक डेटा से प्रक्रिया और सीखने को सक्षम करना। मनुष्य की तरह कार्य करना, दोष सहन करना भी इस सिद्धांत की मुख्य गुणों में से एक है।<ref name="Siddique & Adeli" /> | |||
इसके अनुप्रयोगों के संबंध में, न्यूरल नेटवर्क को पांच समूहों में वर्गीकृत किया जा सकता है: डेटा विश्लेषण और वर्गीकरण, सहयोगी स्मृति, पैटर्न की क्लस्टरिंग पीढ़ी और नियंत्रण।<ref name="Siddique & Adeli" />सामान्यतः, इस पद्धति का उद्देश्य चिकित्सा डेटा का विश्लेषण और वर्गीकरण करना, धोखाधड़ी और धोखाधड़ी का पता लगाने के लिए आगे बढ़ना और सबसे महत्वपूर्ण रूप से इसे नियंत्रित करने के लिए सिस्टम की गैर-रैखिकताओं से निपटना है।<ref>{{Cite journal|url = http://leeds-faculty.colorado.edu/dahe7472/Organizational%20Research%20Methods-2009-Somers-403-17.pdf|title = गैर-रैखिकता को मॉडल करने के लिए कृत्रिम तंत्रिका नेटवर्क का उपयोग करना|last1 = Somers |first1= Mark John |last2= Casal|first2 = Jose C.|date = July 2009|journal = Organizational Research Methods |volume=12 |number=3 |pages = 403–417|doi = 10.1177/1094428107309326 |s2cid = 17380352|access-date = 2015-10-31}}</ref> इसके अतिरिक्त, न्यूरल नेटवर्क तकनीक फजी लॉजिक तकनीक के साथ [[डेटा क्लस्टरिंग]] को सक्षम करने का लाभ साझा करती है। | |||
=== इवोल्यूशनरी कम्प्यूटेशन === | |||
सबसे पहले [[चार्ल्स डार्विन]] द्वारा प्रारम्भ की गई विकास की प्रक्रिया के आधार पर, इवोल्यूशनरी कम्प्यूटेशन में नई आर्टिफिशियल पद्धतियों को लाने के लिए प्राकृतिक विकास की ताकत को भुनाना सम्मिलित है।<ref>{{Cite book|title = Evolutionary Computation:A Unified Approach|last = De Jong|first = K.|publisher = MIT Press|year = 2006|isbn = 9780262041942|url-access = registration|url = https://archive.org/details/evolutionarycomp0000dejo}}</ref> इसमें अन्य क्षेत्र भी सम्मिलित हैं जैसे कि विकास रणनीति, और [[विकासवादी एल्गोरिदम]] जिन्हें समस्या समाधानकर्ता के रूप में देखा जाता है। इस सिद्धांत के मुख्य अनुप्रयोग [[अनुकूलन (कंप्यूटर विज्ञान)|अनुकूलन]] और [[बहुउद्देश्यीय अनुकूलन]] जैसे क्षेत्रों को कवर करते हैं, जिनमें पारंपरिक गणितीय तकनीकें सम्मिलित हैं। [[डीएनए विश्लेषण]], शेड्यूलिंग समस्याओं जैसी समस्याओं की एक विस्तृत श्रृंखला पर लागू करने के लिए अब यह पर्याप्त नहीं है।<ref name="Siddique & Adeli" /> | |||
=== अधिगम सिद्धांत (लर्निंग थ्योरी) === | |||
सबसे पहले [[चार्ल्स डार्विन]] द्वारा | अभी भी मनुष्य के समान "तर्क" का एक तरीका खोज रहा है, लर्निंग थ्योरी सीआई के मुख्य दृष्टिकोणों में से एक है। मनोविज्ञान में, लर्निंग संज्ञानात्मक को एक साथ लाने की प्रक्रिया है, बढ़ाने या बदलने के लिए संज्ञानात्मक, भावनात्मक और पर्यावरणीय प्रभावों और अनुभवों को एक साथ लाने की प्रक्रिया है (ऑर्मरोड, 1995; इलेरिस, 2004)।<ref name="Siddique & Adeli" /> सिद्धांतों को सीखने से यह समझने में मदद मिलती है कि ये प्रभाव और अनुभव कैसे संसाधित होते हैं, और फिर पिछले अनुभव के आधार पर भविष्यवाणियां करने में मदद मिलती है।<ref>{{Cite web|url = https://www.cs.ox.ac.uk/teaching/courses/2014-2015/clt/|title = Computational Learning Theory: 2014-2015|access-date = February 11, 2015|website = University of Oxford |last = Worrell|first = James|others = Presentation page of CLT course}}</ref> | ||
=== संभाव्य विधियाँ (प्रोबेबिलिस्टिक मेथड्स) === | |||
फजी लॉजिक के मुख्य तत्वों में से एक होने के नाते, संभाव्य विधियों को सबसे पहले पॉल एर्डोस और [[जोएल स्पेंसर]] द्वारा प्रस्तुत किया गया था<ref name="Siddique & Adeli" /> (1974), इसका उद्देश्य एक गणना इंटेलिजेंस सिस्टम के परिणामों का मूल्यांकन करना है, जो ज्यादातर यादृच्छिकता द्वारा परिभाषित है।<ref>{{Cite book|title = Computational Intelligence in Time Series Forecasting : Theory and Engineering Applications|last1 = Palit |first1 = Ajoy K. |last2=Popovic |first2=Dobrivoje |publisher = Springer Science & Business Media |year = 2006 |isbn = 9781846281846 |page = 4}}</ref> इसलिए, पूर्व ज्ञान के आधार पर, संभाव्य पद्धतियाँ किसी समस्या का संभावित समाधान निकालती हैं। | |||
=== | |||
अभी भी मनुष्य के समान तर्क | |||
=== संभाव्य विधियाँ === | |||
==विश्वविद्यालय शिक्षा पर प्रभाव== | ==विश्वविद्यालय शिक्षा पर प्रभाव== | ||
बिब्लियोमेट्रिक्स अध्ययन के अनुसार, कम्प्यूटेशनल इंटेलिजेंस अनुसंधान में महत्वपूर्ण भूमिका निभाता है।<ref>{{cite journal |doi=10.1142/s0218488507004911 |year=2007 |publisher=World Scientific Pub Co Pte Lt |volume=15 |number=5 |pages=625–645 |author=NEES JAN VAN ECK and LUDO WALTMAN |title=कम्प्यूटेशनल इंटेलिजेंस क्षेत्र की ग्रंथ सूची मानचित्रण|journal=International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems |hdl=1765/10073 |url=http://repub.eur.nl/pub/10073 |hdl-access=free }}</ref> सभी प्रमुख अकादमिक प्रकाशक पांडुलिपियों को स्वीकार कर रहे हैं जिनमें फजी लॉजिक, न्यूरल नेटवर्क और इवोल्यूशनरी कम्प्यूटेशन के संयोजन पर चर्चा की गई है। दूसरी ओर, कम्प्यूटेशनल इंटेलिजेंस विश्वविद्यालय के [[पाठ्यक्रम]] में उपलब्ध नहीं है।<ref>{{cite journal |title=स्नातक कंप्यूटर विज्ञान और इंजीनियरिंग पाठ्यक्रम में कम्प्यूटेशनल इंटेलिजेंस पाठ्यक्रम|author=Minaie, Afsaneh and Sanati-Mehrizy, Paymon and Sanati-Mehrizy, Ali and Sanati-Mehrizy, Reza |journal=Age |volume=23 |pages=1 |year=2013 }}</ref> ऐसे तकनीकी विश्वविद्यालयों की संख्या सीमित है जिनमें छात्र किसी पाठ्यक्रम में भाग ले सकते हैं। केवल ब्रिटिश कोलंबिया, टेक्निकल यूनिवर्सिटी ऑफ़ डॉर्टमुंड (यूरोपीय फजी बूम में सम्मिलित) और जॉर्जिया सदर्न यूनिवर्सिटी ही इस डोमेन से पाठ्यक्रम प्रस्तुत कर रहे हैं। | |||
प्रमुख विश्वविद्यालय इस विषय की अनदेखी इसलिए कर रहे हैं क्योंकि उनके पास संसाधन नहीं हैं। | प्रमुख विश्वविद्यालय इस विषय की अनदेखी इसलिए कर रहे हैं क्योंकि उनके पास संसाधन नहीं हैं। प्रचलित कंप्यूटर विज्ञान पाठ्यक्रम इतने जटिल हैं कि सेमेस्टर के अंत में फजी लॉजिक के लिए कोई जगह नहीं है।<ref>{{cite journal |doi=10.1109/mci.2011.941591 |year=2011 |publisher=Institute of Electrical and Electronics Engineers (IEEE) |volume=6 |number=3 |pages=57–59 |author=Mengjie Zhang |title=Experience of Teaching Computational Intelligence in an Undergraduate Level Course [Educational Forum] |journal=IEEE Computational Intelligence Magazine }}</ref> कभी-कभी इसे प्रचलित परिचय पाठ्यक्रमों में एक उपप्रोजेक्ट के रूप में पढ़ाया जाता है, लेकिन ज्यादातर स्थितियों में विश्वविद्यालय बूलियन लॉजिक, ट्यूरिंग मशीनों और ब्लॉक वर्ल्ड जैसी खिलौना समस्याओं पर आधारित क्लासिक एआई अवधारणाओं के बारे में पाठ्यक्रम पसंद कर रहे हैं। | ||
कुछ समय से [[एसटीईएम शिक्षा]] के उत्थान के साथ स्थिति थोड़ी बदल गई है।<ref>{{cite conference |title=Computational intelligence: a Tool for Multidisciplinary Education and Research |author=Samanta, Biswanath |conference=Proceedings of the 2011 ASEE Northeast Section Annual Conference, University of Hartford |year=2011 }}</ref> ऐसे कुछ प्रयास उपलब्ध हैं जिनमें बहु-विषयक दृष्टिकोण को प्राथमिकता दी जाती है जो छात्र को जटिल अनुकूली प्रणालियों को समझने की अनुमति देता है।<ref>{{cite journal |doi=10.1109/mci.2008.930983 |year=2009 |publisher=Institute of Electrical and Electronics Engineers (IEEE) |volume=4 |number=1 |pages=14–23 |author=G.K.K. Venayagamoorthy |title=कॉपुटेशनल इंटेलिजेंस पर एक सफल अंतःविषय पाठ्यक्रम|journal=IEEE Computational Intelligence Magazine }}</ref> इन उद्देश्यों | कुछ समय से [[एसटीईएम शिक्षा]] के उत्थान के साथ, स्थिति थोड़ी बदल गई है।<ref>{{cite conference |title=Computational intelligence: a Tool for Multidisciplinary Education and Research |author=Samanta, Biswanath |conference=Proceedings of the 2011 ASEE Northeast Section Annual Conference, University of Hartford |year=2011 }}</ref> ऐसे कुछ प्रयास उपलब्ध हैं जिनमें बहु-विषयक दृष्टिकोण को प्राथमिकता दी जाती है जो छात्र को जटिल अनुकूली प्रणालियों को समझने की अनुमति देता है।<ref>{{cite journal |doi=10.1109/mci.2008.930983 |year=2009 |publisher=Institute of Electrical and Electronics Engineers (IEEE) |volume=4 |number=1 |pages=14–23 |author=G.K.K. Venayagamoorthy |title=कॉपुटेशनल इंटेलिजेंस पर एक सफल अंतःविषय पाठ्यक्रम|journal=IEEE Computational Intelligence Magazine }}</ref> इन उद्देश्यों पर केवल सैद्धान्तिक आधार पर चर्चा की जाती है। वास्तविक विश्वविद्यालयों का पाठ्यक्रम अभी तक अनुकूलित नहीं हुआ है। | ||
== प्रकाशन == | == प्रकाशन == | ||
*[[तंत्रिका नेटवर्क और शिक्षण प्रणालियों पर आईईईई लेनदेन]] | *[[तंत्रिका नेटवर्क और शिक्षण प्रणालियों पर आईईईई लेनदेन|न्यूरल नेटवर्क और शिक्षण प्रणालियों पर आईईईई कार्यविवरण]] | ||
*[[फज्जी सिस्टम पर आई ई ई ई लेनदेन]] | *[[फज्जी सिस्टम पर आई ई ई ई लेनदेन|फज्जी सिस्टम पर आई ई ई ई कार्यविवरण]] | ||
*[[विकासपरक संगणन पर आईईईई लेन - देन]] | *[[विकासपरक संगणन पर आईईईई लेन - देन|विकासपरक संगणन पर आईईईई कार्यविवरण]] | ||
*कम्प्यूटेशनल इंटेलिजेंस में उभरते विषयों पर आईईईई | *कम्प्यूटेशनल इंटेलिजेंस में उभरते विषयों पर आईईईई कार्यविवरण | ||
*[[स्वायत्त मानसिक विकास पर आईईईई लेनदेन]] | *[[स्वायत्त मानसिक विकास पर आईईईई लेनदेन|स्वायत्त मानसिक विकास पर आईईईई कार्यविवरण]] | ||
*कम्प्यूटेशनल जीव विज्ञान और जैव सूचना विज्ञान पर आईईईई/एसीएम | *कम्प्यूटेशनल जीव विज्ञान और जैव सूचना विज्ञान पर आईईईई/एसीएम कार्यविवरण | ||
*गेम्स में कम्प्यूटेशनल इंटेलिजेंस और एआई पर आईईईई | *गेम्स में कम्प्यूटेशनल इंटेलिजेंस और एआई पर आईईईई कार्यविवरण | ||
*[[नैनोबायोसाइंस पर आईईईई लेनदेन]] | *[[नैनोबायोसाइंस पर आईईईई लेनदेन|नैनोबायोसाइंस पर आईईईई कार्यविवरण]] | ||
*[[सूचना फोरेंसिक और सुरक्षा पर आईईईई लेनदेन]] | *[[सूचना फोरेंसिक और सुरक्षा पर आईईईई लेनदेन|सूचना फोरेंसिक और सुरक्षा पर आईईईई कार्यविवरण]] | ||
*प्रभावी कंप्यूटिंग पर आईईईई | *प्रभावी कंप्यूटिंग पर आईईईई कार्यविवरण | ||
*[[स्मार्ट ग्रिड पर आईईईई लेनदेन]] | *[[स्मार्ट ग्रिड पर आईईईई लेनदेन|स्मार्ट ग्रिड पर आईईईई कार्यविवरण]] | ||
*[[नैनोटेक्नोलॉजी पर आईईईई लेनदेन]] | *[[नैनोटेक्नोलॉजी पर आईईईई लेनदेन|नैनोटेक्नोलॉजी पर आईईईई कार्यविवरण]] | ||
*[[आईईईई सिस्टम्स जर्नल]] | *[[आईईईई सिस्टम्स जर्नल]] | ||
== यह भी देखें == | == यह भी देखें == | ||
{{columns-list|colwidth=30em|* [[ | {{columns-list|colwidth=30em|* [[कॉगनिटिव रोबोटिक्स]] | ||
* [[ | * [[कम्प्यूटेशनल फाइनेंस]] और [[कम्प्यूटेशनल इकोनॉमिक्स]] | ||
* [[ | * [[कांसेप्ट माइनिंग]] | ||
* [[ | * [[डेवलपमेंटल रोबोटिक्स]] | ||
* [[ | * [[डेटा माइनिंग]] | ||
* [[ | * [[एवोल्यूशनरी रोबोटिक्स]] | ||
* [[ | * [[नॉलेज-बेस्ड इंजीनियरिंग]] | ||
* [[ | * [[नेचुरल कंप्यूटिंग]] | ||
* [[ | * [[सिंथेटिक इंटेलिजेंस]] | ||
* [[ | * [[जैव सूचना विज्ञान और जैव सांख्यिकी के लिए कम्प्यूटेशनल इंटेलिजेंस विधियों पर अंतर्राष्ट्रीय बैठक]]}} | ||
}} | |||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
Line 100: | Line 90: | ||
* ''[http://www.cs.ubc.ca/~poole/ci.html Computational Intelligence: A Logical Approach]'' by David Poole, Alan Mackworth, Randy Goebel. Oxford University Press. {{ISBN|0-19-510270-3}} | * ''[http://www.cs.ubc.ca/~poole/ci.html Computational Intelligence: A Logical Approach]'' by David Poole, Alan Mackworth, Randy Goebel. Oxford University Press. {{ISBN|0-19-510270-3}} | ||
* ''Computational Intelligence: A Methodological Introduction'' by Kruse, Borgelt, Klawonn, Moewes, Steinbrecher, Held, 2013, Springer, {{ISBN|9781447150121}} | * ''Computational Intelligence: A Methodological Introduction'' by Kruse, Borgelt, Klawonn, Moewes, Steinbrecher, Held, 2013, Springer, {{ISBN|9781447150121}} | ||
==संदर्भ== | ==संदर्भ== | ||
{{Reflist}} | {{Reflist}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:CS1 maint]] | |||
[[Category:Created On 10/08/2023]] | [[Category:Created On 10/08/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with reference errors]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Template documentation pages|Short description/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Vigyan Ready]] |
Latest revision as of 22:18, 10 October 2023
अभिव्यक्ति कम्प्यूटेशनल इंटेलिजेंस (सीआई) सामान्यतः डेटा या प्रयोगात्मक अवलोकन से एक विशिष्ट कार्य सीखने के लिए कंप्यूटर की क्षमता को संदर्भित करता है। हालाँकि इसे सामान्यतः सॉफ्ट कंप्यूटिंग का पर्याय माना जाता है, फिर भी कम्प्यूटेशनल इंटेलिजेंस की कोई सामान्यतः स्वीकृत परिभाषा नहीं है।
सामान्यतः कम्प्यूटेशनल इंटेलिजेंस जटिल वास्तविक दुनिया की समस्याओं को संबोधित करने के लिए प्रकृति-प्रेरित कम्प्यूटेशनल कार्यप्रणाली और दृष्टिकोण का एक सेट है, जिसके लिए गणितीय या पारंपरिक मॉडलिंग कुछ कारणों से बेकार हो सकती है: गणितीय तर्क के लिए प्रक्रियाएँ बहुत जटिल हो सकती हैं, इसमें प्रक्रिया के दौरान कुछ अनिश्चितताएँ हो सकती हैं, या प्रक्रिया केवल प्रकृति में स्टोकेस्टिक हो सकती है।[1] वास्तव में, वास्तविक जीवन की कई समस्याओं को कंप्यूटर द्वारा संसाधित करने के लिए बाइनरी भाषा (0 और 1 के अद्वितीय मान) में अनुवादित नहीं किया जा सकता है। कम्प्यूटेशनल इंटेलिजेंस ऐसी समस्याओं का समाधान प्रदान करता है।
उपयोग की जाने वाली विधियाँ मानव के तर्क करने के तरीके के करीब हैं, अर्थात यह अचूक और अधूरे ज्ञान का उपयोग करता है, और यह अनुकूली तरीके से नियंत्रण क्रियाएँ उत्पन्न करने में सक्षम है। इसलिए सीआई पाँच मुख्य पूरक तकनीकों के संयोजन का उपयोग करता है।[1] फजी लॉजिक कंप्यूटर को प्राकृतिक भाषा,[2][3] आर्टिफिशियल (कृत्रिम) न्यूरल नेटवर्क को समझने में सक्षम बनाता है जो सिस्टम को जैविक भाषा, विकासवादी कंप्यूटिंग की तरह संचालित करके अनुभवात्मक डेटा सीखने की अनुमति देता है जो प्राकृतिक चयन की प्रक्रिया, सीखने के सिद्धांत और संभाव्य विधियों पर आधारित है जो अनिश्चितता की अनिश्चितता से निपटने में मदद करता है।[1]
उन मुख्य सिद्धांतों को छोड़कर, वर्तमान में लोकप्रिय दृष्टिकोणों में जैविक रूप से प्रेरित एल्गोरिदम जैसे स्वार्म इंटेलिजेंस [4] और आर्टिफिशियल प्रतिरक्षा सिस्टम सम्मिलित हैं, जिन्हें इवोल्यूशनरी कम्प्यूटेशन, इमेज प्रोसेसिंग, डेटा माइनिंग, नेचुरल लैंग्वेज प्रोसेसिंग और आर्टिफिशियल इंटेलिजेंस के एक भाग के रूप में देखा जा सकता है जिसे कम्प्यूटेशनल इंटेलिजेंस के साथ भ्रमित किया जा सकता है। लेकिन यद्यपि कम्प्यूटेशनल इंटेलिजेंस (सीआई) और आर्टिफिशियल इंटेलिजेंस (एआई) दोनों समान लक्ष्यों की खोज करते हैं, उनके बीच एक स्पष्ट अंतर है।
कम्प्यूटेशनल इंटेलिजेंस इस प्रकार मनुष्य की तरह प्रदर्शन करने का एक तरीका है। वास्तव में, "इंटेलिजेंस" की विशेषता का श्रेय सामान्यतः मनुष्यों को दिया जाता है। अभी हाल ही में, कई उत्पाद और आइटम भी "इंटेलिजेंस" होने का दावा करते हैं, एक ऐसा गुण जो सीधे तौर पर तर्क और निर्णय लेने से जुड़ा होता है।
इतिहास
सोर्स:[5] कम्प्यूटेशनल इंटेलिजेंस की धारणा का उपयोग पहली बार 1990 में आईईईई न्यूरल नेटवर्क काउंसिल द्वारा किया गया था। इस परिषद की स्थापना 1980 के दशक में जैविक और आर्टिफिशियल न्यूरल नेटवर्क के विकास में दिलचस्पी रखने वाले शोधकर्ताओं के एक समूह द्वारा की गई थी। 21 नवंबर, 2001 को, आईईईई न्यूरल नेटवर्क्स काउंसिल, आईईईई न्यूरल नेटवर्क्स सोसाइटी बन गई, जो दो साल बाद फजी सिस्टम और इवोल्यूशनरी कम्प्यूटेशन जैसे रुचि के नए क्षेत्रों को सम्मिलित करके आईईईई कम्प्यूटेशनल इंटेलिजेंस सोसायटी बन गई जिसे उन्होंने 2011 में कम्प्यूटेशनल इंटेलिजेंस (डोटे और ओवास्का) से संबंधित किया था।
लेकिन कम्प्यूटेशनल इंटेलिजेंस की पहली स्पष्ट परिभाषा 1994 में बेजडेक द्वारा प्रस्तुत की गई थी:[1] एक सिस्टम को कम्प्यूटेशनल रूप से इंटेलिजेंस कहा जाता है यदि यह संख्यात्मक डेटा जैसे निम्न-स्तरीय डेटा से निपटता है, इसमें एक पैटर्न-पहचान घटक होता है और इसमें ज्ञान का उपयोग नहीं किया जाता है। एआई सेंस, और इसके अतिरिक्त जब यह कम्प्यूटेशनल रूप से अनुकूली रूप से प्रदर्शित होना प्रारम्भ होता है, दोष सहिष्णुता, मानव-जैसे बदलाव की गति और त्रुटि दर जो मानव प्रदर्शन को अनुमानित करती है।
बेजडेक और मार्क्स (1993) ने स्पष्ट रूप से सीआई को एआई से अलग किया, यह तर्क देकर कि पहला सॉफ्ट कंप्यूटिंग विधियों पर आधारित है, जबकि एआई हार्ड कंप्यूटिंग विधियों पर आधारित है।
कम्प्यूटेशनल और आर्टिफिशियल इंटेलिजेंस के बीच अंतर
हालाँकि आर्टिफिशियल इंटेलिजेंस और कम्प्यूटेशनल इंटेलिजेंस एक समान दीर्घकालिक लक्ष्य की खोज करते हैं: सामान्य इंटेलिजेंस तक पहुँचना, जो एक मशीन की इंटेलिजेंस है जो किसी भी बौद्धिक कार्य को कर सकती है जो एक इंसान कर सकता है; उनके बीच स्पष्ट अंतर है. बेजडेक (1994) के अनुसार, कम्प्यूटेशनल इंटेलिजेंस आर्टिफिशियल इंटेलिजेंस का एक उपसमुच्चय है।
मशीन इंटेलिजेंस के दो प्रकार हैं: हार्ड कंप्यूटिंग तकनीकों पर आधारित आर्टिफिशियल और सॉफ्ट कंप्यूटिंग विधियों पर आधारित कम्प्यूटेशनल, जो कई स्थितियों में अनुकूलन को सक्षम बनाता है।
हार्ड कंप्यूटिंग तकनीकें केवल दो मानों (बूलियन सही या गलत, 0 या 1) के आधार पर बाइनरी लॉजिक का पालन करते हुए काम करती हैं, जिस पर आधुनिक कंप्यूटर आधारित होते हैं। इस तर्क के साथ एक समस्या यह है कि हमारी प्राकृतिक भाषा को हमेशा 0 और 1 के पूर्ण शब्दों में आसानी से अनुवादित नहीं किया जा सकता है। फजी लॉजिक पर आधारित सॉफ्ट कंप्यूटिंग तकनीकें यहां उपयोगी हो सकती हैं।[6] मानव मस्तिष्क जिस तरह से डेटा को आंशिक सत्य (क्रिस्प/फजी सिस्टम) में एकत्रित करके काम करता है, उसके बहुत करीब, यह तर्क सीआई के मुख्य विशिष्ट पहलुओं में से एक है।
फजी और बाइनरी लॉजिक्स के समान सिद्धांतों के भीतर क्रिस्पी और फजी सिस्टम का पालन किया जाता है।[7] क्रिस्प लॉजिक आर्टिफिशियल इंटेलिजेंस सिद्धांतों का एक हिस्सा है और इसमें या तो एक तत्व को एक सेट में सम्मिलित किया जाता है या नहीं, जबकि फजी सिस्टम (सीआई) तत्वों को आंशिक रूप से एक सेट में सम्मिलित करने में सक्षम बनाता है। इस तर्क का पालन करते हुए, प्रत्येक तत्व को सदस्यता की डिग्री दी जा सकती है (0 से 1 तक), इन दो मूल्यों में से केवल एक में प्रतिबद्ध नहीं किया जा रहा है।[8]
सीआई के पांच मुख्य सिद्धांत और इसके अनुप्रयोग
कम्प्यूटेशनल इंटेलिजेंस के मुख्य अनुप्रयोगों में कंप्यूटर विज्ञान, इंजीनियरिंग, डेटा विश्लेषण और जैव-चिकित्सा सम्मिलित हैं।
फजी लॉजिक
जैसा कि पहले बताया गया है, फजी लॉजिक, सीआई के मुख्य सिद्धांतों में से एक, वास्तविक जीवन की जटिल प्रक्रियाओं के लिए किए गए माप और प्रक्रिया मॉडलिंग में सम्मिलित है। आर्टिफिशियल इंटेलिजेंस के विपरीत, इसे प्रक्रिया मॉडल में अपूर्णता और सबसे महत्वपूर्ण रूप से डेटा की अज्ञानता का सामना करना पड़ सकता है, जिसके लिए सटीक ज्ञान की आवश्यकता होती है।
यह तकनीक नियंत्रण, इमेज प्रोसेसिंग और निर्णय लेने जैसे डोमेन की एक विस्तृत श्रृंखला पर लागू होती है। लेकिन इसे वॉशिंग मशीन, माइक्रोवेव ओवन आदि जैसे घरेलू उपकरणों के क्षेत्र में भी अच्छी तरह से प्रस्तुत किया गया है। हम वीडियो कैमरे का उपयोग करते समय भी इसका सामना कर सकते हैं, जहां यह कैमरे को अस्थिर रूप से पकड़ने पर छवि को स्थिर करने में मदद करता है। चिकित्सा निदान, विदेशी मुद्रा व्यापार और व्यापार रणनीति चयन जैसे अन्य क्षेत्र इस सिद्धांत के अनुप्रयोगों की संख्या से अलग हैं।[1]
फजी लॉजिक मुख्य रूप से अनुमानित तर्क के लिए उपयोगी है, और इसमें सीखने की क्षमता नहीं होती है,[1] एक अत्यंत आवश्यक योग्यता जो मनुष्य के पास है। यह उन्हें अपनी पिछली गलतियों से सीखकर खुद को बेहतर बनाने में सक्षम बनाता है।
न्यूरल नेटवर्क्स
यही कारण है कि सीआई विशेषज्ञ जैविक न्यूरल नेटवर्क पर आधारित आर्टिफिशियल न्यूरल नेटवर्क के विकास पर काम करते हैं, जिसे 3 मुख्य घटकों द्वारा परिभाषित किया जा सकता है: कोशिका-शरीर जो सूचना को संसाधित करता है, अक्षतंतु, जो सिग्नल संचालन को सक्षम करने वाला एक उपकरण है, और सिनैप्स, जो संकेतों को नियंत्रित करता है। इसलिए, आर्टिफिशियल न्यूरल नेटवर्क वितरित सूचना प्रसंस्करण प्रणालियों से युक्त हैं,[9] अनुभवात्मक डेटा से प्रक्रिया और सीखने को सक्षम करना। मनुष्य की तरह कार्य करना, दोष सहन करना भी इस सिद्धांत की मुख्य गुणों में से एक है।[1]
इसके अनुप्रयोगों के संबंध में, न्यूरल नेटवर्क को पांच समूहों में वर्गीकृत किया जा सकता है: डेटा विश्लेषण और वर्गीकरण, सहयोगी स्मृति, पैटर्न की क्लस्टरिंग पीढ़ी और नियंत्रण।[1]सामान्यतः, इस पद्धति का उद्देश्य चिकित्सा डेटा का विश्लेषण और वर्गीकरण करना, धोखाधड़ी और धोखाधड़ी का पता लगाने के लिए आगे बढ़ना और सबसे महत्वपूर्ण रूप से इसे नियंत्रित करने के लिए सिस्टम की गैर-रैखिकताओं से निपटना है।[10] इसके अतिरिक्त, न्यूरल नेटवर्क तकनीक फजी लॉजिक तकनीक के साथ डेटा क्लस्टरिंग को सक्षम करने का लाभ साझा करती है।
इवोल्यूशनरी कम्प्यूटेशन
सबसे पहले चार्ल्स डार्विन द्वारा प्रारम्भ की गई विकास की प्रक्रिया के आधार पर, इवोल्यूशनरी कम्प्यूटेशन में नई आर्टिफिशियल पद्धतियों को लाने के लिए प्राकृतिक विकास की ताकत को भुनाना सम्मिलित है।[11] इसमें अन्य क्षेत्र भी सम्मिलित हैं जैसे कि विकास रणनीति, और विकासवादी एल्गोरिदम जिन्हें समस्या समाधानकर्ता के रूप में देखा जाता है। इस सिद्धांत के मुख्य अनुप्रयोग अनुकूलन और बहुउद्देश्यीय अनुकूलन जैसे क्षेत्रों को कवर करते हैं, जिनमें पारंपरिक गणितीय तकनीकें सम्मिलित हैं। डीएनए विश्लेषण, शेड्यूलिंग समस्याओं जैसी समस्याओं की एक विस्तृत श्रृंखला पर लागू करने के लिए अब यह पर्याप्त नहीं है।[1]
अधिगम सिद्धांत (लर्निंग थ्योरी)
अभी भी मनुष्य के समान "तर्क" का एक तरीका खोज रहा है, लर्निंग थ्योरी सीआई के मुख्य दृष्टिकोणों में से एक है। मनोविज्ञान में, लर्निंग संज्ञानात्मक को एक साथ लाने की प्रक्रिया है, बढ़ाने या बदलने के लिए संज्ञानात्मक, भावनात्मक और पर्यावरणीय प्रभावों और अनुभवों को एक साथ लाने की प्रक्रिया है (ऑर्मरोड, 1995; इलेरिस, 2004)।[1] सिद्धांतों को सीखने से यह समझने में मदद मिलती है कि ये प्रभाव और अनुभव कैसे संसाधित होते हैं, और फिर पिछले अनुभव के आधार पर भविष्यवाणियां करने में मदद मिलती है।[12]
संभाव्य विधियाँ (प्रोबेबिलिस्टिक मेथड्स)
फजी लॉजिक के मुख्य तत्वों में से एक होने के नाते, संभाव्य विधियों को सबसे पहले पॉल एर्डोस और जोएल स्पेंसर द्वारा प्रस्तुत किया गया था[1] (1974), इसका उद्देश्य एक गणना इंटेलिजेंस सिस्टम के परिणामों का मूल्यांकन करना है, जो ज्यादातर यादृच्छिकता द्वारा परिभाषित है।[13] इसलिए, पूर्व ज्ञान के आधार पर, संभाव्य पद्धतियाँ किसी समस्या का संभावित समाधान निकालती हैं।
विश्वविद्यालय शिक्षा पर प्रभाव
बिब्लियोमेट्रिक्स अध्ययन के अनुसार, कम्प्यूटेशनल इंटेलिजेंस अनुसंधान में महत्वपूर्ण भूमिका निभाता है।[14] सभी प्रमुख अकादमिक प्रकाशक पांडुलिपियों को स्वीकार कर रहे हैं जिनमें फजी लॉजिक, न्यूरल नेटवर्क और इवोल्यूशनरी कम्प्यूटेशन के संयोजन पर चर्चा की गई है। दूसरी ओर, कम्प्यूटेशनल इंटेलिजेंस विश्वविद्यालय के पाठ्यक्रम में उपलब्ध नहीं है।[15] ऐसे तकनीकी विश्वविद्यालयों की संख्या सीमित है जिनमें छात्र किसी पाठ्यक्रम में भाग ले सकते हैं। केवल ब्रिटिश कोलंबिया, टेक्निकल यूनिवर्सिटी ऑफ़ डॉर्टमुंड (यूरोपीय फजी बूम में सम्मिलित) और जॉर्जिया सदर्न यूनिवर्सिटी ही इस डोमेन से पाठ्यक्रम प्रस्तुत कर रहे हैं।
प्रमुख विश्वविद्यालय इस विषय की अनदेखी इसलिए कर रहे हैं क्योंकि उनके पास संसाधन नहीं हैं। प्रचलित कंप्यूटर विज्ञान पाठ्यक्रम इतने जटिल हैं कि सेमेस्टर के अंत में फजी लॉजिक के लिए कोई जगह नहीं है।[16] कभी-कभी इसे प्रचलित परिचय पाठ्यक्रमों में एक उपप्रोजेक्ट के रूप में पढ़ाया जाता है, लेकिन ज्यादातर स्थितियों में विश्वविद्यालय बूलियन लॉजिक, ट्यूरिंग मशीनों और ब्लॉक वर्ल्ड जैसी खिलौना समस्याओं पर आधारित क्लासिक एआई अवधारणाओं के बारे में पाठ्यक्रम पसंद कर रहे हैं।
कुछ समय से एसटीईएम शिक्षा के उत्थान के साथ, स्थिति थोड़ी बदल गई है।[17] ऐसे कुछ प्रयास उपलब्ध हैं जिनमें बहु-विषयक दृष्टिकोण को प्राथमिकता दी जाती है जो छात्र को जटिल अनुकूली प्रणालियों को समझने की अनुमति देता है।[18] इन उद्देश्यों पर केवल सैद्धान्तिक आधार पर चर्चा की जाती है। वास्तविक विश्वविद्यालयों का पाठ्यक्रम अभी तक अनुकूलित नहीं हुआ है।
प्रकाशन
- न्यूरल नेटवर्क और शिक्षण प्रणालियों पर आईईईई कार्यविवरण
- फज्जी सिस्टम पर आई ई ई ई कार्यविवरण
- विकासपरक संगणन पर आईईईई कार्यविवरण
- कम्प्यूटेशनल इंटेलिजेंस में उभरते विषयों पर आईईईई कार्यविवरण
- स्वायत्त मानसिक विकास पर आईईईई कार्यविवरण
- कम्प्यूटेशनल जीव विज्ञान और जैव सूचना विज्ञान पर आईईईई/एसीएम कार्यविवरण
- गेम्स में कम्प्यूटेशनल इंटेलिजेंस और एआई पर आईईईई कार्यविवरण
- नैनोबायोसाइंस पर आईईईई कार्यविवरण
- सूचना फोरेंसिक और सुरक्षा पर आईईईई कार्यविवरण
- प्रभावी कंप्यूटिंग पर आईईईई कार्यविवरण
- स्मार्ट ग्रिड पर आईईईई कार्यविवरण
- नैनोटेक्नोलॉजी पर आईईईई कार्यविवरण
- आईईईई सिस्टम्स जर्नल
यह भी देखें
- कॉगनिटिव रोबोटिक्स
- कम्प्यूटेशनल फाइनेंस और कम्प्यूटेशनल इकोनॉमिक्स
- कांसेप्ट माइनिंग
- डेवलपमेंटल रोबोटिक्स
- डेटा माइनिंग
- एवोल्यूशनरी रोबोटिक्स
- नॉलेज-बेस्ड इंजीनियरिंग
- नेचुरल कंप्यूटिंग
- सिंथेटिक इंटेलिजेंस
- [[जैव सूचना विज्ञान और जैव सांख्यिकी के लिए कम्प्यूटेशनल इंटेलिजेंस विधियों पर अंतर्राष्ट्रीय बैठक]]
टिप्पणियाँ
- Computational Intelligence: An Introduction by Andries Engelbrecht. Wiley & Sons. ISBN 0-470-84870-7
- Computational Intelligence: A Logical Approach by David Poole, Alan Mackworth, Randy Goebel. Oxford University Press. ISBN 0-19-510270-3
- Computational Intelligence: A Methodological Introduction by Kruse, Borgelt, Klawonn, Moewes, Steinbrecher, Held, 2013, Springer, ISBN 9781447150121
संदर्भ
- ↑ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 Siddique, Nazmul; Adeli, Hojjat (2013). Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing. John Wiley & Sons. ISBN 978-1-118-53481-6.
- ↑ Rutkowski, Leszek (2008). Computational Intelligence: Methods and Techniques. Springer. ISBN 978-3-540-76288-1.
- ↑ "फजी लॉजिक". WhatIs.com. Margaret Rouse. July 2006.
- ↑ Beni, G., Wang, J. Swarm Intelligence in Cellular Robotic Systems, Proceed. NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy, June 26–30 (1989)
- ↑ "आईईईई कम्प्यूटेशनल इंटेलिजेंस सोसायटी इतिहास". Engineering and Technology history Wiki. July 22, 2014. Retrieved 2015-10-30.
- ↑ "Artificial Intelligence, Computational Intelligence, SoftComputing, Natural Computation - what's the difference? - ANDATA". www.andata.at. Retrieved 2015-11-05.
- ↑ "फ़ज़ी सेट और पैटर्न पहचान". www.cs.princeton.edu. Retrieved 2015-11-05.
- ↑ R. Pfeifer. 2013. Chapter 5: FUZZY Logic. Lecture notes on "Real-world computing". Zurich. University of Zurich.
- ↑ Stergiou, Christos; Siganos, Dimitrios. "तंत्रिका - तंत्र". SURPRISE 96 Journal. Imperial College London. Archived from the original on December 16, 2009. Retrieved March 11, 2015.
- ↑ Somers, Mark John; Casal, Jose C. (July 2009). "गैर-रैखिकता को मॉडल करने के लिए कृत्रिम तंत्रिका नेटवर्क का उपयोग करना" (PDF). Organizational Research Methods. 12 (3): 403–417. doi:10.1177/1094428107309326. S2CID 17380352. Retrieved 2015-10-31.
- ↑ De Jong, K. (2006). Evolutionary Computation:A Unified Approach. MIT Press. ISBN 9780262041942.
- ↑ Worrell, James. "Computational Learning Theory: 2014-2015". University of Oxford. Presentation page of CLT course. Retrieved February 11, 2015.
- ↑ Palit, Ajoy K.; Popovic, Dobrivoje (2006). Computational Intelligence in Time Series Forecasting : Theory and Engineering Applications. Springer Science & Business Media. p. 4. ISBN 9781846281846.
- ↑ NEES JAN VAN ECK and LUDO WALTMAN (2007). "कम्प्यूटेशनल इंटेलिजेंस क्षेत्र की ग्रंथ सूची मानचित्रण". International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. World Scientific Pub Co Pte Lt. 15 (5): 625–645. doi:10.1142/s0218488507004911. hdl:1765/10073.
- ↑ Minaie, Afsaneh and Sanati-Mehrizy, Paymon and Sanati-Mehrizy, Ali and Sanati-Mehrizy, Reza (2013). "स्नातक कंप्यूटर विज्ञान और इंजीनियरिंग पाठ्यक्रम में कम्प्यूटेशनल इंटेलिजेंस पाठ्यक्रम". Age. 23: 1.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ↑ Mengjie Zhang (2011). "Experience of Teaching Computational Intelligence in an Undergraduate Level Course [Educational Forum]". IEEE Computational Intelligence Magazine. Institute of Electrical and Electronics Engineers (IEEE). 6 (3): 57–59. doi:10.1109/mci.2011.941591.
- ↑ Samanta, Biswanath (2011). Computational intelligence: a Tool for Multidisciplinary Education and Research. Proceedings of the 2011 ASEE Northeast Section Annual Conference, University of Hartford.
- ↑ G.K.K. Venayagamoorthy (2009). "कॉपुटेशनल इंटेलिजेंस पर एक सफल अंतःविषय पाठ्यक्रम". IEEE Computational Intelligence Magazine. Institute of Electrical and Electronics Engineers (IEEE). 4 (1): 14–23. doi:10.1109/mci.2008.930983.