गैस निष्कासन: Difference between revisions
Line 1: | Line 1: | ||
{{short description|Removal of dissolved gases from liquids}} | {{short description|Removal of dissolved gases from liquids}} | ||
{{More citations needed|date=November 2016}} | {{More citations needed|date=November 2016}} | ||
वि[[गैस|गैसन]], जिसे विगैसीकरण के रूप में भी जाना जाता है, [[तरल]] पदार्थ, विशेष रूप से जल या जलीय घोल से घुली हुई गैसों को निकालना है। तरल पदार्थों से गैसें निकालने की अनेक विधियाँ हैं। | '''वि'''[[गैस|गैसन]], जिसे '''विगैसीकरण''' के रूप में भी जाना जाता है, [[तरल]] पदार्थ, विशेष रूप से जल या जलीय घोल से घुली हुई गैसों को निकालना है। तरल पदार्थों से गैसें निकालने की अनेक विधियाँ हैं। | ||
विभिन्न कारणों से गैसें हटा दी जाती हैं। रसायनज्ञ [[विलायक]] से गैसें तब निकालते हैं जब वे जिन यौगिकों पर काम कर रहे होते हैं वे संभवतः वायु या ऑक्सीजन-संवेदनशील ([[वायु-मुक्त तकनीक]]) होते हैं, या जब ठोस-तरल मिलन बिंदु पर बुलबुले का निर्माण समस्या बन जाता है। जब कोई तरल पदार्थ जम जाता है तो गैस के बुलबुले का बनना भी अवांछनीय हो सकता है, जिससे पहले से विगैसन की आवश्यकता होती है। | विभिन्न कारणों से गैसें हटा दी जाती हैं। रसायनज्ञ [[विलायक]] से गैसें तब निकालते हैं जब वे जिन यौगिकों पर काम कर रहे होते हैं वे संभवतः वायु या ऑक्सीजन-संवेदनशील ([[वायु-मुक्त तकनीक]]) होते हैं, या जब ठोस-तरल मिलन बिंदु पर बुलबुले का निर्माण समस्या बन जाता है। जब कोई तरल पदार्थ जम जाता है तो गैस के बुलबुले का बनना भी अवांछनीय हो सकता है, जिससे पहले से विगैसन की आवश्यकता होती है। | ||
Line 77: | Line 77: | ||
==यह भी देखें== | ==यह भी देखें== | ||
*[[डेगास चालकता]] | *[[डेगास चालकता]] | ||
*[[विघटित पानी]] | *[[विघटित पानी|विघटित जल]] | ||
*लिम्निक विस्फोट | *लिम्निक विस्फोट | ||
*[[ गैस बाहर निकालना ]] (भूवैज्ञानिक और ज्वालामुखीय उत्सर्जन | *[[ गैस बाहर निकालना |गैस निष्क्रमण]](भूवैज्ञानिक और ज्वालामुखीय उत्सर्जन सम्मिलित है) | ||
*[[ज्वालामुखीय गैस]] | *[[ज्वालामुखीय गैस]] | ||
*[[पॉलिमर विचलन]] | *[[पॉलिमर विचलन]] |
Revision as of 10:00, 9 October 2023
This article needs additional citations for verification. (November 2016) (Learn how and when to remove this template message) |
विगैसन, जिसे विगैसीकरण के रूप में भी जाना जाता है, तरल पदार्थ, विशेष रूप से जल या जलीय घोल से घुली हुई गैसों को निकालना है। तरल पदार्थों से गैसें निकालने की अनेक विधियाँ हैं।
विभिन्न कारणों से गैसें हटा दी जाती हैं। रसायनज्ञ विलायक से गैसें तब निकालते हैं जब वे जिन यौगिकों पर काम कर रहे होते हैं वे संभवतः वायु या ऑक्सीजन-संवेदनशील (वायु-मुक्त तकनीक) होते हैं, या जब ठोस-तरल मिलन बिंदु पर बुलबुले का निर्माण समस्या बन जाता है। जब कोई तरल पदार्थ जम जाता है तो गैस के बुलबुले का बनना भी अवांछनीय हो सकता है, जिससे पहले से विगैसन की आवश्यकता होती है।
दाब में कमी
गैस की विलेयता हेनरी के नियम का पालन करती है, अर्थात, किसी तरल में विलेय गैस की मात्रा उसके आंशिक दबाव के समानुपाती होती है। इसलिए, किसी घोल को कम दाब में रखने से घुली हुई गैस कम विलेय हो जाती है। कम दाब में सोनिकेशन और उत्तेजक साधारणतया पर दक्षता को बढ़ा सकती है। इस तकनीक को प्रायः निर्वात विगैसीकरण के रूप में जाना जाता है। विशेष निर्वात कक्ष, जिन्हें निर्वात विगैसक कहा जाता है, का उपयोग दाब में कमी के माध्यम से सामग्री को विगैसीय करने के लिए किया जाता है।
ऊष्मीय विनियमन
सामान्यतया, एक जलीय विलायक उच्च तापमान पर कम गैस को घोलता है, और कार्बनिक विलायक के लिए इसके विपरीत (बशर्ते कि विलेय और विलायक प्रतिक्रिया न करें) कार्य करता हैं। परिणामतः, जलीय घोल को गर्म करने से घुली हुई गैस बाहर निकल सकती है, जबकि कार्बनिक घोल को ठंडा करने पर समान प्रभाव पड़ता है। ऊष्मीय विनियमन के समय अत्यधिक सोनिकेशन और उत्तेजक भी प्रभावी हैं। इस विधि के लिए किसी विशेष उपकरण की आवश्यकता नहीं है और इसे संचालित करना आसान है। यद्यपि की, कुछ स्तिथियो में, विलायक और विलेय विघटित हो जाते हैं, एक दूसरे के साथ प्रतिक्रिया करते हैं, या उच्च तापमान पर वाष्पित हो जाते हैं, और हटाने की दर कम पुनरुत्पादनीय प्रस्तुत करने योग्य होती है।
झिल्ली विगैसीकरण
गैस-तरल पृथक्करण झिल्ली गैस को आर-पार जाने देती हैं लेकिन तरल को नहीं जाने देती हैं। किसी घोल को गैस-तरल पृथक्करण झिल्ली के अंदर प्रवाहित करने और बाहर निकालने से घुली हुई गैस कृत्रिम झिल्ली के माध्यम से बाहर निकल जाती है। इस विधि का लाभ यह है कि यह गैस के पुनः विघटन को रोकने में सक्षम है, इसलिए इसका उपयोग बहुत शुद्ध विलायको का उत्पादन करने के लिए किया जाता है। नए अनुप्रयोग इंकजेट प्रणाली में हैं जहां स्याही में गैस बुलबुले बनाती है जो प्रिंट गुणवत्ता को खराब कर देती है, गैस को हटाने और अच्छी जेटिंग और प्रिंट गुणवत्ता बनाए रखने के लिए बुलबुले के निर्माण को रोकने के लिए प्रिंट हेड से पहले एक विगैसन इकाई रखी जाती है।
उपरोक्त तीन विधियों का उपयोग सभी घुली हुई गैसों को हटाने के लिए किया जाता है। अधिक चयनात्मक निष्कासन के लिए नीचे विधियाँ दी गई हैं।
पराश्रव्य विगैसन
पराश्रव्य तरल संसाधक विभिन्न तरल पदार्थों से घुली हुई गैसों और/या फंसे हुए गैस के बुलबुले को हटाने के लिए साधारणतया प्रयोग की जाने वाली विधि है। इस विधि का लाभ यह है कि पराश्रव्य विगैसन को निरंतर-प्रवाह मोड में किया जा सकता है, जो इसे व्यावसायिक पैमाने पर उत्पादन के लिए उपयुक्त बनाता है।[1][2][3]
अक्रिय गैस द्वारा विरलन
किसी घोल को उच्च शुद्धता (साधारण तौर पर निष्क्रिय) गैस से बुदबुदाहट से ऑक्सीजन और कार्बन डाईऑक्साइड जैसी अवांछित (साधारण तौर पर प्रतिक्रियाशील) घुली हुई गैसें बाहर निकल सकती हैं। साधारण तौर पर नाइट्रोजन, आर्गन, हीलियम और अन्य अक्रिय गैसों का उपयोग किया जाता है। बहबूदबुदन (रसायन विज्ञान) नामक इस प्रक्रिया को अधिकतम करने के लिए, घोल को जोर से हिलाया जाता है और लंबे समय तक बुदबुदाहट की जाती हैं। क्योंकि हीलियम अधिकांश तरल पदार्थों में बहुत घुलनशील नहीं है, यह उच्च-प्रदर्शन तरल वर्णलेखन (एचपीएलसी) प्रणालियों में बुलबुले के खतरे को कम करने के लिए विशेष रूप से उपयोगी है।
अपचायक का जोड़
यदि ऑक्सीजन को हटा दिया जाना चाहिए, तो अपचायक को जोड़ना कभी-कभी प्रभावी होता है। उदाहरण के लिए, विशेष रूप से विद्युतरसायन के क्षेत्र में, अमोनियम सल्फाइट का उपयोग प्रायः अपचायक के रूप में किया जाता है क्योंकि यह ऑक्सीजन के साथ प्रतिक्रिया करके सल्फेट आयन बनाता है। यद्यपि की इस विधि को केवल ऑक्सीजन पर क्रियान्वित किया जा सकता है और इसमें विलेय के रिडॉक्स का खतरा सम्मिलित होता है, लेकिन घुली हुई ऑक्सीजन लगभग पूरी तरह से समाप्त हो जाती है। सोडियम और बेंजोफेनोंन से केटाइल मूलक (रसायन विज्ञान) का उपयोग हाइड्रोकार्बन और ईथर जैसे निष्क्रिय विलायक से ऑक्सीजन और जल दोनों को हटाने के लिए भी किया जा सकता है; विघटित विलायक को आसवन द्वारा अलग किया जा सकता है। बाद वाली विधि विशेष रूप से उपयोगी है क्योंकि केटाइल मूलक की उच्च सांद्रता एक गहरा नीला रंग उत्पन्न करती है, जो दर्शाता है कि विलायक पूरी तरह से नष्ट हो गया है।
फ्रीज-पंप-था चक्रण
इस प्रयोगशाला-स्केल तकनीक में, विघटित होने वाले तरल पदार्थ को श्लेंक फ्लास्क में रखा जाता है और साधारण तौर पर तरल नाइट्रोजन के साथ, फ्लैश-फ्रोजन किया जाता है। इसके बाद एक निर्वात, शायद 1 मिमी Hg का निर्वात प्राप्त करने के लिए (उदाहरणात्मक उद्देश्यों के लिए) लगाया जाता है। फ्लास्क को निर्वात स्रोत से बंद कर दिया जाता है, और जमे हुए विलायक को पिघलने दिया जाता है। पिघलने पर प्रायः बुलबुले दिखाई देते हैं। यह प्रक्रिया साधारण तौर पर कुल तीन चक्रों में दोहराई जाती है।[4] विगैसन की डिग्री समीकरण (1/760)3 द्वारा प्रारंभिक दबाव 760 मिमी Hg, निर्वात 1 मिमी Hg और चक्रों की कुल संख्या तीन होने की स्थिति में व्यक्त की जाती है।[5]
विगैसन वाइन
खमीर (शराब) अल्कोहल और कार्बन डाइऑक्साइड का उत्पादन करने के लिए चीनी का उपयोग करता है। वाइन बनाने में, अधिकांश वाइन के लिए कार्बन डाइऑक्साइड एक अवांछित उप-उत्पाद है। यदि वाइन निर्माण में किण्वन के बाद वाइन को तुरंत बोतलबंद किया जाता है, तो बोतलबंद करने से पहले वाइन को विगैसीय करना महत्वपूर्ण है।
यदि वाइनरी बोतलबंद करने से पहले अपनी वाइन को पुराना करती हैं तो वे विगैसन प्रक्रिया को छोड़ सकती हैं। वाइन को स्टील या ओक बैरल में महीनों और कभी-कभी वर्षों तक संग्रहीत करने से वाइन से गैसें निकलती हैं और एयर-लॉक के माध्यम से हवा में निकल जाती हैं।
तेल विगैसन
औद्योगिक तेल विगैसन का सबसे प्रभावी तरीका निर्वात प्रसंस्करण है, जो तेल में घुली हवा और जल को हटा देता है।[6] इसे इसके द्वारा प्राप्त किया जा सकता है:
- बड़े निर्वात कक्षों में तेल का छिड़काव;
- निर्वात कक्षों में विशेष सतहों (सर्पिल रिंग, रैशिग रिंग आदि) पर तेल को एक पतली परत में वितरित करता हैं।
निर्वात के अंतर्गत, तरल और गैसीय चरण में नमी और हवा (घुलित गैसों) की सामग्री के बीच संतुलन प्राप्त किया जाता है। संतुलन तापमान और अवशिष्ट दाब पर निर्भर करता है। वह दाब जितना कम होगा, जल और गैस उतनी ही तेजी से और अधिक कुशलता से निकाले जाते हैं।
अनपेक्षित विगैसन
अनपेक्षित विगैसन विभिन्न कारणों से हो सकती है, जैसे ऊर्जा उद्योग द्वारा जल के निचे की खोज जैसी मानव गतिविधि के समय समुद्र तल से मीथेन ( CH4 ) का आकस्मिक उत्सर्जन ऊर्जा होता हैं।टेक्टोनिक प्लेट की गति जैसी प्राकृतिक प्रक्रियाएं भी समुद्र तल से मीथेन उत्सर्जन में योगदान कर सकती हैं। दोनों स्थितियों में, उत्सर्जित CH4 की मात्रा जलवायु परिवर्तन में महत्वपूर्ण योगदानकर्ता हो सकता है। [7][8]
यह भी देखें
- डेगास चालकता
- विघटित जल
- लिम्निक विस्फोट
- गैस निष्क्रमण(भूवैज्ञानिक और ज्वालामुखीय उत्सर्जन सम्मिलित है)
- ज्वालामुखीय गैस
- पॉलिमर विचलन
संदर्भ
- ↑ Degassing of Liquids: https://www.sonomechanics.com/liquid-degassing-deaeration/
- ↑ "European publication server".
- ↑ "Degassing electrorheological fluid".
- ↑ "Freeze-Pump-Thaw Degassing of Liquids" (PDF). University of Washington.
- ↑ Duward F. Shriver and M. A. Drezdzon "The Manipulation of Air-Sensitive Compounds" 1986, J. Wiley and Sons: New York. ISBN 0-471-86773-X.
- ↑ D.J. Hucknall (1991). Vacuum Technology and Applications. Oxford: Butterworth-Heinemann Ltd. ISBN 0-7506-1145-6.
- ↑ Zhang Yong, Zhai Wei-Dong (2015). "Shallow-ocean methane leakage and degassing to the atmosphere: triggered by offshore oil-gas and methane hydrate explorations". Frontiers in Marine Science. 2: 34. doi:10.3389/fmars.2015.00034.
{{cite journal}}
: CS1 maint: uses authors parameter (link) - ↑ Giancarlo Ciotoli, Monia Procesi, Giuseppe Etiope, Umberto Fracassi & Guido Ventura (2020). "Influence of tectonics on global scale distribution of geological methane emissions". Nature Communications. 11 (1): 2305. Bibcode:2020NatCo..11.2305C. doi:10.1038/s41467-020-16229-1. PMC 7210894. PMID 32385247.
{{cite journal}}
: CS1 maint: uses authors parameter (link)