तनन परीक्षण: Difference between revisions
Line 17: | Line 17: | ||
==तन्यता प्रारूप == | ==तन्यता प्रारूप == | ||
[[File:Tensile specimen-round and flat.jpg|thumb|एल्यूमीनियम मिश्र धातु से बने तन्य | [[File:Tensile specimen-round and flat.jpg|thumb|एल्यूमीनियम मिश्र धातु से बने तन्य प्रारूपों । बाएँ दो प्रारूपों में एक गोल क्रॉस-सेक्शन और थ्रेडेड कंधे हैं। दाएँ दो सपाट प्रारूपों हैं जिन्हें दाँतेदार पकड़ के साथ उपयोग करने के लिए डिज़ाइन किया गया है।]] | ||
[[File:Al tensile test.jpg|thumb|परीक्षण के बाद एक एल्यूमीनियम मिश्र धातु तन्य प्रारूप । यह टूट गया है, और जिस सतह पर यह टूटा है उसका निरीक्षण किया जा सकता है।]]परीक्षण | [[File:Al tensile test.jpg|thumb|परीक्षण के बाद एक एल्यूमीनियम मिश्र धातु तन्य प्रारूप । यह टूट गया है, और जिस सतह पर यह टूटा है उसका निरीक्षण किया जा सकता है।]]परीक्षण प्रारूपों की तैयारी परीक्षण के उद्देश्यों और शासकीय परीक्षण विधि या विनिर्देश पर निर्भर करती है। एक तन्यता प्रारूपों में सामान्यतः एक मानकीकृत प्रारूप क्रॉस-सेक्शन होता है। इसके दो कंधे और बीच में एक गेज (खंड) होता है। कंधे और पकड़ अनुभाग सामान्यतः गेज अनुभाग से 33% बड़े होते हैं <ref> Common Material Tests. The Engineering Archive. (n.d.). https://theengineeringarchive.com/material-science/page-common-material-tests.html </ref> जिससे उन्हें सरलता से पकड़ा जा सके. गेज अनुभाग का छोटा व्यास भी इस क्षेत्र में विरूपण और विफलता की अनुमति देता है।<ref name="davis1"/><ref name="davis2">{{harvnb|Davis|2004|p=2}}.</ref> | ||
परीक्षण | परीक्षण प्रारूपों के कंधों को परीक्षण यंत्र में विभिन्न पकड़ के साथ जोड़ने के लिए विभिन्न तरीकों से निर्मित किया जा सकता है (नीचे दी गई छवि देखें)। प्रत्येक प्रणाली के लाभ और हानि हो हैं; उदाहरण के लिए, दाँतेदार पकड़ के लिए डिज़ाइन किए गए कंधों का निर्माण आसान और सस्ता है, लेकिन प्रारूपों का संरेखण तकनीशियन के कौशल पर निर्भर है। दूसरी ओर, एक पिन की गई पकड़ अच्छे संरेखण का आश्वासन देती है। थ्रेडेड कंधे और ग्रिप्स भी अच्छे संरेखण का आश्वासन देते हैं, लेकिन तकनीशियन को प्रत्येक कंधे को ग्रिप में कम से कम एक व्यास की लंबाई में पिरोना आना चाहिए, अन्यथा प्रारूप फ्रैक्चर से पहले धागे अलग हो सकते हैं।<ref name="davis9"/> | ||
बड़ी कास्टिंग (धातुकर्म) और [[ लोहारी ]] में अतिरिक्त पदार्थ जोड़ना आम बात है, जिसे कास्टिंग से हटाने के लिए डिज़ाइन किया गया है ताकि इससे परीक्षण | बड़ी कास्टिंग (धातुकर्म) और [[ लोहारी ]] में अतिरिक्त पदार्थ जोड़ना आम बात है, जिसे कास्टिंग से हटाने के लिए डिज़ाइन किया गया है ताकि इससे परीक्षण प्रारूपों बनाए जा सकें। ये प्रारूपों पूरे वर्कपीस का सटीक प्रतिनिधित्व नहीं कर सकते क्योंकि अनाज की संरचना हर जगह भिन्न हो सकती है। छोटे वर्कपीस में या जब कास्टिंग के महत्वपूर्ण हिस्सों का परीक्षण किया जाना चाहिए, तो परीक्षण प्रारूपों बनाने के लिए एक वर्कपीस का त्याग किया जा सकता है।<ref name="davis8">{{harvnb|Davis|2004|p=8}}.</ref> उन वर्कपीस के लिए जो [[ स्टॉक पर बैन ]] से [[मशीनिंग]] कर रहे हैं, परीक्षण प्रारूप बार स्टॉक के समान टुकड़े से बनाया जा सकता है। | ||
नरम और झरझरा पदार्थ के लिए, जैसे नैनोफाइबर से बने इलेक्ट्रोस्पन नॉनवॉवन, प्रारूप | नरम और झरझरा पदार्थ के लिए, जैसे नैनोफाइबर से बने इलेक्ट्रोस्पन नॉनवॉवन, प्रारूप सामान्यतः मशीन पर माउंट करने और झिल्ली को नुकसान से बचाने के लिए एक पेपर फ्रेम द्वारा समर्थित एक प्रारूप पट्टी होती है।<ref>{{cite journal |last1=Maccaferri |first1=Emanuele |last2=Cocchi |first2=Davide |last3=Mazzocchetti |first3=Laura |last4=Benelli |first4=Tiziana |last5=Brugo |first5=Tommaso Maria |last6=Giorgini |first6=Loris |last7=Zucchelli |first7=Andrea |title=How Nanofibers Carry the Load: Toward a Universal and Reliable Approach for Tensile Testing of Polymeric Nanofibrous Membranes |journal=Macromolecular Materials and Engineering |date=July 2021 |volume=306 |issue=7 |pages=2100183 |doi=10.1002/mame.202100183 |doi-access=free }}</ref><ref>[https://www.youtube.com/watch?v=tVnjZ3O_Pjo&ab_channel=EmanueleMaccaferri How to correctly prepare nanofibrous mat specimens for tensile testing]. youtube.com</ref> | ||
{{multiple image | {{multiple image | ||
Line 44: | Line 44: | ||
{{clear}} | {{clear}} | ||
एक परीक्षण मशीन की पुनरावृत्ति विशेष परीक्षण | एक परीक्षण मशीन की पुनरावृत्ति विशेष परीक्षण प्रारूपों का उपयोग करके पाई जा सकती है जिन्हें सावधानीपूर्वक यथासंभव समान बनाया जाता है।<ref name="davis8"/> | ||
एक मानक प्रारूप उपयोग किए गए मानक के आधार पर, गेज की लंबाई के साथ एक गोल या चौकोर खंड में तैयार किया जाता है। के दोनों सिरे | एक मानक प्रारूप उपयोग किए गए मानक के आधार पर, गेज की लंबाई के साथ एक गोल या चौकोर खंड में तैयार किया जाता है। के दोनों सिरे | ||
प्रारूपों की लंबाई पर्याप्त होनी चाहिए और सतह की स्थिति ऐसी होनी चाहिए कि वे मजबूती से पकड़े रहें | |||
परीक्षण के दौरान. प्रारंभिक गेज लंबाई लो मानकीकृत है (कई देशों में) और इसके साथ बदलती रहती है | परीक्षण के दौरान. प्रारंभिक गेज लंबाई लो मानकीकृत है (कई देशों में) और इसके साथ बदलती रहती है | ||
सूचीबद्ध | सूचीबद्ध प्रारूपों का व्यास (Do) या क्रॉस-अनुभागीय क्षेत्र (Ao)। | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 121: | Line 121: | ||
[[File:Inspekt desk 50kN IMGP8563.jpg|thumb|एक सार्वभौमिक परीक्षण मशीन (हेगेवाल्ड और पेस्चके)]]तन्यता परीक्षण अक्सर पदार्थ परीक्षण प्रयोगशाला में किया जाता है। एएसटीएम डी638 सबसे आम तन्यता परीक्षण प्रोटोकॉल में से एक है। एएसटीएम डी638 परम तन्यता शक्ति , उपज शक्ति, बढ़ाव और पॉइसन अनुपात सहित प्लास्टिक तन्यता गुणों को मापता है। | [[File:Inspekt desk 50kN IMGP8563.jpg|thumb|एक सार्वभौमिक परीक्षण मशीन (हेगेवाल्ड और पेस्चके)]]तन्यता परीक्षण अक्सर पदार्थ परीक्षण प्रयोगशाला में किया जाता है। एएसटीएम डी638 सबसे आम तन्यता परीक्षण प्रोटोकॉल में से एक है। एएसटीएम डी638 परम तन्यता शक्ति , उपज शक्ति, बढ़ाव और पॉइसन अनुपात सहित प्लास्टिक तन्यता गुणों को मापता है। | ||
तन्यता परीक्षण में उपयोग की जाने वाली सबसे आम परीक्षण मशीन [[सार्वभौमिक परीक्षण मशीन]] है। इस प्रकार की मशीन में दो क्रॉसहेड होते हैं; एक को | तन्यता परीक्षण में उपयोग की जाने वाली सबसे आम परीक्षण मशीन [[सार्वभौमिक परीक्षण मशीन]] है। इस प्रकार की मशीन में दो क्रॉसहेड होते हैं; एक को प्रारूपों की लंबाई के लिए समायोजित किया जाता है और दूसरे को परीक्षण प्रारूपों पर तनाव लागू करने के लिए संचालित किया जाता है। दो प्रकार हैं: [[हाइड्रोलिक मशीनरी]] संचालित और [[विद्युत]] चुम्बकीय रूप से संचालित मशीनें।<ref name="davis2"/> | ||
इलेक्ट्रोमैकेनिकल मशीन क्रॉसहेड को ऊपर या नीचे ले जाने के लिए एक इलेक्ट्रिक मोटर, गियर रिडक्शन सिस्टम और एक, दो या चार स्क्रू का उपयोग करती है। मोटर की गति को बदलकर क्रॉसहेड गति की एक श्रृंखला प्राप्त की जा सकती है। क्रॉसहेड की गति और परिणामस्वरूप लोड दर को बंद-लूप सर्वो नियंत्रक में एक माइक्रोप्रोसेसर द्वारा नियंत्रित किया जा सकता है। एक हाइड्रोलिक परीक्षण मशीन क्रॉसहेड को ऊपर या नीचे ले जाने के लिए एकल या दोहरे-अभिनय पिस्टन का उपयोग करती है। मैन्युअल रूप से संचालित परीक्षण प्रणालियाँ भी उपलब्ध हैं। मैनुअल कॉन्फ़िगरेशन के लिए लोड दर को नियंत्रित करने के लिए ऑपरेटर को सुई वाल्व को समायोजित करने की आवश्यकता होती है। एक सामान्य तुलना से पता चलता है कि इलेक्ट्रोमैकेनिकल मशीन परीक्षण गति और लंबे क्रॉसहेड विस्थापन की एक विस्तृत श्रृंखला में सक्षम है, जबकि हाइड्रोलिक मशीन उच्च बल उत्पन्न करने के लिए एक लागत प्रभावी समाधान है।<ref>Gedney, 2005</ref> | इलेक्ट्रोमैकेनिकल मशीन क्रॉसहेड को ऊपर या नीचे ले जाने के लिए एक इलेक्ट्रिक मोटर, गियर रिडक्शन सिस्टम और एक, दो या चार स्क्रू का उपयोग करती है। मोटर की गति को बदलकर क्रॉसहेड गति की एक श्रृंखला प्राप्त की जा सकती है। क्रॉसहेड की गति और परिणामस्वरूप लोड दर को बंद-लूप सर्वो नियंत्रक में एक माइक्रोप्रोसेसर द्वारा नियंत्रित किया जा सकता है। एक हाइड्रोलिक परीक्षण मशीन क्रॉसहेड को ऊपर या नीचे ले जाने के लिए एकल या दोहरे-अभिनय पिस्टन का उपयोग करती है। मैन्युअल रूप से संचालित परीक्षण प्रणालियाँ भी उपलब्ध हैं। मैनुअल कॉन्फ़िगरेशन के लिए लोड दर को नियंत्रित करने के लिए ऑपरेटर को सुई वाल्व को समायोजित करने की आवश्यकता होती है। एक सामान्य तुलना से पता चलता है कि इलेक्ट्रोमैकेनिकल मशीन परीक्षण गति और लंबे क्रॉसहेड विस्थापन की एक विस्तृत श्रृंखला में सक्षम है, जबकि हाइड्रोलिक मशीन उच्च बल उत्पन्न करने के लिए एक लागत प्रभावी समाधान है।<ref>Gedney, 2005</ref> | ||
परीक्षण किए जा रहे परीक्षण | परीक्षण किए जा रहे परीक्षण प्रारूपों के लिए मशीन में उचित क्षमताएं होनी चाहिए। चार मुख्य पैरामीटर हैं: बल क्षमता, गति, परिशुद्धता और सटीकता। बल क्षमता इस तथ्य को संदर्भित करती है कि मशीन को प्रारूपों को फ्रैक्चर करने के लिए पर्याप्त बल उत्पन्न करने में सक्षम होना चाहिए। मशीन को इतनी तेजी से या धीरे-धीरे बल लगाने में सक्षम होना चाहिए कि वह वास्तविक अनुप्रयोग की ठीक से नकल कर सके। अंत में, मशीन को गेज की लंबाई और लागू बलों को [[सटीक और सटीकता]] से मापने में सक्षम होना चाहिए; उदाहरण के लिए, एक बड़ी मशीन जिसे लंबे बढ़ाव को मापने के लिए डिज़ाइन किया गया है वह भंगुर पदार्थ के साथ काम नहीं कर सकती है जो फ्रैक्चरिंग से पहले छोटे बढ़ाव का अनुभव करती है।<ref name="davis9">{{harvnb|Davis|2004|p=9}}.</ref> | ||
परीक्षण मशीन में परीक्षण | परीक्षण मशीन में परीक्षण प्रारूपों का संरेखण महत्वपूर्ण है, क्योंकि यदि प्रारूप गलत संरेखित है, या तो एक कोण पर या एक तरफ ऑफसेट है, तो मशीन प्रारूपों पर एक [[झुकने]] वाला बल लगाएगी। यह भंगुर पदार्थों के लिए विशेष रूप से बुरा है, क्योंकि यह नाटकीय रूप से परिणामों को ख़राब कर देगा। पकड़ और परीक्षण मशीन के बीच गोलाकार सीटों या यू-जोड़ों का उपयोग करके इस स्थिति को कम किया जा सकता है।<ref name="davis9"/>यदि तनाव-विकृति वक्र का प्रारंभिक भाग घुमावदार है और रैखिक नहीं है, तो यह इंगित करता है कि प्रारूप परीक्षण मशीन में गलत तरीके से संरेखित है।<ref>{{harvnb|Davis|2004|p=11}}.</ref> | ||
स्ट्रेन माप को | स्ट्रेन माप को सामान्यतः [[एक्सटेन्सोमीटर]] से मापा जाता है, लेकिन [[विकृति प्रमापक]] का उपयोग अक्सर छोटे परीक्षण प्रारूपों पर या जब पॉइसन का अनुपात मापा जा रहा होता है, तब भी किया जाता है।<ref name="davis9"/>नई परीक्षण यंत्रों में डिजिटल समय, बल और बढ़ाव माप प्रणाली होती है जिसमें डेटा संग्रह उपकरण (अक्सर एक कंप्यूटर) से जुड़े इलेक्ट्रॉनिक सेंसर और डेटा में हेरफेर और आउटपुट करने के लिए सॉफ़्टवेयर शामिल होते हैं। हालाँकि, एनालॉग मशीनें एएसटीएम, एनआईएसटी और एएसएम धातु तन्यता परीक्षण सटीकता आवश्यकताओं को पूरा करती हैं और उनसे आगे बढ़ती हैं, जिनका उपयोग आज भी जारी है।{{Citation needed|date=February 2011}} | ||
==प्रक्रिया== | ==प्रक्रिया== | ||
Line 141: | Line 141: | ||
}} | }} | ||
परीक्षण प्रक्रिया में परीक्षण | परीक्षण प्रक्रिया में परीक्षण प्रारूपों को परीक्षण मशीन में रखना और धीरे-धीरे इसे फ्रैक्चर होने तक बढ़ाना शामिल है। इस प्रक्रिया के दौरान, लगाए गए बल के विरुद्ध गेज अनुभाग का बढ़ाव (पदार्थ विज्ञान) दर्ज किया जाता है। डेटा में हेरफेर किया जाता है ताकि यह परीक्षण प्रारूपों की ज्यामिति के लिए विशिष्ट न हो। बढ़ाव माप का उपयोग निम्नलिखित समीकरण का उपयोग करके अभियांत्रिकी [[विरूपण (इंजीनियरिंग)|विरूपण ( अभियांत्रिकी)]], ε की गणना करने के लिए किया जाता है:<ref name="davis2"/> | ||
:<math>\varepsilon =\frac{\Delta L}{L_0}=\frac{L-L_0}{L_0}</math> | :<math>\varepsilon =\frac{\Delta L}{L_0}=\frac{L-L_0}{L_0}</math> | ||
Line 147: | Line 147: | ||
:<math>\sigma = \frac{F_n}{A}</math> | :<math>\sigma = \frac{F_n}{A}</math> | ||
जहां F तन्य बल है और A | जहां F तन्य बल है और A प्रारूपों का नाममात्र क्रॉस-सेक्शन है। मशीन ये गणना बल बढ़ने पर करती है, ताकि डेटा बिंदुओं को तनाव-तनाव वक्र में ग्राफ़ किया जा सके।<ref name="davis2"/> | ||
इलेक्ट्रोस्पून नैनोफाइबर झिल्ली के रूप में झरझरा और नरम पदार्थ के साथ काम करते समय, उपरोक्त तनाव सूत्र का अनुप्रयोग समस्याग्रस्त है। झिल्ली की मोटाई, वास्तव में, उसके माप के दौरान लगाए गए दबाव पर निर्भर होती है, जिससे मोटाई का मान भिन्न होता है। परिणामस्वरूप, प्राप्त तनाव-विकृति वक्र उच्च परिवर्तनशीलता दिखाते हैं। इस मामले में, विश्वसनीय तन्य परिणाम प्राप्त करने के लिए क्रॉस-सेक्शन क्षेत्र (ए) के बजाय प्रारूप द्रव्यमान के संबंध में भार के सामान्यीकरण की सिफारिश की जाती है।<ref>{{Cite journal|last=Maccaferri|first=Emanuele |display-authors=etal |date=2021|title=How Nanofibers Carry the Load: Toward a Universal and Reliable Approach for Tensile Testing of Polymeric Nanofibrous Membranes |journal=Macromolecular Materials and Engineering|volume=306 |issue=7 |doi=10.1002/mame.202100183 |doi-access=free}}</ref> | इलेक्ट्रोस्पून नैनोफाइबर झिल्ली के रूप में झरझरा और नरम पदार्थ के साथ काम करते समय, उपरोक्त तनाव सूत्र का अनुप्रयोग समस्याग्रस्त है। झिल्ली की मोटाई, वास्तव में, उसके माप के दौरान लगाए गए दबाव पर निर्भर होती है, जिससे मोटाई का मान भिन्न होता है। परिणामस्वरूप, प्राप्त तनाव-विकृति वक्र उच्च परिवर्तनशीलता दिखाते हैं। इस मामले में, विश्वसनीय तन्य परिणाम प्राप्त करने के लिए क्रॉस-सेक्शन क्षेत्र (ए) के बजाय प्रारूप द्रव्यमान के संबंध में भार के सामान्यीकरण की सिफारिश की जाती है।<ref>{{Cite journal|last=Maccaferri|first=Emanuele |display-authors=etal |date=2021|title=How Nanofibers Carry the Load: Toward a Universal and Reliable Approach for Tensile Testing of Polymeric Nanofibrous Membranes |journal=Macromolecular Materials and Engineering|volume=306 |issue=7 |doi=10.1002/mame.202100183 |doi-access=free}}</ref> | ||
Line 153: | Line 153: | ||
== तन्यता परीक्षण विरूपण == | == तन्यता परीक्षण विरूपण == | ||
तन्यता परीक्षण का उपयोग पदार्थों में [[रेंगना (विरूपण)]] का परीक्षण करने के लिए किया जा सकता है, जो लंबे समय तक लगातार लागू तनाव से पदार्थ का धीमा प्लास्टिक विरूपण है। रेंगना | तन्यता परीक्षण का उपयोग पदार्थों में [[रेंगना (विरूपण)]] का परीक्षण करने के लिए किया जा सकता है, जो लंबे समय तक लगातार लागू तनाव से पदार्थ का धीमा प्लास्टिक विरूपण है। रेंगना सामान्यतः प्रसार और अव्यवस्था आंदोलन द्वारा सहायता प्राप्त है। जबकि रेंगने का परीक्षण करने के कई तरीके हैं, तन्यता परीक्षण कंक्रीट और सिरेमिक जैसी पदार्थों के लिए उपयोगी है जो तनाव और संपीड़न में अलग-अलग व्यवहार करते हैं, और इस प्रकार अलग-अलग तन्यता और संपीड़ित रेंगना दर रखते हैं। जैसे, तनाव का अनुभव करने वाली संरचनाओं के लिए कंक्रीट के डिजाइन में तन्य रेंगना को समझना महत्वपूर्ण है, जैसे कि पानी धारण करने वाले कंटेनर, या सामान्य संरचनात्मक अखंडता के लिए।<ref>{{cite journal |last1=Bissonnette |first1=Benoit |last2=Pigeon |first2=Michel |last3=Vaysburd |first3=Alexander M. |title=Tensile Creep of Concrete: Study of Its Sensitivity to Basic Parameters |journal=Materials Journal |date=1 July 2007 |volume=104 |issue=4 |pages=360–368 |id={{ProQuest|197938866}} |doi=10.14359/18825 }}</ref> | ||
क्रीप का तन्य परीक्षण | क्रीप का तन्य परीक्षण सामान्यतः मानक परीक्षण के समान परीक्षण प्रक्रिया का पालन करता है, हालांकि प्लास्टिक विरूपण के बजाय क्रीप डोमेन में बने रहने के लिए सामान्यतः कम तनाव होता है। इसके अतिरिक्त, विशेष तन्यता रेंगना परीक्षण उपकरण में प्रसार में सहायता के लिए उच्च तापमान भट्ठी घटकों को शामिल किया जा सकता है।<ref>{{Cite web |title=लीवर आर्म टेस्ट सिस्टम|url=https://www.mltest.com/index.php/applied-test-systems/creep-stress-rupture-testing/lever-arm-test-systems |access-date=2022-05-21 |website=www.mltest.com}}</ref> प्रारूपों को स्थिर तापमान और तनाव पर रखा जाता है, और पदार्थ पर तनाव को स्ट्रेन गेज या लेजर गेज का उपयोग करके मापा जाता है। मापा तनाव को रेंगने के विभिन्न तंत्रों को नियंत्रित करने वाले समीकरणों के साथ फिट किया जा सकता है, जैसे कि पावर लॉ रेंगना या प्रसार रेंगना (अधिक जानकारी के लिए रेंगना (विरूपण) देखें)। फ्रैक्चर के बाद प्रारूपों की जांच से आगे का विश्लेषण प्राप्त किया जा सकता है। क्रीप तंत्र और दर को समझने से पदार्थ चयन और डिजाइन में सहायता मिल सकेगी। | ||
यह ध्यान रखना महत्वपूर्ण है कि प्रारूप संरेखण तन्यता परीक्षण रेंगने के लिए महत्वपूर्ण है। ऑफ सेंटर्ड लोडिंग के परिणामस्वरूप | यह ध्यान रखना महत्वपूर्ण है कि प्रारूप संरेखण तन्यता परीक्षण रेंगने के लिए महत्वपूर्ण है। ऑफ सेंटर्ड लोडिंग के परिणामस्वरूप प्रारूपों पर झुकने वाला तनाव लागू होगा। प्रारूपों के सभी पक्षों पर तनाव को ट्रैक करके झुकने को मापा जा सकता है। प्रतिशत झुकने को एक चेहरे पर तनाव के बीच अंतर के रूप में परिभाषित किया जा सकता है (<math>\varepsilon_1</math>) और औसत तनाव (<math>\varepsilon_0</math>):<ref name=":0">{{cite journal |last1=Carroll |first1=Daniel F. |last2=Wiederhorn |first2=Sheldon M. |last3=Roberts |first3=D. E. |title=सिरेमिक के तन्यता रेंगने के परीक्षण की तकनीक|journal=Journal of the American Ceramic Society |date=September 1989 |volume=72 |issue=9 |pages=1610–1614 |doi=10.1111/j.1151-2916.1989.tb06291.x }}</ref> | ||
<math>\text{Percent Bending} = \frac{\varepsilon_1 - \varepsilon_0}{\varepsilon_0} \times 100</math> | <math>\text{Percent Bending} = \frac{\varepsilon_1 - \varepsilon_0}{\varepsilon_0} \times 100</math> | ||
लोड किए गए | लोड किए गए प्रारूपों के व्यापक चेहरे पर प्रतिशत झुकाव 1% से कम होना चाहिए, और पतले चेहरे पर 2% से कम होना चाहिए। लोडिंग क्लैंप पर गलत संरेखण और प्रारूपों की असममित मशीनिंग के कारण झुकना हो सकता है।<ref name=":0" /> | ||
Revision as of 06:40, 3 October 2023
तन्यता परीक्षण, जिसे तनाव परीक्षण भी कहा जाता है,[1] एक मौलिक पदार्थ विज्ञान और अभियांत्रिकी परीक्षण है जिसमें कोई प्रारूप, विफल होने तक नियंत्रित तनाव के अधीन होता है। जिन गुणों को सीधे तन्यता परीक्षण के माध्यम से सीधे मापे जाने वाले गुण हैं, उच्चतम तन्यता शक्ति, खंडन शक्ति, अधिकतम विस्तार और क्षेत्र में कमी आदि।[2] इन मापों से निम्नलिखित गुण भी निर्धारित किए जा सकते हैं: यंग का मापांक, पॉइसन का अनुपात, मुद्रण प्रतिरक्षा, और तनाव- दृढ़ करने की विशेषताएं आदि ।[3]समानुवर्ती पदार्थों की यांत्रिक विशेषताओं को प्राप्त करने के लिए एकाक्षीय तन्यता परीक्षण का सबसे अधिक उपयोग किया जाता है। कुछ पदार्थ द्विअक्षीय तन्यता परीक्षण का उपयोग करते हैं। इन परीक्षण यंत्रों के बीच मुख्य अंतर यह है कि पदार्थ पर भार कैसे लगाया जाता है।
तन्यता परीक्षण के उद्देश्य
तन्यता परीक्षण के कई उद्देश्य हो सकते हैं, जैसे:
- किसी एप्लिकेशन के लिए पदार्थ या वस्तु का चयन करें
- पूर्वानुमानित करें कि कोई पदार्थ उसके सामान्य और अत्यधिक बल में कैसे प्रदर्शन करेगी:
- निर्धारित करें कि क्या, या सत्यापित करें कि, किसी विनिर्देश, विनियमन या अनुबंध की आवश्यकताएं पूरी की गई हैं
- तय करें कि कोई नया उत्पाद विकास कार्यक्रम पटरी पर है या नहीं
- अवधारणा का प्रमाण प्रदर्शित करें
- प्रस्तावित पेटेंट की उपयोगिता प्रदर्शित करें
- अन्य वैज्ञानिक, अभियांत्रिकी और गुणवत्ता आश्वासन कार्यों के लिए तकनीकी मानक डेटा प्रदान करें
- तकनीकी संचार के लिए एक आधार प्रदान करें
- कई विकल्पों के सापेक्ष तकनीकी साधन प्रदान करें
- कानूनी कार्यवाही में साक्ष्य प्रदान करें
तन्यता प्रारूप
परीक्षण प्रारूपों की तैयारी परीक्षण के उद्देश्यों और शासकीय परीक्षण विधि या विनिर्देश पर निर्भर करती है। एक तन्यता प्रारूपों में सामान्यतः एक मानकीकृत प्रारूप क्रॉस-सेक्शन होता है। इसके दो कंधे और बीच में एक गेज (खंड) होता है। कंधे और पकड़ अनुभाग सामान्यतः गेज अनुभाग से 33% बड़े होते हैं [4] जिससे उन्हें सरलता से पकड़ा जा सके. गेज अनुभाग का छोटा व्यास भी इस क्षेत्र में विरूपण और विफलता की अनुमति देता है।[2][5]
परीक्षण प्रारूपों के कंधों को परीक्षण यंत्र में विभिन्न पकड़ के साथ जोड़ने के लिए विभिन्न तरीकों से निर्मित किया जा सकता है (नीचे दी गई छवि देखें)। प्रत्येक प्रणाली के लाभ और हानि हो हैं; उदाहरण के लिए, दाँतेदार पकड़ के लिए डिज़ाइन किए गए कंधों का निर्माण आसान और सस्ता है, लेकिन प्रारूपों का संरेखण तकनीशियन के कौशल पर निर्भर है। दूसरी ओर, एक पिन की गई पकड़ अच्छे संरेखण का आश्वासन देती है। थ्रेडेड कंधे और ग्रिप्स भी अच्छे संरेखण का आश्वासन देते हैं, लेकिन तकनीशियन को प्रत्येक कंधे को ग्रिप में कम से कम एक व्यास की लंबाई में पिरोना आना चाहिए, अन्यथा प्रारूप फ्रैक्चर से पहले धागे अलग हो सकते हैं।[6]
बड़ी कास्टिंग (धातुकर्म) और लोहारी में अतिरिक्त पदार्थ जोड़ना आम बात है, जिसे कास्टिंग से हटाने के लिए डिज़ाइन किया गया है ताकि इससे परीक्षण प्रारूपों बनाए जा सकें। ये प्रारूपों पूरे वर्कपीस का सटीक प्रतिनिधित्व नहीं कर सकते क्योंकि अनाज की संरचना हर जगह भिन्न हो सकती है। छोटे वर्कपीस में या जब कास्टिंग के महत्वपूर्ण हिस्सों का परीक्षण किया जाना चाहिए, तो परीक्षण प्रारूपों बनाने के लिए एक वर्कपीस का त्याग किया जा सकता है।[7] उन वर्कपीस के लिए जो स्टॉक पर बैन से मशीनिंग कर रहे हैं, परीक्षण प्रारूप बार स्टॉक के समान टुकड़े से बनाया जा सकता है।
नरम और झरझरा पदार्थ के लिए, जैसे नैनोफाइबर से बने इलेक्ट्रोस्पन नॉनवॉवन, प्रारूप सामान्यतः मशीन पर माउंट करने और झिल्ली को नुकसान से बचाने के लिए एक पेपर फ्रेम द्वारा समर्थित एक प्रारूप पट्टी होती है।[8][9]
एक परीक्षण मशीन की पुनरावृत्ति विशेष परीक्षण प्रारूपों का उपयोग करके पाई जा सकती है जिन्हें सावधानीपूर्वक यथासंभव समान बनाया जाता है।[7]
एक मानक प्रारूप उपयोग किए गए मानक के आधार पर, गेज की लंबाई के साथ एक गोल या चौकोर खंड में तैयार किया जाता है। के दोनों सिरे प्रारूपों की लंबाई पर्याप्त होनी चाहिए और सतह की स्थिति ऐसी होनी चाहिए कि वे मजबूती से पकड़े रहें परीक्षण के दौरान. प्रारंभिक गेज लंबाई लो मानकीकृत है (कई देशों में) और इसके साथ बदलती रहती है सूचीबद्ध प्रारूपों का व्यास (Do) या क्रॉस-अनुभागीय क्षेत्र (Ao)।
प्रतिदर्शी प्रकार | संयुक्त राज्य अमेरिका(एएसटीएम) | ब्रिटेन | जर्मनी |
---|---|---|---|
शीट( Lo / √Ao) | 4.5 | 5.65 | 11.3 |
रॉड ( Lo / Do) | 4.0 | 5.00 | 10.0 |
निम्नलिखित तालिकाएँ मानक एएसटीएम ई8 के अनुसार परीक्षण प्रारूप आयामों और सहनशीलता के उदाहरण देती हैं।
सभी मान इंच में | प्लेट प्रकार (1.5 इंच चौड़ा) | शीट का प्रकार (0.5 इंच चौड़ा | उप-आकार का प्रारूप (0.25 इंच चौड़ा) |
---|---|---|---|
लंबाई गेज | 8.00±0.01 | 2.00±0.005 | 1.000±0.003 |
चौड़ाई | 1.5 +0.125–0.25 | 0.500±0.010 | 0.250±0.005 |
मोटाई | 0.188 ≤ T | 0.005 ≤ T ≤ 0.75 | 0.005 ≤ T ≤ 0.25 |
फ़िलेट त्रिज्या (न्यूनतम) | 1 | 0.25 | 0.25 |
कुल लंबाई (न्यूनतम) | 18 | 8 | 4 |
घटे हुए खंड की लंबाई (न्यूनतम) | 9 | 2.25 | 1.25 |
पकड़ अनुभाग की लंबाई (न्यूनतम) | 3 | 2 | 1.25 |
पकड़ अनुभाग की चौड़ाई (लगभग) | 2 | 0.75 | 3⁄8 |
सभी मान इंच में | नाममात्र व्यास पर मानक प्रारूप : | नाममात्र व्यास पर छोटा प्रारूप | |||
---|---|---|---|---|---|
0.500 | 0.350 | 0.25 | 0.160 | 0.113 | |
लंबाई गेज | 2.00±0.005 | 1.400±0.005 | 1.000±0.005 | 0.640±0.005 | 0.450±0.005 |
व्यास सहिष्णुता | ±0.010 | ±0.007 | ±0.005 | ±0.003 | ±0.002 |
फ़िलेट त्रिज्या (न्यूनतम) | 3⁄8 | 0.25 | 5⁄16 | 5⁄32 | 3⁄32 |
घटे हुए खंड की लंबाई (न्यूनतम) | 2.5 | 1.75 | 1.25 | 0.75 | 5⁄8 |
उपकरण
तन्यता परीक्षण अक्सर पदार्थ परीक्षण प्रयोगशाला में किया जाता है। एएसटीएम डी638 सबसे आम तन्यता परीक्षण प्रोटोकॉल में से एक है। एएसटीएम डी638 परम तन्यता शक्ति , उपज शक्ति, बढ़ाव और पॉइसन अनुपात सहित प्लास्टिक तन्यता गुणों को मापता है।
तन्यता परीक्षण में उपयोग की जाने वाली सबसे आम परीक्षण मशीन सार्वभौमिक परीक्षण मशीन है। इस प्रकार की मशीन में दो क्रॉसहेड होते हैं; एक को प्रारूपों की लंबाई के लिए समायोजित किया जाता है और दूसरे को परीक्षण प्रारूपों पर तनाव लागू करने के लिए संचालित किया जाता है। दो प्रकार हैं: हाइड्रोलिक मशीनरी संचालित और विद्युत चुम्बकीय रूप से संचालित मशीनें।[5]
इलेक्ट्रोमैकेनिकल मशीन क्रॉसहेड को ऊपर या नीचे ले जाने के लिए एक इलेक्ट्रिक मोटर, गियर रिडक्शन सिस्टम और एक, दो या चार स्क्रू का उपयोग करती है। मोटर की गति को बदलकर क्रॉसहेड गति की एक श्रृंखला प्राप्त की जा सकती है। क्रॉसहेड की गति और परिणामस्वरूप लोड दर को बंद-लूप सर्वो नियंत्रक में एक माइक्रोप्रोसेसर द्वारा नियंत्रित किया जा सकता है। एक हाइड्रोलिक परीक्षण मशीन क्रॉसहेड को ऊपर या नीचे ले जाने के लिए एकल या दोहरे-अभिनय पिस्टन का उपयोग करती है। मैन्युअल रूप से संचालित परीक्षण प्रणालियाँ भी उपलब्ध हैं। मैनुअल कॉन्फ़िगरेशन के लिए लोड दर को नियंत्रित करने के लिए ऑपरेटर को सुई वाल्व को समायोजित करने की आवश्यकता होती है। एक सामान्य तुलना से पता चलता है कि इलेक्ट्रोमैकेनिकल मशीन परीक्षण गति और लंबे क्रॉसहेड विस्थापन की एक विस्तृत श्रृंखला में सक्षम है, जबकि हाइड्रोलिक मशीन उच्च बल उत्पन्न करने के लिए एक लागत प्रभावी समाधान है।[11] परीक्षण किए जा रहे परीक्षण प्रारूपों के लिए मशीन में उचित क्षमताएं होनी चाहिए। चार मुख्य पैरामीटर हैं: बल क्षमता, गति, परिशुद्धता और सटीकता। बल क्षमता इस तथ्य को संदर्भित करती है कि मशीन को प्रारूपों को फ्रैक्चर करने के लिए पर्याप्त बल उत्पन्न करने में सक्षम होना चाहिए। मशीन को इतनी तेजी से या धीरे-धीरे बल लगाने में सक्षम होना चाहिए कि वह वास्तविक अनुप्रयोग की ठीक से नकल कर सके। अंत में, मशीन को गेज की लंबाई और लागू बलों को सटीक और सटीकता से मापने में सक्षम होना चाहिए; उदाहरण के लिए, एक बड़ी मशीन जिसे लंबे बढ़ाव को मापने के लिए डिज़ाइन किया गया है वह भंगुर पदार्थ के साथ काम नहीं कर सकती है जो फ्रैक्चरिंग से पहले छोटे बढ़ाव का अनुभव करती है।[6] परीक्षण मशीन में परीक्षण प्रारूपों का संरेखण महत्वपूर्ण है, क्योंकि यदि प्रारूप गलत संरेखित है, या तो एक कोण पर या एक तरफ ऑफसेट है, तो मशीन प्रारूपों पर एक झुकने वाला बल लगाएगी। यह भंगुर पदार्थों के लिए विशेष रूप से बुरा है, क्योंकि यह नाटकीय रूप से परिणामों को ख़राब कर देगा। पकड़ और परीक्षण मशीन के बीच गोलाकार सीटों या यू-जोड़ों का उपयोग करके इस स्थिति को कम किया जा सकता है।[6]यदि तनाव-विकृति वक्र का प्रारंभिक भाग घुमावदार है और रैखिक नहीं है, तो यह इंगित करता है कि प्रारूप परीक्षण मशीन में गलत तरीके से संरेखित है।[12] स्ट्रेन माप को सामान्यतः एक्सटेन्सोमीटर से मापा जाता है, लेकिन विकृति प्रमापक का उपयोग अक्सर छोटे परीक्षण प्रारूपों पर या जब पॉइसन का अनुपात मापा जा रहा होता है, तब भी किया जाता है।[6]नई परीक्षण यंत्रों में डिजिटल समय, बल और बढ़ाव माप प्रणाली होती है जिसमें डेटा संग्रह उपकरण (अक्सर एक कंप्यूटर) से जुड़े इलेक्ट्रॉनिक सेंसर और डेटा में हेरफेर और आउटपुट करने के लिए सॉफ़्टवेयर शामिल होते हैं। हालाँकि, एनालॉग मशीनें एएसटीएम, एनआईएसटी और एएसएम धातु तन्यता परीक्षण सटीकता आवश्यकताओं को पूरा करती हैं और उनसे आगे बढ़ती हैं, जिनका उपयोग आज भी जारी है।[citation needed]
प्रक्रिया
परीक्षण प्रक्रिया में परीक्षण प्रारूपों को परीक्षण मशीन में रखना और धीरे-धीरे इसे फ्रैक्चर होने तक बढ़ाना शामिल है। इस प्रक्रिया के दौरान, लगाए गए बल के विरुद्ध गेज अनुभाग का बढ़ाव (पदार्थ विज्ञान) दर्ज किया जाता है। डेटा में हेरफेर किया जाता है ताकि यह परीक्षण प्रारूपों की ज्यामिति के लिए विशिष्ट न हो। बढ़ाव माप का उपयोग निम्नलिखित समीकरण का उपयोग करके अभियांत्रिकी विरूपण ( अभियांत्रिकी), ε की गणना करने के लिए किया जाता है:[5]
जहां ΔL गेज की लंबाई, L में परिवर्तन है0 प्रारंभिक गेज लंबाई है, और एल अंतिम लंबाई है। बल माप का उपयोग निम्नलिखित समीकरण का उपयोग करके अभियांत्रिकी तनाव, σ की गणना करने के लिए किया जाता है:[5]
जहां F तन्य बल है और A प्रारूपों का नाममात्र क्रॉस-सेक्शन है। मशीन ये गणना बल बढ़ने पर करती है, ताकि डेटा बिंदुओं को तनाव-तनाव वक्र में ग्राफ़ किया जा सके।[5]
इलेक्ट्रोस्पून नैनोफाइबर झिल्ली के रूप में झरझरा और नरम पदार्थ के साथ काम करते समय, उपरोक्त तनाव सूत्र का अनुप्रयोग समस्याग्रस्त है। झिल्ली की मोटाई, वास्तव में, उसके माप के दौरान लगाए गए दबाव पर निर्भर होती है, जिससे मोटाई का मान भिन्न होता है। परिणामस्वरूप, प्राप्त तनाव-विकृति वक्र उच्च परिवर्तनशीलता दिखाते हैं। इस मामले में, विश्वसनीय तन्य परिणाम प्राप्त करने के लिए क्रॉस-सेक्शन क्षेत्र (ए) के बजाय प्रारूप द्रव्यमान के संबंध में भार के सामान्यीकरण की सिफारिश की जाती है।[13]
तन्यता परीक्षण विरूपण
तन्यता परीक्षण का उपयोग पदार्थों में रेंगना (विरूपण) का परीक्षण करने के लिए किया जा सकता है, जो लंबे समय तक लगातार लागू तनाव से पदार्थ का धीमा प्लास्टिक विरूपण है। रेंगना सामान्यतः प्रसार और अव्यवस्था आंदोलन द्वारा सहायता प्राप्त है। जबकि रेंगने का परीक्षण करने के कई तरीके हैं, तन्यता परीक्षण कंक्रीट और सिरेमिक जैसी पदार्थों के लिए उपयोगी है जो तनाव और संपीड़न में अलग-अलग व्यवहार करते हैं, और इस प्रकार अलग-अलग तन्यता और संपीड़ित रेंगना दर रखते हैं। जैसे, तनाव का अनुभव करने वाली संरचनाओं के लिए कंक्रीट के डिजाइन में तन्य रेंगना को समझना महत्वपूर्ण है, जैसे कि पानी धारण करने वाले कंटेनर, या सामान्य संरचनात्मक अखंडता के लिए।[14] क्रीप का तन्य परीक्षण सामान्यतः मानक परीक्षण के समान परीक्षण प्रक्रिया का पालन करता है, हालांकि प्लास्टिक विरूपण के बजाय क्रीप डोमेन में बने रहने के लिए सामान्यतः कम तनाव होता है। इसके अतिरिक्त, विशेष तन्यता रेंगना परीक्षण उपकरण में प्रसार में सहायता के लिए उच्च तापमान भट्ठी घटकों को शामिल किया जा सकता है।[15] प्रारूपों को स्थिर तापमान और तनाव पर रखा जाता है, और पदार्थ पर तनाव को स्ट्रेन गेज या लेजर गेज का उपयोग करके मापा जाता है। मापा तनाव को रेंगने के विभिन्न तंत्रों को नियंत्रित करने वाले समीकरणों के साथ फिट किया जा सकता है, जैसे कि पावर लॉ रेंगना या प्रसार रेंगना (अधिक जानकारी के लिए रेंगना (विरूपण) देखें)। फ्रैक्चर के बाद प्रारूपों की जांच से आगे का विश्लेषण प्राप्त किया जा सकता है। क्रीप तंत्र और दर को समझने से पदार्थ चयन और डिजाइन में सहायता मिल सकेगी।
यह ध्यान रखना महत्वपूर्ण है कि प्रारूप संरेखण तन्यता परीक्षण रेंगने के लिए महत्वपूर्ण है। ऑफ सेंटर्ड लोडिंग के परिणामस्वरूप प्रारूपों पर झुकने वाला तनाव लागू होगा। प्रारूपों के सभी पक्षों पर तनाव को ट्रैक करके झुकने को मापा जा सकता है। प्रतिशत झुकने को एक चेहरे पर तनाव के बीच अंतर के रूप में परिभाषित किया जा सकता है () और औसत तनाव ():[16]
लोड किए गए प्रारूपों के व्यापक चेहरे पर प्रतिशत झुकाव 1% से कम होना चाहिए, और पतले चेहरे पर 2% से कम होना चाहिए। लोडिंग क्लैंप पर गलत संरेखण और प्रारूपों की असममित मशीनिंग के कारण झुकना हो सकता है।[16]
मानक
धातु
- एएसटीएम ई8/ई8एम-13: धातु पदार्थ के तनाव परीक्षण के लिए मानक परीक्षण विधियां (2013)
- मानकीकरण के लिए अंतर्राष्ट्रीय संगठन 6892-1: धातु पदार्थ । तन्यता परीक्षण. परिवेश के तापमान पर परीक्षण की विधि (2009)
- मानकीकरण के लिए अंतर्राष्ट्रीय संगठन 6892-2: धातु पदार्थ । तन्यता परीक्षण. ऊंचे तापमान पर परीक्षण की विधि (2011)
- जापानी औद्योगिक मानक Z2241 धातु पदार्थ के लिए तन्यता परीक्षण की विधि
- एमपीआईएफ परीक्षण मानक 10: पाउडर धातुकर्म (पीएम) पदार्थ के तन्य गुणों के लिए विधि धातु पदार्थ के तनाव परीक्षण के लिए मानक परीक्षण विधियां (2015)
समग्र
- एएसटीएम डी 3039/डी 3039एम: पॉलिमर मैट्रिक्स मिश्रित पदार्थ के तन्य गुणों के लिए मानक परीक्षण विधि
लचीली पदार्थ
- प्लास्टिक के तन्य गुणों के लिए एएसटीएम डी638 मानक परीक्षण विधि
- एएसटीएम डी828 निरंतर-दर-बढ़ाव उपकरण का उपयोग करके कागज और पेपरबोर्ड के तन्य गुणों के लिए मानक परीक्षण विधि
- एएसटीएम डी882 पतली प्लास्टिक शीटिंग के तन्य गुणों के लिए मानक परीक्षण विधि
- मानकीकरण के लिए अंतर्राष्ट्रीय संगठन 37 रबर, वल्केनाइज्ड या थर्मोप्लास्टिक-तन्य तनाव-तनाव गुणों का निर्धारण
संदर्भ
- ↑ Czichos, Horst (2006). सामग्री मापन विधियों की स्प्रिंगर हैंडबुक. Berlin: Springer. pp. 303–304. ISBN 978-3-540-20785-6.
- ↑ 2.0 2.1 Davis, Joseph R. (2004). तन्यता परीक्षण (2nd ed.). ASM International. ISBN 978-0-87170-806-9.
- ↑ Davis 2004, p. 33.
- ↑ Common Material Tests. The Engineering Archive. (n.d.). https://theengineeringarchive.com/material-science/page-common-material-tests.html
- ↑ 5.0 5.1 5.2 5.3 5.4 Davis 2004, p. 2.
- ↑ 6.0 6.1 6.2 6.3 Davis 2004, p. 9.
- ↑ 7.0 7.1 Davis 2004, p. 8.
- ↑ Maccaferri, Emanuele; Cocchi, Davide; Mazzocchetti, Laura; Benelli, Tiziana; Brugo, Tommaso Maria; Giorgini, Loris; Zucchelli, Andrea (July 2021). "How Nanofibers Carry the Load: Toward a Universal and Reliable Approach for Tensile Testing of Polymeric Nanofibrous Membranes". Macromolecular Materials and Engineering. 306 (7): 2100183. doi:10.1002/mame.202100183.
- ↑ How to correctly prepare nanofibrous mat specimens for tensile testing. youtube.com
- ↑ 10.0 10.1 Davis 2004, p. 52.
- ↑ Gedney, 2005
- ↑ Davis 2004, p. 11.
- ↑ Maccaferri, Emanuele; et al. (2021). "How Nanofibers Carry the Load: Toward a Universal and Reliable Approach for Tensile Testing of Polymeric Nanofibrous Membranes". Macromolecular Materials and Engineering. 306 (7). doi:10.1002/mame.202100183.
- ↑ Bissonnette, Benoit; Pigeon, Michel; Vaysburd, Alexander M. (1 July 2007). "Tensile Creep of Concrete: Study of Its Sensitivity to Basic Parameters". Materials Journal. 104 (4): 360–368. doi:10.14359/18825. ProQuest 197938866.
- ↑ "लीवर आर्म टेस्ट सिस्टम". www.mltest.com. Retrieved 2022-05-21.
- ↑ 16.0 16.1 Carroll, Daniel F.; Wiederhorn, Sheldon M.; Roberts, D. E. (September 1989). "सिरेमिक के तन्यता रेंगने के परीक्षण की तकनीक". Journal of the American Ceramic Society. 72 (9): 1610–1614. doi:10.1111/j.1151-2916.1989.tb06291.x.