तनन परीक्षण: Difference between revisions
(Created page with "{{Short description|Test procedure to determine mechanical properties of a specimen.}} {{Use dmy dates|date=October 2014}} File:Tensile testing on a coir composite.jpg|thumb...") |
m (Arti Shah moved page तन्यता परीक्षण to तन्य परीक्षण without leaving a redirect) |
(No difference)
|
Revision as of 16:39, 29 September 2023
तन्यता परीक्षण, जिसे तनाव परीक्षण भी कहा जाता है,[1] एक मौलिक सामग्री विज्ञान और अभियांत्रिकी परीक्षण है जिसमें एक नमूना विफल होने तक नियंत्रित तनाव (भौतिकी) के अधीन होता है। जिन गुणों को सीधे तन्यता परीक्षण के माध्यम से मापा जाता है वे हैं परम तन्यता ताकत, तोड़ने की ताकत, अधिकतम बढ़ाव (सामग्री विज्ञान) और क्षेत्र में कमी।[2] इन मापों से निम्नलिखित गुण भी निर्धारित किए जा सकते हैं: यंग का मापांक, पॉइसन का अनुपात, उपज शक्ति, और तनाव-सख्त करने की विशेषताएं।[3] आइसोट्रॉपी सामग्रियों की यांत्रिक विशेषताओं को प्राप्त करने के लिए यूनिएक्सिअल तन्यता परीक्षण का सबसे अधिक उपयोग किया जाता है। कुछ सामग्रियां द्विअक्षीय तन्यता परीक्षण का उपयोग करती हैं। इन परीक्षण मशीनों के बीच मुख्य अंतर यह है कि सामग्री पर लोड कैसे लगाया जाता है।
तन्यता परीक्षण के उद्देश्य
तन्यता परीक्षण के कई उद्देश्य हो सकते हैं, जैसे:
- किसी एप्लिकेशन के लिए सामग्री या वस्तु का चयन करें
- भविष्यवाणी करें कि कोई सामग्री उपयोग में कैसा प्रदर्शन करेगी: सामान्य और अत्यधिक बल।
- निर्धारित करें कि क्या, या सत्यापित करें कि, किसी विनिर्देश, विनियमन या अनुबंध की आवश्यकताएं पूरी की गई हैं
- तय करें कि कोई नया उत्पाद विकास कार्यक्रम पटरी पर है या नहीं
- अवधारणा का प्रमाण प्रदर्शित करें
- प्रस्तावित पेटेंट की उपयोगिता प्रदर्शित करें
- अन्य वैज्ञानिक, इंजीनियरिंग और गुणवत्ता आश्वासन कार्यों के लिए तकनीकी मानक डेटा प्रदान करें
- तकनीकी संचार के लिए एक आधार प्रदान करें
- कई विकल्पों की तुलना का तकनीकी साधन प्रदान करें
- कानूनी कार्यवाही में साक्ष्य प्रदान करें
तन्यता नमूना
परीक्षण नमूनों की तैयारी परीक्षण के उद्देश्यों और शासकीय परीक्षण विधि या विनिर्देश पर निर्भर करती है। एक तन्य नमूने में आमतौर पर एक मानकीकृत नमूना क्रॉस-सेक्शन होता है। इसके दो कंधे और बीच में एक गेज (खंड) होता है। कंधे और पकड़ अनुभाग आम तौर पर गेज अनुभाग से 33% बड़े होते हैं [4] ताकि उन्हें आसानी से पकड़ा जा सके. गेज अनुभाग का छोटा व्यास भी इस क्षेत्र में विरूपण और विफलता की अनुमति देता है।[2][5]
परीक्षण नमूने के कंधों को परीक्षण मशीन में विभिन्न पकड़ के साथ जोड़ने के लिए विभिन्न तरीकों से निर्मित किया जा सकता है (नीचे दी गई छवि देखें)। प्रत्येक प्रणाली के फायदे और नुकसान हैं; उदाहरण के लिए, दाँतेदार पकड़ के लिए डिज़ाइन किए गए कंधों का निर्माण आसान और सस्ता है, लेकिन नमूने का संरेखण तकनीशियन के कौशल पर निर्भर है। दूसरी ओर, एक पिन की गई पकड़ अच्छे संरेखण का आश्वासन देती है। थ्रेडेड कंधे और ग्रिप्स भी अच्छे संरेखण का आश्वासन देते हैं, लेकिन तकनीशियन को प्रत्येक कंधे को ग्रिप में कम से कम एक व्यास की लंबाई में पिरोना आना चाहिए, अन्यथा नमूना फ्रैक्चर से पहले धागे अलग हो सकते हैं।[6]
बड़ी कास्टिंग (धातुकर्म) और लोहारी में अतिरिक्त सामग्री जोड़ना आम बात है, जिसे कास्टिंग से हटाने के लिए डिज़ाइन किया गया है ताकि इससे परीक्षण नमूने बनाए जा सकें। ये नमूने पूरे वर्कपीस का सटीक प्रतिनिधित्व नहीं कर सकते क्योंकि अनाज की संरचना हर जगह भिन्न हो सकती है। छोटे वर्कपीस में या जब कास्टिंग के महत्वपूर्ण हिस्सों का परीक्षण किया जाना चाहिए, तो परीक्षण नमूने बनाने के लिए एक वर्कपीस का त्याग किया जा सकता है।[7] उन वर्कपीस के लिए जो स्टॉक पर बैन से मशीनिंग कर रहे हैं, परीक्षण नमूना बार स्टॉक के समान टुकड़े से बनाया जा सकता है।
नरम और झरझरा सामग्री के लिए, जैसे नैनोफाइबर से बने इलेक्ट्रोस्पन नॉनवॉवन, नमूना आमतौर पर मशीन पर माउंट करने और झिल्ली को नुकसान से बचाने के लिए एक पेपर फ्रेम द्वारा समर्थित एक नमूना पट्टी होती है।[8][9]
एक परीक्षण मशीन की पुनरावृत्ति विशेष परीक्षण नमूनों का उपयोग करके पाई जा सकती है जिन्हें सावधानीपूर्वक यथासंभव समान बनाया जाता है।[7]
एक मानक नमूना उपयोग किए गए मानक के आधार पर, गेज की लंबाई के साथ एक गोल या चौकोर खंड में तैयार किया जाता है। के दोनों सिरे नमूनों की लंबाई पर्याप्त होनी चाहिए और सतह की स्थिति ऐसी होनी चाहिए कि वे मजबूती से पकड़े रहें परीक्षण के दौरान. प्रारंभिक गेज लंबाई लो मानकीकृत है (कई देशों में) और इसके साथ बदलती रहती है सूचीबद्ध नमूने का व्यास (Do) या क्रॉस-अनुभागीय क्षेत्र (Ao)।
Type specimen | United States(ASTM) | Britain | Germany |
---|---|---|---|
Sheet ( Lo / √Ao) | 4.5 | 5.65 | 11.3 |
Rod ( Lo / Do) | 4.0 | 5.00 | 10.0 |
निम्नलिखित तालिकाएँ मानक एएसटीएम ई8 के अनुसार परीक्षण नमूना आयामों और सहनशीलता के उदाहरण देती हैं।
All values in inches | Plate type (1.5 in. wide) | Sheet type (0.5 in. wide) | Sub-size specimen (0.25 in. wide) |
---|---|---|---|
Gauge length | 8.00±0.01 | 2.00±0.005 | 1.000±0.003 |
Width | 1.5 +0.125–0.25 | 0.500±0.010 | 0.250±0.005 |
Thickness | 0.188 ≤ T | 0.005 ≤ T ≤ 0.75 | 0.005 ≤ T ≤ 0.25 |
Fillet radius (min.) | 1 | 0.25 | 0.25 |
Overall length (min.) | 18 | 8 | 4 |
Length of reduced section (min.) | 9 | 2.25 | 1.25 |
Length of grip section (min.) | 3 | 2 | 1.25 |
Width of grip section (approx.) | 2 | 0.75 | 3⁄8 |
All values in inches | Standard specimen at nominal diameter: | Small specimen at nominal diameter: | |||
---|---|---|---|---|---|
0.500 | 0.350 | 0.25 | 0.160 | 0.113 | |
Gauge length | 2.00±0.005 | 1.400±0.005 | 1.000±0.005 | 0.640±0.005 | 0.450±0.005 |
Diameter tolerance | ±0.010 | ±0.007 | ±0.005 | ±0.003 | ±0.002 |
Fillet radius (min.) | 3⁄8 | 0.25 | 5⁄16 | 5⁄32 | 3⁄32 |
Length of reduced section (min.) | 2.5 | 1.75 | 1.25 | 0.75 | 5⁄8 |
उपकरण
तन्यता परीक्षण अक्सर सामग्री परीक्षण प्रयोगशाला में किया जाता है। एएसटीएम डी638 सबसे आम तन्यता परीक्षण प्रोटोकॉल में से एक है। एएसटीएम डी638 परम तन्यता ताकत, उपज शक्ति, बढ़ाव और पॉइसन अनुपात सहित प्लास्टिक तन्यता गुणों को मापता है।
तन्यता परीक्षण में उपयोग की जाने वाली सबसे आम परीक्षण मशीन सार्वभौमिक परीक्षण मशीन है। इस प्रकार की मशीन में दो क्रॉसहेड होते हैं; एक को नमूने की लंबाई के लिए समायोजित किया जाता है और दूसरे को परीक्षण नमूने पर तनाव लागू करने के लिए संचालित किया जाता है। दो प्रकार हैं: हाइड्रोलिक मशीनरी संचालित और विद्युत चुम्बकीय रूप से संचालित मशीनें।[5]
इलेक्ट्रोमैकेनिकल मशीन क्रॉसहेड को ऊपर या नीचे ले जाने के लिए एक इलेक्ट्रिक मोटर, गियर रिडक्शन सिस्टम और एक, दो या चार स्क्रू का उपयोग करती है। मोटर की गति को बदलकर क्रॉसहेड गति की एक श्रृंखला प्राप्त की जा सकती है। क्रॉसहेड की गति और परिणामस्वरूप लोड दर को बंद-लूप सर्वो नियंत्रक में एक माइक्रोप्रोसेसर द्वारा नियंत्रित किया जा सकता है। एक हाइड्रोलिक परीक्षण मशीन क्रॉसहेड को ऊपर या नीचे ले जाने के लिए एकल या दोहरे-अभिनय पिस्टन का उपयोग करती है। मैन्युअल रूप से संचालित परीक्षण प्रणालियाँ भी उपलब्ध हैं। मैनुअल कॉन्फ़िगरेशन के लिए लोड दर को नियंत्रित करने के लिए ऑपरेटर को सुई वाल्व को समायोजित करने की आवश्यकता होती है। एक सामान्य तुलना से पता चलता है कि इलेक्ट्रोमैकेनिकल मशीन परीक्षण गति और लंबे क्रॉसहेड विस्थापन की एक विस्तृत श्रृंखला में सक्षम है, जबकि हाइड्रोलिक मशीन उच्च बल उत्पन्न करने के लिए एक लागत प्रभावी समाधान है।[11] परीक्षण किए जा रहे परीक्षण नमूने के लिए मशीन में उचित क्षमताएं होनी चाहिए। चार मुख्य पैरामीटर हैं: बल क्षमता, गति, परिशुद्धता और सटीकता। बल क्षमता इस तथ्य को संदर्भित करती है कि मशीन को नमूने को फ्रैक्चर करने के लिए पर्याप्त बल उत्पन्न करने में सक्षम होना चाहिए। मशीन को इतनी तेजी से या धीरे-धीरे बल लगाने में सक्षम होना चाहिए कि वह वास्तविक अनुप्रयोग की ठीक से नकल कर सके। अंत में, मशीन को गेज की लंबाई और लागू बलों को सटीक और सटीकता से मापने में सक्षम होना चाहिए; उदाहरण के लिए, एक बड़ी मशीन जिसे लंबे बढ़ाव को मापने के लिए डिज़ाइन किया गया है वह भंगुर सामग्री के साथ काम नहीं कर सकती है जो फ्रैक्चरिंग से पहले छोटे बढ़ाव का अनुभव करती है।[6] परीक्षण मशीन में परीक्षण नमूने का संरेखण महत्वपूर्ण है, क्योंकि यदि नमूना गलत संरेखित है, या तो एक कोण पर या एक तरफ ऑफसेट है, तो मशीन नमूने पर एक झुकने वाला बल लगाएगी। यह भंगुर सामग्रियों के लिए विशेष रूप से बुरा है, क्योंकि यह नाटकीय रूप से परिणामों को ख़राब कर देगा। पकड़ और परीक्षण मशीन के बीच गोलाकार सीटों या यू-जोड़ों का उपयोग करके इस स्थिति को कम किया जा सकता है।[6]यदि तनाव-विकृति वक्र का प्रारंभिक भाग घुमावदार है और रैखिक नहीं है, तो यह इंगित करता है कि नमूना परीक्षण मशीन में गलत तरीके से संरेखित है।[12] स्ट्रेन माप को आमतौर पर एक्सटेन्सोमीटर से मापा जाता है, लेकिन विकृति प्रमापक का उपयोग अक्सर छोटे परीक्षण नमूने पर या जब पॉइसन का अनुपात मापा जा रहा होता है, तब भी किया जाता है।[6]नई परीक्षण मशीनों में डिजिटल समय, बल और बढ़ाव माप प्रणाली होती है जिसमें डेटा संग्रह उपकरण (अक्सर एक कंप्यूटर) से जुड़े इलेक्ट्रॉनिक सेंसर और डेटा में हेरफेर और आउटपुट करने के लिए सॉफ़्टवेयर शामिल होते हैं। हालाँकि, एनालॉग मशीनें एएसटीएम, एनआईएसटी और एएसएम धातु तन्यता परीक्षण सटीकता आवश्यकताओं को पूरा करती हैं और उनसे आगे बढ़ती हैं, जिनका उपयोग आज भी जारी है।[citation needed]
प्रक्रिया
परीक्षण प्रक्रिया में परीक्षण नमूने को परीक्षण मशीन में रखना और धीरे-धीरे इसे फ्रैक्चर होने तक बढ़ाना शामिल है। इस प्रक्रिया के दौरान, लगाए गए बल के विरुद्ध गेज अनुभाग का बढ़ाव (सामग्री विज्ञान) दर्ज किया जाता है। डेटा में हेरफेर किया जाता है ताकि यह परीक्षण नमूने की ज्यामिति के लिए विशिष्ट न हो। बढ़ाव माप का उपयोग निम्नलिखित समीकरण का उपयोग करके इंजीनियरिंग विरूपण (इंजीनियरिंग), ε की गणना करने के लिए किया जाता है:[5]
जहां ΔL गेज की लंबाई, L में परिवर्तन है0 प्रारंभिक गेज लंबाई है, और एल अंतिम लंबाई है। बल माप का उपयोग निम्नलिखित समीकरण का उपयोग करके इंजीनियरिंग तनाव, σ की गणना करने के लिए किया जाता है:[5]
जहां F तन्य बल है और A नमूने का नाममात्र क्रॉस-सेक्शन है। मशीन ये गणना बल बढ़ने पर करती है, ताकि डेटा बिंदुओं को तनाव-तनाव वक्र में ग्राफ़ किया जा सके।[5]
इलेक्ट्रोस्पून नैनोफाइबर झिल्ली के रूप में झरझरा और नरम सामग्री के साथ काम करते समय, उपरोक्त तनाव सूत्र का अनुप्रयोग समस्याग्रस्त है। झिल्ली की मोटाई, वास्तव में, उसके माप के दौरान लगाए गए दबाव पर निर्भर होती है, जिससे मोटाई का मान भिन्न होता है। परिणामस्वरूप, प्राप्त तनाव-विकृति वक्र उच्च परिवर्तनशीलता दिखाते हैं। इस मामले में, विश्वसनीय तन्य परिणाम प्राप्त करने के लिए क्रॉस-सेक्शन क्षेत्र (ए) के बजाय नमूना द्रव्यमान के संबंध में भार के सामान्यीकरण की सिफारिश की जाती है।[13]
तन्यता परीक्षण रेंगना
तन्यता परीक्षण का उपयोग सामग्रियों में रेंगना (विरूपण) का परीक्षण करने के लिए किया जा सकता है, जो लंबे समय तक लगातार लागू तनाव से सामग्री का धीमा प्लास्टिक विरूपण है। रेंगना आम तौर पर प्रसार और अव्यवस्था आंदोलन द्वारा सहायता प्राप्त है। जबकि रेंगने का परीक्षण करने के कई तरीके हैं, तन्यता परीक्षण कंक्रीट और सिरेमिक जैसी सामग्रियों के लिए उपयोगी है जो तनाव और संपीड़न में अलग-अलग व्यवहार करते हैं, और इस प्रकार अलग-अलग तन्यता और संपीड़ित रेंगना दर रखते हैं। जैसे, तनाव का अनुभव करने वाली संरचनाओं के लिए कंक्रीट के डिजाइन में तन्य रेंगना को समझना महत्वपूर्ण है, जैसे कि पानी धारण करने वाले कंटेनर, या सामान्य संरचनात्मक अखंडता के लिए।[14] क्रीप का तन्य परीक्षण आम तौर पर मानक परीक्षण के समान परीक्षण प्रक्रिया का पालन करता है, हालांकि प्लास्टिक विरूपण के बजाय क्रीप डोमेन में बने रहने के लिए आमतौर पर कम तनाव होता है। इसके अतिरिक्त, विशेष तन्यता रेंगना परीक्षण उपकरण में प्रसार में सहायता के लिए उच्च तापमान भट्ठी घटकों को शामिल किया जा सकता है।[15] नमूने को स्थिर तापमान और तनाव पर रखा जाता है, और सामग्री पर तनाव को स्ट्रेन गेज या लेजर गेज का उपयोग करके मापा जाता है। मापा तनाव को रेंगने के विभिन्न तंत्रों को नियंत्रित करने वाले समीकरणों के साथ फिट किया जा सकता है, जैसे कि पावर लॉ रेंगना या प्रसार रेंगना (अधिक जानकारी के लिए रेंगना (विरूपण) देखें)। फ्रैक्चर के बाद नमूने की जांच से आगे का विश्लेषण प्राप्त किया जा सकता है। क्रीप तंत्र और दर को समझने से सामग्री चयन और डिजाइन में सहायता मिल सकेगी।
यह ध्यान रखना महत्वपूर्ण है कि नमूना संरेखण तन्यता परीक्षण रेंगने के लिए महत्वपूर्ण है। ऑफ सेंटर्ड लोडिंग के परिणामस्वरूप नमूने पर झुकने वाला तनाव लागू होगा। नमूने के सभी पक्षों पर तनाव को ट्रैक करके झुकने को मापा जा सकता है। प्रतिशत झुकने को एक चेहरे पर तनाव के बीच अंतर के रूप में परिभाषित किया जा सकता है () और औसत तनाव ():[16]
लोड किए गए नमूनों के व्यापक चेहरे पर प्रतिशत झुकाव 1% से कम होना चाहिए, और पतले चेहरे पर 2% से कम होना चाहिए। लोडिंग क्लैंप पर गलत संरेखण और नमूनों की असममित मशीनिंग के कारण झुकना हो सकता है।[16]
मानक
धातु
- एएसटीएम ई8/ई8एम-13: धातु सामग्री के तनाव परीक्षण के लिए मानक परीक्षण विधियां (2013)
- मानकीकरण के लिए अंतर्राष्ट्रीय संगठन 6892-1: धातु सामग्री। तन्यता परीक्षण. परिवेश के तापमान पर परीक्षण की विधि (2009)
- मानकीकरण के लिए अंतर्राष्ट्रीय संगठन 6892-2: धातु सामग्री। तन्यता परीक्षण. ऊंचे तापमान पर परीक्षण की विधि (2011)
- जापानी औद्योगिक मानक Z2241 धातु सामग्री के लिए तन्यता परीक्षण की विधि
- एमपीआईएफ परीक्षण मानक 10: पाउडर धातुकर्म (पीएम) सामग्री के तन्य गुणों के लिए विधि धातु सामग्री के तनाव परीक्षण के लिए मानक परीक्षण विधियां (2015)
समग्र
- एएसटीएम डी 3039/डी 3039एम: पॉलिमर मैट्रिक्स मिश्रित सामग्री के तन्य गुणों के लिए मानक परीक्षण विधि
लचीली सामग्री
- प्लास्टिक के तन्य गुणों के लिए एएसटीएम डी638 मानक परीक्षण विधि
- एएसटीएम डी828 निरंतर-दर-बढ़ाव उपकरण का उपयोग करके कागज और पेपरबोर्ड के तन्य गुणों के लिए मानक परीक्षण विधि
- एएसटीएम डी882 पतली प्लास्टिक शीटिंग के तन्य गुणों के लिए मानक परीक्षण विधि
- मानकीकरण के लिए अंतर्राष्ट्रीय संगठन 37 रबर, वल्केनाइज्ड या थर्मोप्लास्टिक-तन्य तनाव-तनाव गुणों का निर्धारण
संदर्भ
- ↑ Czichos, Horst (2006). सामग्री मापन विधियों की स्प्रिंगर हैंडबुक. Berlin: Springer. pp. 303–304. ISBN 978-3-540-20785-6.
- ↑ 2.0 2.1 Davis, Joseph R. (2004). तन्यता परीक्षण (2nd ed.). ASM International. ISBN 978-0-87170-806-9.
- ↑ Davis 2004, p. 33.
- ↑ Common Material Tests. The Engineering Archive. (n.d.). https://theengineeringarchive.com/material-science/page-common-material-tests.html
- ↑ 5.0 5.1 5.2 5.3 5.4 Davis 2004, p. 2.
- ↑ 6.0 6.1 6.2 6.3 Davis 2004, p. 9.
- ↑ 7.0 7.1 Davis 2004, p. 8.
- ↑ Maccaferri, Emanuele; Cocchi, Davide; Mazzocchetti, Laura; Benelli, Tiziana; Brugo, Tommaso Maria; Giorgini, Loris; Zucchelli, Andrea (July 2021). "How Nanofibers Carry the Load: Toward a Universal and Reliable Approach for Tensile Testing of Polymeric Nanofibrous Membranes". Macromolecular Materials and Engineering. 306 (7): 2100183. doi:10.1002/mame.202100183.
- ↑ How to correctly prepare nanofibrous mat specimens for tensile testing. youtube.com
- ↑ 10.0 10.1 Davis 2004, p. 52.
- ↑ Gedney, 2005
- ↑ Davis 2004, p. 11.
- ↑ Maccaferri, Emanuele; et al. (2021). "How Nanofibers Carry the Load: Toward a Universal and Reliable Approach for Tensile Testing of Polymeric Nanofibrous Membranes". Macromolecular Materials and Engineering. 306 (7). doi:10.1002/mame.202100183.
- ↑ Bissonnette, Benoit; Pigeon, Michel; Vaysburd, Alexander M. (1 July 2007). "Tensile Creep of Concrete: Study of Its Sensitivity to Basic Parameters". Materials Journal. 104 (4): 360–368. doi:10.14359/18825. ProQuest 197938866.
- ↑ "लीवर आर्म टेस्ट सिस्टम". www.mltest.com. Retrieved 21 May 2022.
- ↑ 16.0 16.1 Carroll, Daniel F.; Wiederhorn, Sheldon M.; Roberts, D. E. (September 1989). "सिरेमिक के तन्यता रेंगने के परीक्षण की तकनीक". Journal of the American Ceramic Society. 72 (9): 1610–1614. doi:10.1111/j.1151-2916.1989.tb06291.x.