न्यूरोप्रोस्थेटिक्स: Difference between revisions

From Vigyanwiki
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Discipline related to neuroscience and biomedical engineering}}
{{Short description|Discipline related to neuroscience and biomedical engineering}}
{{multiple issues|{{more citations needed|date=April 2016}}
'''न्यूरोप्रोस्थेटिक्स''' (न्यूरल प्रोस्थेटिक्स भी कहा जाता है) [[तंत्रिका विज्ञान]] और [[ जैवचिकित्सा अभियांत्रिकी ]] से संबंधित एक अनुशासन है जो तंत्रिका प्रोस्थेटिक्स के विकास से संबंधित है। कभी-कभी उनकी तुलना मस्तिष्क (ब्रेन)-कंप्यूटर इंटरफ़ेस से की जाती है, जो ब्रेन को लुप्त (मिसिंग) जैविक कार्यक्षमता को बदलने के लिए बनाए गए उपकरण के बजाय कंप्यूटर से जोड़ता है।<ref>{{cite journal |last1=Krucoff |first1=Max O. |last2=Rahimpour |first2=Shervin |last3=Slutzky |first3=Marc W. |last4=Edgerton |first4=V. Reggie |last5=Turner |first5=Dennis A. |date=2016-01-01 |title=न्यूरोबायोलॉजिक्स, न्यूरल इंटरफ़ेस ट्रेनिंग और न्यूरोरेहैबिलिटेशन के माध्यम से तंत्रिका तंत्र की रिकवरी को बढ़ाना|journal= Frontiers in Neuroscience|volume=10 |pages=584 |doi=10.3389/fnins.2016.00584 |pmc=5186786 |pmid=28082858|doi-access=free }}</ref>
{{Tone|date=August 2011}}}}
 
न्यूरो[[ कृत्रिम अंग ]] (न्यूरल प्रोस्थेटिक्स भी कहा जाता है) [[तंत्रिका विज्ञान]] और [[ जैवचिकित्सा अभियांत्रिकी ]] से संबंधित एक अनुशासन है जो तंत्रिका प्रोस्थेटिक्स के विकास से संबंधित है। कभी-कभी उनकी तुलना मस्तिष्क-कंप्यूटर इंटरफ़ेस से की जाती है, जो मस्तिष्क को लापता जैविक कार्यक्षमता को बदलने के लिए बनाए गए उपकरण के बजाय कंप्यूटर से जोड़ता है।<ref>{{cite journal |last1=Krucoff |first1=Max O. |last2=Rahimpour |first2=Shervin |last3=Slutzky |first3=Marc W. |last4=Edgerton |first4=V. Reggie |last5=Turner |first5=Dennis A. |date=2016-01-01 |title=न्यूरोबायोलॉजिक्स, न्यूरल इंटरफ़ेस ट्रेनिंग और न्यूरोरेहैबिलिटेशन के माध्यम से तंत्रिका तंत्र की रिकवरी को बढ़ाना|journal= Frontiers in Neuroscience|volume=10 |pages=584 |doi=10.3389/fnins.2016.00584 |pmc=5186786 |pmid=28082858|doi-access=free }}</ref>
तंत्रिका प्रोस्थेटिक्स अंग उपकरणों की एक श्रृंखला है जो मोटर, संवेदी या संज्ञानात्मक तौर-तरीकों को प्रतिस्थापित कर सकती है जो किसी चोट या बीमारी के परिणामस्वरूप क्षतिग्रस्त हो सकते हैं। [[कॉकलीयर इम्प्लांट]] ऐसे उपकरणों का एक उदाहरण प्रदान करते हैं। ये उपकरण [[कोक्लीअ]] में किए गए आवृत्ति विश्लेषण का अनुकरण करते हुए [[ कान का परदा | कान का परदा]] और [[ स्टेपीज़ | स्टेपीज़]] द्वारा किए गए कार्यों को प्रतिस्थापित करते हैं। बाहरी इकाई पर एक माइक्रोफ़ोन ध्वनि एकत्र करता है और उसे संसाधित करता है; संसाधित सिग्नल को फिर एक प्रत्यारोपित इकाई में स्थानांतरित किया जाता है जो [[माइक्रोइलेक्ट्रोड सरणी]] के माध्यम से ऑडिटरी नर्व ([[श्रवण तंत्रिका|श्रवण तंत्रिका)]] को उत्तेजित करता है।<ref>{{Cite web |title=कर्णावर्त तंत्रिका का प्रत्यारोपण|url=https://www.nidcd.nih.gov/health/cochlear-implants |access-date=2022-06-27 |website=NIDCD |date=24 March 2021 |language=en}}</ref> क्षतिग्रस्त इंद्रियों के प्रतिस्थापन या संवर्द्धन के माध्यम से, इन उपकरणों का उद्देश्य विकलांग लोगों के लिए जीवन की गुणवत्ता में सुधार करना है।
तंत्रिका कृत्रिम अंग उपकरणों की एक श्रृंखला है जो मोटर, संवेदी या संज्ञानात्मक तौर-तरीकों को प्रतिस्थापित कर सकती है जो किसी चोट या बीमारी के परिणामस्वरूप क्षतिग्रस्त हो सकते हैं। [[कॉकलीयर इम्प्लांट]] ऐसे उपकरणों का एक उदाहरण प्रदान करते हैं। ये उपकरण [[कोक्लीअ]] में किए गए आवृत्ति विश्लेषण का अनुकरण करते हुए [[ कान का परदा ]] और [[ स्टेपीज़ ]] द्वारा किए गए कार्यों को प्रतिस्थापित करते हैं। बाहरी इकाई पर एक माइक्रोफ़ोन ध्वनि एकत्र करता है और उसे संसाधित करता है; संसाधित सिग्नल को फिर एक प्रत्यारोपित इकाई में स्थानांतरित किया जाता है जो [[माइक्रोइलेक्ट्रोड सरणी]] के माध्यम से [[श्रवण तंत्रिका]] को उत्तेजित करता है।<ref>{{Cite web |title=कर्णावर्त तंत्रिका का प्रत्यारोपण|url=https://www.nidcd.nih.gov/health/cochlear-implants |access-date=2022-06-27 |website=NIDCD |date=24 March 2021 |language=en}}</ref> क्षतिग्रस्त इंद्रियों के प्रतिस्थापन या संवर्द्धन के माध्यम से, इन उपकरणों का उद्देश्य विकलांग लोगों के लिए जीवन की गुणवत्ता में सुधार करना है।
 
इन प्रत्यारोपित उपकरणों का उपयोग प्रारम्भ [[मानव मस्तिष्क]] और इसकी कार्यप्रणाली की बेहतर समझ विकसित करने में न्यूरोवैज्ञानिकों की सहायता के लिए एक उपकरण के रूप में पशु प्रयोग में भी किया जाता है। विषय के मस्तिष्क में प्रत्यारोपित इलेक्ट्रोड द्वारा भेजे गए मस्तिष्क के विद्युत संकेतों की वायरलेस तरीके से निगरानी करके, डिवाइस के परिणामों को प्रभावित किए बिना विषय का अध्ययन किया जा सकता है। मस्तिष्क में विद्युत संकेतों की सटीक जांच और रिकॉर्डिंग से न्यूरॉन्स की स्थानीय आबादी के बीच संबंधों को बेहतर ढंग से समझने में मदद मिलेगी जो एक विशिष्ट कार्य के लिए जिम्मेदार हैं।<ref>{{Cite journal |last=Kansaku |first=Kenji |date=2021-03-08 |title=सिस्टम न्यूरोसाइंस और मेडिसिन में न्यूरोप्रोस्थेटिक्स|journal=Scientific Reports |language=en |volume=11 |issue=1 |pages=5404 |doi=10.1038/s41598-021-85134-4 |pmid=33686138 |pmc=7970876 |bibcode=2021NatSR..11.5404K |issn=2045-2322}}</ref>
 
तंत्रिका प्रत्यारोपण को जितना संभव हो उतना छोटा डिज़ाइन किया गया है ताकि न्यूनतम आक्रामक हो, विशेष रूप से मस्तिष्क, आंखों या कोक्लीअ के आसपास के क्षेत्रों में। ये प्रत्यारोपण प्रारम्भ अपने प्रोस्थेटिक्स समकक्षों के साथ वायरलेस तरीके से संचार करते हैं। इसके अतिरिक्त, बिजली वर्तमान में त्वचा के माध्यम से [[ वायरलेस पॉवर ट्रांसमिशन | वायरलेस पॉवर ट्रांसमिशन]] के माध्यम से प्राप्त की जाती है। इम्प्लांट के आसपास के ऊतक प्रारम्भ तापमान वृद्धि के प्रति अत्यधिक संवेदनशील होते हैं, जिसका अर्थ है कि ऊतक क्षति को रोकने के लिए बिजली की खपत न्यूनतम होनी चाहिए।<ref>{{cite book |chapter=Minimizing Thermal Effects of In Vivo Body Sensors |author=Daniel Garrison |title=4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007) |volume=13 |pages=284–89 |doi=10.1007/978-3-540-70994-7_47 |series=IFMBE Proceedings |year=2007 |isbn=978-3-540-70993-0 }}</ref>


इन प्रत्यारोपित उपकरणों का उपयोग आमतौर पर [[मानव मस्तिष्क]] और इसकी कार्यप्रणाली की बेहतर समझ विकसित करने में न्यूरोवैज्ञानिकों की सहायता के लिए एक उपकरण के रूप में पशु प्रयोग में भी किया जाता है। विषय के मस्तिष्क में प्रत्यारोपित इलेक्ट्रोड द्वारा भेजे गए मस्तिष्क के विद्युत संकेतों की वायरलेस तरीके से निगरानी करके, डिवाइस के परिणामों को प्रभावित किए बिना विषय का अध्ययन किया जा सकता है। मस्तिष्क में विद्युत संकेतों की सटीक जांच और रिकॉर्डिंग से न्यूरॉन्स की स्थानीय आबादी के बीच संबंधों को बेहतर ढंग से समझने में मदद मिलेगी जो एक विशिष्ट कार्य के लिए जिम्मेदार हैं।<ref>{{Cite journal |last=Kansaku |first=Kenji |date=2021-03-08 |title=सिस्टम न्यूरोसाइंस और मेडिसिन में न्यूरोप्रोस्थेटिक्स|journal=Scientific Reports |language=en |volume=11 |issue=1 |pages=5404 |doi=10.1038/s41598-021-85134-4 |pmid=33686138 |pmc=7970876 |bibcode=2021NatSR..11.5404K |issn=2045-2322}}</ref>
तंत्रिका प्रत्यारोपण को जितना संभव हो उतना छोटा डिज़ाइन किया गया है ताकि न्यूनतम आक्रामक हो, विशेष रूप से मस्तिष्क, आंखों या कोक्लीअ के आसपास के क्षेत्रों में। ये प्रत्यारोपण आमतौर पर अपने कृत्रिम समकक्षों के साथ वायरलेस तरीके से संचार करते हैं। इसके अतिरिक्त, बिजली वर्तमान में त्वचा के माध्यम से [[ वायरलेस पॉवर ट्रांसमिशन ]] के माध्यम से प्राप्त की जाती है। इम्प्लांट के आसपास के ऊतक आमतौर पर तापमान वृद्धि के प्रति अत्यधिक संवेदनशील होते हैं, जिसका अर्थ है कि ऊतक क्षति को रोकने के लिए बिजली की खपत न्यूनतम होनी चाहिए।<ref>{{cite book |chapter=Minimizing Thermal Effects of In Vivo Body Sensors |author=Daniel Garrison |title=4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007) |volume=13 |pages=284–89 |doi=10.1007/978-3-540-70994-7_47 |series=IFMBE Proceedings |year=2007 |isbn=978-3-540-70993-0 }}</ref>
वर्तमान में न्यूरोप्रोस्थेटिक का सबसे व्यापक उपयोग कॉक्लियर इम्प्लांट है, जिसका दुनिया भर में 300,000 से अधिक उपयोग किया जाता है। {{As of|2012|lc=on}}.<ref>{{Cite web | url=https://www.nidcd.nih.gov/health/cochlear-implants |title = कर्णावर्त तंत्रिका का प्रत्यारोपण|date = 2015-08-18}}</ref>
वर्तमान में न्यूरोप्रोस्थेटिक का सबसे व्यापक उपयोग कॉक्लियर इम्प्लांट है, जिसका दुनिया भर में 300,000 से अधिक उपयोग किया जाता है। {{As of|2012|lc=on}}.<ref>{{Cite web | url=https://www.nidcd.nih.gov/health/cochlear-implants |title = कर्णावर्त तंत्रिका का प्रत्यारोपण|date = 2015-08-18}}</ref>




==इतिहास==
==इतिहास==
पहला ज्ञात कॉक्लियर इम्प्लांट 1957 में बनाया गया था। अन्य मील के पत्थर में 1961 में [[ अर्धांगघात ]] में पैर गिराने के लिए पहला मोटर प्रोस्थेसिस, 1977 में पहला [[श्रवण ब्रेनस्टेम प्रत्यारोपण]] और 1981 में एक वयस्क चूहे की रीढ़ की हड्डी में प्रत्यारोपित एक [[परिधीय तंत्रिका पुल]] शामिल है। 1988, [[काठ का पूर्वकाल जड़ प्रत्यारोपण]] और [[कार्यात्मक विद्युत उत्तेजना]] (एफईएस) ने [[पैराप्लेजिक्स]] के एक समूह के लिए क्रमशः खड़े होने और चलने की सुविधा प्रदान की।<ref>Handa G (2006) "Neural Prosthesis – Past, Present and Future" ''Indian Journal of Physical Medicine & Rehabilitation'' 17(1)</ref>
पहला ज्ञात कॉक्लियर इम्प्लांट 1957 में बनाया गया था। अन्य परिवर्धनपाथवे शिला 1961 में [[ अर्धांगघात | अर्धांगघात (हेमिप्लेजिया)]] में पैर गिराने के लिए पहला मोटर प्रोस्थेसिस, 1977 में पहला [[श्रवण ब्रेनस्टेम प्रत्यारोपण|श्रवण (ऑडिटरी) ब्रेनस्टेम प्रत्यारोपण]] और 1981 में एक वयस्क चूहे की रीढ़ की हड्डी में प्रत्यारोपित एक पेरीफेरल नर्व ब्रिज [[परिधीय तंत्रिका पुल|(परिधीय तंत्रिका पुल)]] सम्मिलित है। 1988, लम्बर एंटीरियर रुट इम्प्लांट ([[काठ का पूर्वकाल जड़ प्रत्यारोपण|कटि कोर्सेट अग्र रुट प्रत्यारोप)]] और [[कार्यात्मक विद्युत उत्तेजना]] (एफईएस) ने [[पैराप्लेजिक्स]] के एक समूह के लिए क्रमशः खड़े होने और चलने की सुविधा प्रदान की है।<ref>Handa G (2006) "Neural Prosthesis – Past, Present and Future" ''Indian Journal of Physical Medicine & Rehabilitation'' 17(1)</ref>
मस्तिष्क में प्रत्यारोपित [[इलेक्ट्रोड]] के विकास के संबंध में, प्रारंभिक कठिनाई इलेक्ट्रोड का विश्वसनीय रूप से पता लगाना था, जो मूल रूप से सुइयों के साथ इलेक्ट्रोड डालने और वांछित गहराई पर सुइयों को तोड़ने के द्वारा किया जाता था।<ref>{{Cite journal |last=Choi |first=Jung-Ryul |date=2018 |title=Implantable Neural Probes for Brain-Machine Interfaces – Current Developments and Future Prospects |journal=Experimental Neurobiology |volume=27 |issue=6 |pages=453–471|doi=10.5607/en.2018.27.6.453 |pmid=30636899 |pmc=6318554 }}</ref> हाल की प्रणालियाँ अधिक उन्नत जांचों का उपयोग करती हैं, जैसे कि पार्किंसंस रोग के लक्षणों को कम करने के लिए [[गहरी मस्तिष्क उत्तेजना]] में उपयोग की जाने वाली जांचें। किसी भी दृष्टिकोण के साथ समस्या यह है कि मस्तिष्क खोपड़ी में स्वतंत्र रूप से तैरता रहता है जबकि जांच नहीं होती है, और अपेक्षाकृत छोटे प्रभाव, जैसे कि कम गति वाली कार दुर्घटना, संभावित रूप से हानिकारक होते हैं। मिशिगन विश्वविद्यालय के केंसल वाइज जैसे कुछ शोधकर्ताओं ने खोपड़ी की आंतरिक सतह पर 'मस्तिष्क की बाहरी सतह पर लगाए जाने वाले इलेक्ट्रोड' को बांधने का प्रस्ताव दिया है।<ref>{{Cite journal |last=Seymour |first=John |date=January 2017 |title=मस्तिष्क अनुसंधान के लिए अत्याधुनिक एमईएमएस और माइक्रोसिस्टम उपकरण|journal=Microsystems & Nanoengineering |volume=3|page=16066 |doi=10.1038/micronano.2016.66 |pmid=31057845 |pmc=6445015 }}</ref> हालाँकि, सफल होने पर भी, टेदरिंग मस्तिष्क में गहराई तक डाले जाने वाले उपकरणों में समस्या का समाधान नहीं करेगी, जैसे कि डीप ब्रेन स्टिमुलेशन (डीबीएस) के मामले में।
 
मस्तिष्क में प्रत्यारोपित [[इलेक्ट्रोड]] के विकास के संबंध में, प्रारंभिक कठिनाई इलेक्ट्रोड का विश्वसनीय रूप से पता लगाना था, जो मूल रूप से सुइयों के साथ इलेक्ट्रोड डालने और वांछित गहराई पर सुइयों को तोड़ने के द्वारा किया जाता था।<ref>{{Cite journal |last=Choi |first=Jung-Ryul |date=2018 |title=Implantable Neural Probes for Brain-Machine Interfaces – Current Developments and Future Prospects |journal=Experimental Neurobiology |volume=27 |issue=6 |pages=453–471|doi=10.5607/en.2018.27.6.453 |pmid=30636899 |pmc=6318554 }}</ref> हाल की प्रणालियाँ अधिक उन्नत जांचों का उपयोग करती हैं, जैसे कि पार्किंसंस रोग के लक्षणों को कम करने के लिए [[गहरी मस्तिष्क उत्तेजना]] (डीप ब्रेन स्टिमुलेशन) में उपयोग की जाने वाली जांचें। किसी भी दृष्टिकोण के साथ समस्या यह है कि मस्तिष्क कपाल में स्वतंत्र रूप से तैरता रहता है जबकि जांच नहीं होती है, और अपेक्षाकृत छोटे प्रभाव, जैसे कि कम गति वाली कार दुर्घटना, संभावित रूप से हानिकारक होते हैं। मिशिगन विश्वविद्यालय के केंसल वाइज जैसे कुछ शोधकर्ताओं ने कपाल की आंतरिक सतह पर 'मस्तिष्क की बाहरी सतह पर लगाए जाने वाले इलेक्ट्रोड' को बांधने का प्रस्ताव दिया है।<ref>{{Cite journal |last=Seymour |first=John |date=January 2017 |title=मस्तिष्क अनुसंधान के लिए अत्याधुनिक एमईएमएस और माइक्रोसिस्टम उपकरण|journal=Microsystems & Nanoengineering |volume=3|page=16066 |doi=10.1038/micronano.2016.66 |pmid=31057845 |pmc=6445015 }}</ref> हालाँकि, सफल होने पर भी, टेदरिंग मस्तिष्क में गहराई तक डाले जाने वाले उपकरणों में समस्या का समाधान नहीं करेगी, जैसे कि डीप ब्रेन स्टिमुलेशन (डीबीएस) के परिस्थिति में करते हैं।


==संवेदी प्रोस्थेटिक्स==
==संवेदी प्रोस्थेटिक्स==


===विज़ुअल प्रोस्थेटिक्स===
===विज़ुअल प्रोस्थेटिक्स===
{{Main|Visual prosthetic}}
{{Main|विज़ुअल प्रोस्थेटिक्स}}


एक दृश्य कृत्रिम अंग दृश्य प्रणाली में न्यूरॉन्स को विद्युत रूप से उत्तेजित करके छवि की भावना पैदा कर सकता है। एक कैमरा वायरलेस तरीके से इम्प्लांट तक संचारित होगा, इम्प्लांट इलेक्ट्रोड की एक श्रृंखला में छवि को मैप करेगा। इलेक्ट्रोड की श्रृंखला को 600-1000 स्थानों को प्रभावी ढंग से उत्तेजित करना होता है, [[रेटिना]] में इन ऑप्टिक न्यूरॉन्स को उत्तेजित करने से एक छवि बनेगी। उत्तेजना ऑप्टिक सिग्नल के मार्ग पर कहीं भी की जा सकती है। एक छवि बनाने के लिए [[ऑप्टिकल तंत्रिका]] को उत्तेजित किया जा सकता है, या दृश्य कॉर्टेक्स को उत्तेजित किया जा सकता है, हालांकि रेटिना प्रत्यारोपण के लिए नैदानिक ​​​​परीक्षण सबसे सफल साबित हुए हैं।
एक विज़ुअल प्रोस्थेटिक्स अंग विज़ुअल प्रणाली में न्यूरॉन्स को विद्युत रूप से उत्तेजित करके छवि की भावना उन्नत कर सकता है। एक कैमरा वायरलेस तरीके से इम्प्लांट तक संचारित होगा, इम्प्लांट इलेक्ट्रोड की एक श्रृंखला में छवि को मैप करेगा। इलेक्ट्रोड की श्रृंखला को 600-1000 स्थानों को प्रभावी ढंग से उत्तेजित करना होता है, [[रेटिना]] में इन ऑप्टिक न्यूरॉन्स को उत्तेजित करने से एक छवि बनेगी। उत्तेजना ऑप्टिक सिग्नल के पाथवे पर कहीं भी की जा सकती है। एक छवि बनाने के लिए [[ऑप्टिकल तंत्रिका]] को उत्तेजित किया जा सकता है, या विज़ुअल कॉर्टेक्स को उत्तेजित किया जा सकता है, हालांकि रेटिना प्रत्यारोपण के लिए नैदानिक ​​​​परीक्षण सबसे सफल साबित हुए हैं।


एक दृश्य कृत्रिम अंग प्रणाली में एक बाहरी (या प्रत्यारोपण योग्य) इमेजिंग प्रणाली होती है जो वीडियो प्राप्त करती है और संसाधित करती है। बाहरी इकाई द्वारा पावर और डेटा को वायरलेस तरीके से इम्प्लांट तक प्रेषित किया जाएगा। इम्प्लांट डिजिटल डेटा को एनालॉग आउटपुट में परिवर्तित करने के लिए प्राप्त शक्ति/डेटा का उपयोग करता है जिसे माइक्रो इलेक्ट्रोड के माध्यम से तंत्रिका तक पहुंचाया जाएगा।
एक विज़ुअल प्रोस्थेटिक्स अंग प्रणाली में एक बाहरी (या प्रत्यारोपण योग्य) इमेजिंग प्रणाली होती है जो वीडियो प्राप्त करती है और संसाधित करती है। बाहरी इकाई द्वारा पावर और डेटा को वायरलेस तरीके से इम्प्लांट तक प्रेषित किया जाएगा। इम्प्लांट डिजिटल डेटा को एनालॉग आउटपुट में परिवर्तित करने के लिए प्राप्त पावर/डेटा का उपयोग करता है जिसे माइक्रो इलेक्ट्रोड के माध्यम से तंत्रिका तक पहुंचाया जाएगा।


[[ फोटोरिसेप्टर कोशिका ]] विशेष न्यूरॉन्स हैं जो फोटॉन को विद्युत संकेतों में परिवर्तित करते हैं। वे रेटिना का हिस्सा हैं, एक बहुपरत तंत्रिका संरचना जो लगभग 200 um मोटी होती है जो मानव आंख के पीछे की रेखा बनाती है। संसाधित सिग्नल ऑप्टिकल तंत्रिका के माध्यम से मस्तिष्क को भेजा जाता है। यदि इस मार्ग का कोई भी भाग क्षतिग्रस्त हो तो [[अंधापन]] हो सकता है।
[[ फोटोरिसेप्टर कोशिका |फोटोरिसेप्टर कोशिका]] विशेष न्यूरॉन्स हैं जो फोटॉन को विद्युत संकेतों में परिवर्तित करते हैं। वे रेटिना का हिस्सा हैं, एक बहुपरत तंत्रिका संरचना जो लगभग 200 um मोटी होती है जो मानव आंख के पीछे की रेखा बनाती है। संसाधित सिग्नल ऑप्टिकल तंत्रिका के माध्यम से मस्तिष्क को भेजा जाता है। यदि इस पाथवे का कोई भी भाग क्षतिग्रस्त हो तो [[अंधापन]] हो सकता है।


[[ऑप्टिकल मार्ग]] ([[कॉर्निया]], [[जलीय हास्य]], [[क्रिस्टलीय लेंस]] और कांच का हास्य) को नुकसान होने से अंधापन हो सकता है। ऐसा दुर्घटना या बीमारी के परिणामस्वरूप हो सकता है। दो सबसे आम रेटिना अपक्षयी रोग, जिनके परिणामस्वरूप फोटोरिसेप्टर हानि के बाद अंधापन होता है, उम्र से संबंधित मैक्यूलर डिजनरेशन (एएमडी) और रेटिनाइटिस पिगमेंटोसा (आरपी) हैं।
[[ऑप्टिकल मार्ग|ऑप्टिकल पाथवे]] ([[कॉर्निया]], [[जलीय हास्य]], [[क्रिस्टलीय लेंस]] और कांच का हास्य) को नुकसान होने से अंधापन हो सकता है। ऐसा दुर्घटना या बीमारी के परिणामस्वरूप हो सकता है। दो सबसे आम रेटिना अपक्षयी रोग, जिनके परिणामस्वरूप फोटोरिसेप्टर हानि के बाद अंधापन होता है, उम्र से संबंधित मैक्यूलर डिजनरेशन (एएमडी) और रेटिनाइटिस पिगमेंटोसा (आरपी) हैं।


स्थायी रूप से प्रत्यारोपित रेटिनल प्रोस्थेसिस का पहला नैदानिक ​​परीक्षण 3500 तत्वों के साथ एक निष्क्रिय माइक्रोफोटोडायोड सरणी वाला एक उपकरण था।<ref>A. Y. Chow, V. Y. Chow, K. Packo, J. Pollack, G. Peyman, and R. Schuchard, "The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa," Arch.Ophthalmol., vol. 122, p. 460, 2004</ref> यह परीक्षण 2000 में ऑप्टोबायोनिक्स, इंक. में लागू किया गया था। 2002 में, [[दूसरी दृष्टि चिकित्सा उत्पाद]], इंक. (सिल्मर, सीए) ने 16 इलेक्ट्रोड के साथ एक प्रोटोटाइप एपिरेटिनल इम्प्लांट के साथ एक परीक्षण शुरू किया। विषय छह व्यक्ति थे जिनकी नग्न प्रकाश धारणा आरपी के बाद गौण थी। विषयों ने सांख्यिकीय रूप से अवसर से ऊपर के स्तर पर तीन सामान्य वस्तुओं (प्लेट, कप और चाकू) के बीच अंतर करने की अपनी क्षमता का प्रदर्शन किया। रेटिना इंप्लांट जीएमबीएच (राउटलिंगन, जर्मनी) द्वारा विकसित एक सक्रिय उप रेटिनल डिवाइस का 2006 में नैदानिक ​​परीक्षण शुरू हुआ। 1500 माइक्रोफोटोडायोड वाला एक आईसी रेटिना के नीचे प्रत्यारोपित किया गया था। माइक्रोफोटोडायोड [[फोटो डायोड]] पर आपतित प्रकाश की मात्रा के आधार पर वर्तमान दालों को नियंत्रित करने का काम करते हैं।<ref>M. J. McMahon, A. Caspi, J. D.Dorn,
स्थायी रूप से प्रत्यारोपित रेटिनल प्रोस्थेसिस का पहला नैदानिक ​​परीक्षण 3500 तत्वों के साथ एक निष्क्रिय माइक्रोफोटोडायोड सरणी वाला एक उपकरण था।<ref>A. Y. Chow, V. Y. Chow, K. Packo, J. Pollack, G. Peyman, and R. Schuchard, "The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa," Arch.Ophthalmol., vol. 122, p. 460, 2004</ref> यह परीक्षण 2000 में ऑप्टोबायोनिक्स, इंक. में लागू किया गया था। 2002 में, [[दूसरी दृष्टि चिकित्सा उत्पाद]], इंक. (सिल्मर, सीए) ने 16 इलेक्ट्रोड के साथ एक प्रोटोटाइप एपिरेटिनल इम्प्लांट के साथ एक परीक्षण प्रारम्भ किया। विषय छह व्यक्ति थे जिनकी नग्न प्रकाश धारणा आरपी के बाद गौण थी। विषयों ने सांख्यिकीय रूप से अवसर से ऊपर के स्तर पर तीन सामान्य वस्तुओं (प्लेट, कप और चाकू) के बीच अंतर करने की अपनी क्षमता का प्रदर्शन किया। रेटिना इंप्लांट जीएमबीएच (राउटलिंगन, जर्मनी) द्वारा विकसित एक सक्रिय उप रेटिनल डिवाइस का 2006 में नैदानिक ​​परीक्षण प्रारम्भ हुआ। 1500 माइक्रोफोटोडायोड वाला एक आईसी रेटिना के नीचे प्रत्यारोपित किया गया था। माइक्रोफोटोडायोड [[फोटो डायोड]] पर आपतित प्रकाश की मात्रा के आधार पर वर्तमान दालों को नियंत्रित करने का काम करते हैं।<ref>M. J. McMahon, A. Caspi, J. D.Dorn,
K. H. McClure, M. Humayun, and R. Greenberg, "Spatial vision in blind subjects implanted with the second sight retinal
K. H. McClure, M. Humayun, and R. Greenberg, "Spatial vision in blind subjects implanted with the second sight retinal
prosthesis," presented at the ARVO Annu. Meeting, Ft. Lauderdale, FL, 2007.</ref>
prosthesis," presented at the ARVO Annu. Meeting, Ft. Lauderdale, FL, 2007.</ref>
दृश्य कृत्रिम अंग के विकास की दिशा में मौलिक प्रायोगिक कार्य बड़े सतह इलेक्ट्रोड के ग्रिड का उपयोग करके कॉर्टिकल उत्तेजना द्वारा किया गया था। 1968 में [[गाइल्स ब्रिंडली]] ने एक 52 वर्षीय अंधी महिला की दृश्य कॉर्टिकल सतह पर 80 इलेक्ट्रोड डिवाइस प्रत्यारोपित किया। उत्तेजना के परिणामस्वरूप रोगी दृश्य क्षेत्र की 40 विभिन्न स्थितियों में [[phosphenes]] को देखने में सक्षम था।<ref>G. S. Brindley and W. S. Lewin, "The sensations produced by electrical stimulation of the visual cortex," J. Physiol., vol. 196, p. 479, 1968</ref> इस प्रयोग से पता चला कि एक प्रत्यारोपित विद्युत उत्तेजक उपकरण कुछ हद तक दृष्टि बहाल कर सकता है। विज़ुअल कॉर्टेक्स प्रोस्थेसिस में हाल के प्रयासों ने एक गैर-मानव प्राइमेट में विज़ुअल कॉर्टेक्स उत्तेजना की प्रभावकारिता का मूल्यांकन किया है। इस प्रयोग में प्रशिक्षण और मानचित्रण प्रक्रिया के बाद बंदर प्रकाश और विद्युत उत्तेजना दोनों के साथ समान दृश्य सैकेड कार्य करने में सक्षम है।
 
विज़ुअल प्रोस्थेटिक्स अंग के विकास की दिशा में मौलिक प्रायोगिक कार्य बड़े सतह इलेक्ट्रोड के ग्रिड का उपयोग करके कॉर्टिकल उत्तेजना द्वारा किया गया था। 1968 में [[गाइल्स ब्रिंडली]] ने एक 52 वर्षीय अंधी महिला की विज़ुअल कॉर्टिकल सतह पर 80 इलेक्ट्रोड डिवाइस प्रत्यारोपित किया। उत्तेजना के परिणामस्वरूप रोगी विज़ुअल क्षेत्र की 40 विभिन्न स्थितियों में [[phosphenes|फॉस्फीन]] को देखने में सक्षम था।<ref>G. S. Brindley and W. S. Lewin, "The sensations produced by electrical stimulation of the visual cortex," J. Physiol., vol. 196, p. 479, 1968</ref> इस प्रयोग से पता चला कि एक प्रत्यारोपित विद्युत उत्तेजक उपकरण कुछ हद तक दृष्टि बहाल कर सकता है। विज़ुअल कॉर्टेक्स प्रोस्थेसिस में हाल के प्रयासों ने एक गैर-मानव प्राइमेट में विज़ुअल कॉर्टेक्स उत्तेजना की प्रभावकारिता का मूल्यांकन किया है। इस प्रयोग में प्रशिक्षण और मानचित्रण प्रक्रिया के बाद बंदर प्रकाश और विद्युत उत्तेजना दोनों के साथ समान विज़ुअल सैकेड कार्य करने में सक्षम है।


उच्च रिज़ॉल्यूशन रेटिनल प्रोस्थेसिस की आवश्यकताएं नेत्रहीन व्यक्तियों की आवश्यकताओं और इच्छाओं के अनुरूप होनी चाहिए जिन्हें डिवाइस से लाभ होगा। इन रोगियों के साथ बातचीत से संकेत मिलता है कि छड़ी के बिना गतिशीलता, चेहरे की पहचान और पढ़ना मुख्य आवश्यक सक्षम क्षमताएं हैं।<ref name="Weiland JD 2008">Weiland JD, Humayun MS. 2008. Visual prosthesis. Proceedings of the IEEE 96:1076–84</ref>
उच्च रिज़ॉल्यूशन रेटिनल प्रोस्थेसिस की आवश्यकताएं नेत्रहीन व्यक्तियों की आवश्यकताओं और इच्छाओं के अनुरूप होनी चाहिए जिन्हें डिवाइस से लाभ होगा। इन रोगियों के साथ बातचीत से संकेत मिलता है कि छड़ी के बिना गतिशीलता, चेहरे की पहचान और पढ़ना मुख्य आवश्यक सक्षम क्षमताएं हैं।<ref name="Weiland JD 2008">Weiland JD, Humayun MS. 2008. Visual prosthesis. Proceedings of the IEEE 96:1076–84</ref>
पूरी तरह कार्यात्मक दृश्य कृत्रिम अंग के परिणाम और निहितार्थ रोमांचक हैं। हालाँकि, चुनौतियाँ गंभीर हैं। रेटिना में अच्छी गुणवत्ता वाली छवि मैप करने के लिए बड़ी संख्या में माइक्रो-स्केल इलेक्ट्रोड सरणियों की आवश्यकता होती है। साथ ही, छवि गुणवत्ता इस बात पर निर्भर करती है कि वायरलेस लिंक पर कितनी जानकारी भेजी जा सकती है। इसके अलावा, इस उच्च मात्रा में जानकारी को इम्प्लांट द्वारा बिना अधिक शक्ति अपव्यय के प्राप्त और संसाधित किया जाना चाहिए जो ऊतक को नुकसान पहुंचा सकता है। इम्प्लांट का आकार भी बड़ी चिंता का विषय है। किसी भी इम्प्लांट को न्यूनतम इनवेसिव होना पसंद किया जाएगा।<ref name="Weiland JD 2008"/>


इस नई तकनीक के साथ, [[ड्रेक्सेल विश्वविद्यालय]] में करेन मोक्सन, [[SUNY]] में जॉन चैपिन और [[ड्यूक विश्वविद्यालय]] में मिगुएल निकोलेलिस सहित कई वैज्ञानिकों ने एक परिष्कृत दृश्य कृत्रिम अंग के डिजाइन पर शोध शुरू किया। अन्य वैज्ञानिक {{who|date=October 2011}} उनके अनुसंधान के फोकस से असहमत हैं, उनका तर्क है कि घनी आबादी वाले सूक्ष्म तार का बुनियादी अनुसंधान और डिज़ाइन आगे बढ़ने के लिए पर्याप्त परिष्कृत नहीं था।
पूरी तरह कार्यात्मक विज़ुअल प्रोस्थेटिक्स अंग के परिणाम और निहितार्थ रोमांचक हैं। हालाँकि, चुनौतियाँ गंभीर हैं। रेटिना में अच्छी गुणवत्ता वाली छवि मैप करने के लिए बड़ी संख्या में माइक्रो-स्केल इलेक्ट्रोड सरणियों की आवश्यकता होती है। साथ ही, छवि गुणवत्ता इस बात पर निर्भर करती है कि वायरलेस लिंक पर कितनी जानकारी भेजी जा सकती है। इसके अलावा, इस उच्च मात्रा में जानकारी को इम्प्लांट द्वारा बिना अधिक शक्ति अपव्यय के प्राप्त और संसाधित किया जाना चाहिए जो ऊतक को नुकसान पहुंचा सकता है। इम्प्लांट का आकार भी बड़ी चिंता का विषय है। किसी भी इम्प्लांट को न्यूनतम इनवेसिव होना पसंद किया जाएगा।<ref name="Weiland JD 2008" />
 
इस नई तकनीक के साथ, [[ड्रेक्सेल विश्वविद्यालय]] में करेन मोक्सन, [[SUNY|एसयूएनवाई]] में जॉन चैपिन और [[ड्यूक विश्वविद्यालय]] में मिगुएल निकोलेलिस सहित कई वैज्ञानिकों ने एक परिष्कृत विज़ुअल प्रोस्थेटिक्स अंग के डिजाइन पर शोध प्रारम्भ किया। अन्य वैज्ञानिक {{who|date=October 2011}} उनके अनुसंधान के फोकस से असहमत हैं, उनका तर्क है कि घनी आबादी वाले सूक्ष्म तार का बुनियादी अनुसंधान और डिज़ाइन आगे बढ़ने के लिए पर्याप्त परिष्कृत नहीं था।


===श्रवण प्रोस्थेटिक्स===
===ऑडिटरी प्रोस्थेटिक्स===
{{Main|cochlear implant|auditory brainstem implant}}
{{Main|कॉकलीयर इम्प्लांट|श्रवण ब्रेनस्टेम प्रत्यारोपण}}


[[कर्णावर्त तंत्रिका का प्रत्यारोपण]] (सीआई), श्रवण मस्तिष्क स्टेम प्रत्यारोपण (एबीआई), और श्रवण [[ मध्यमस्तिष्क ]] प्रत्यारोपण (एएमआई) श्रवण कृत्रिम अंग के लिए तीन मुख्य श्रेणियां हैं। सीआई इलेक्ट्रोड ऐरे को कोक्लीअ में प्रत्यारोपित किया जाता है, एबीआई इलेक्ट्रोड ऐरे निचले मस्तिष्क स्टेम में कोक्लियर न्यूक्लियस कॉम्प्लेक्स को उत्तेजित करते हैं, और एएमआई अवर कोलिकुलस में श्रवण न्यूरॉन्स को उत्तेजित करते हैं। इन तीन श्रेणियों में कॉकलियर इम्प्लांट बहुत सफल रहे हैं। आज एडवांस्ड बायोनिक्स कॉरपोरेशन, [[कॉक्लियर लिमिटेड]] कॉरपोरेशन और [[ औसत ]]|मेड-एल कॉरपोरेशन कॉक्लियर इम्प्लांट के प्रमुख वाणिज्यिक प्रदाता हैं।
[[कर्णावर्त तंत्रिका का प्रत्यारोपण]] (सीआई), ऑडिटरी  (श्रवण) मस्तिष्क स्टेम प्रत्यारोपण (एबीआई), और श्रवण [[ मध्यमस्तिष्क | मध्यमस्तिष्क]] प्रत्यारोपण (एएमआई) श्रवण प्रोस्थेटिक्स अंग के लिए तीन मुख्य श्रेणियां हैं। सीआई इलेक्ट्रोड ऐरे को कोक्लीअ में प्रत्यारोपित किया जाता है, एबीआई इलेक्ट्रोड ऐरे निचले मस्तिष्क स्टेम में कोक्लियर न्यूक्लियस कॉम्प्लेक्स को उत्तेजित करते हैं, और एएमआई अवर कोलिकुलस में श्रवण न्यूरॉन्स को उत्तेजित करते हैं। इन तीन श्रेणियों में कॉकलियर इम्प्लांट बहुत सफल रहे हैं। आज एडवांस्ड बायोनिक्स कॉरपोरेशन, [[कॉक्लियर लिमिटेड]] कॉरपोरेशन और [[ औसत | औसत]] |मेड-एल कॉरपोरेशन कॉक्लियर इम्प्लांट के प्रमुख वाणिज्यिक प्रदाता हैं।


पारंपरिक श्रवण यंत्रों के विपरीत, जो ध्वनि को बढ़ाते हैं और इसे बाहरी कान के माध्यम से भेजते हैं, कॉकलियर प्रत्यारोपण ध्वनि को प्राप्त करते हैं और संसाधित करते हैं और इसे श्रवण तंत्रिका तक पहुंचाने के लिए इसे विद्युत ऊर्जा में परिवर्तित करते हैं। CI प्रणाली का माइक्रोफ़ोन बाहरी वातावरण से ध्वनि प्राप्त करता है और इसे प्रोसेसर को भेजता है। प्रोसेसर ध्वनि को डिजिटाइज़ करता है और इसे अलग-अलग आवृत्ति बैंड में फ़िल्टर करता है जो कोक्लीअ में उपयुक्त टोनोटोनिक क्षेत्र में भेजा जाता है जो लगभग उन आवृत्तियों से मेल खाता है।
पारंपरिक श्रवण यंत्रों के विपरीत, जो ध्वनि को बढ़ाते हैं और इसे बाहरी कान के माध्यम से भेजते हैं, कॉकलियर प्रत्यारोपण ध्वनि को प्राप्त करते हैं और संसाधित करते हैं और इसे श्रवण तंत्रिका तक पहुंचाने के लिए इसे विद्युत ऊर्जा में परिवर्तित करते हैं। CI प्रणाली का माइक्रोफ़ोन बाहरी वातावरण से ध्वनि प्राप्त करता है और इसे प्रोसेसर को भेजता है। प्रोसेसर ध्वनि को डिजिटाइज़ करता है और इसे अलग-अलग आवृत्ति बैंड में फ़िल्टर करता है जो कोक्लीअ में उपयुक्त टोनोटोनिक क्षेत्र में भेजा जाता है जो लगभग उन आवृत्तियों से मेल खाता है।


1957 में, फ्रांसीसी शोधकर्ताओं ए. डिजर्नो और सी. आइरीज़ ने डी. कैसर की मदद से मानव विषय में श्रवण तंत्रिका को सीधे उत्तेजित करने का पहला विस्तृत विवरण प्रदान किया।<ref>[[John Niparko|J. K. Niparko]] and B. W. Wilson, "History of cochlear implants," in Cochlear Implants:Principles and Practices. Philadelphia, PA: Lippincott Williams & Wilkins, 2000, pp. 103–08</ref> व्यक्तियों ने उत्तेजना के दौरान चहकने की आवाज़ सुनने का वर्णन किया। 1972 में, एक वयस्क में पहला पोर्टेबल कॉक्लियर इम्प्लांट सिस्टम हाउस ईयर क्लिनिक में प्रत्यारोपित किया गया था। अमेरिकी खाद्य एवं औषधि प्रशासन (एफडीए) ने नवंबर 1984 में औपचारिक रूप से हाउस-3एम कॉक्लियर इम्प्लांट के विपणन को मंजूरी दे दी।<ref>W. F. House, Cochlear implants: My perspective</ref>
1957 में, फ्रांसीसी शोधकर्ताओं ए. डिजर्नो और सी. आइरीज़ ने डी. कैसर की मदद से मानव विषय में श्रवण तंत्रिका को सीधे उत्तेजित करने का पहला विस्तृत विवरण प्रदान किया।<ref>[[John Niparko|J. K. Niparko]] and B. W. Wilson, "History of cochlear implants," in Cochlear Implants:Principles and Practices. Philadelphia, PA: Lippincott Williams & Wilkins, 2000, pp. 103–08</ref> व्यक्तियों ने उत्तेजना के दौरान चहकने की आवाज़ सुनने का वर्णन किया। 1972 में, एक वयस्क में पहला पोर्टेबल कॉक्लियर इम्प्लांट सिस्टम हाउस ईयर क्लिनिक में प्रत्यारोपित किया गया था। अमेरिकी खाद्य एवं औषधि प्रशासन (एफडीए) ने नवंबर 1984 में औपचारिक रूप से हाउस-3एम कॉक्लियर इम्प्लांट के विपणन को मंजूरी दे दी।<ref>W. F. House, Cochlear implants: My perspective</ref>
कॉक्लियर प्रत्यारोपण में बेहतर प्रदर्शन न केवल प्रत्यारोपण उत्तेजना की भौतिक और जैव-भौतिकीय सीमाओं को समझने पर निर्भर करता है, बल्कि मस्तिष्क के पैटर्न प्रसंस्करण आवश्यकताओं की समझ पर भी निर्भर करता है। आधुनिक [[ संकेत आगे बढ़ाना ]] सबसे महत्वपूर्ण भाषण जानकारी का प्रतिनिधित्व करती है, साथ ही मस्तिष्क को पैटर्न पहचान की जानकारी भी प्रदान करती है जिसकी उसे आवश्यकता होती है। भाषण में महत्वपूर्ण विशेषताओं की पहचान करने में एल्गोरिथम प्रीप्रोसेसिंग की तुलना में मस्तिष्क में पैटर्न की पहचान अधिक प्रभावी है। श्रवण कृत्रिम अंग के प्रदर्शन को अधिकतम करने के लिए प्रौद्योगिकी का सही संतुलन बनाने के लिए इंजीनियरिंग, सिग्नल प्रोसेसिंग, [[जीव पदाथ-विद्य]] और [[संज्ञानात्मक तंत्रिका विज्ञान]] का संयोजन आवश्यक था।<ref>Fayad JN, Otto SR, Shannon RV, Brackmann DE. 2008. Cochlear and brainstern auditory prostheses "neural interface for hearing restoration: Cochlear and brain stem implants". Proceedings of the IEEE 96:1085–95</ref>
कॉक्लियर प्रत्यारोपण में बेहतर प्रदर्शन न केवल प्रत्यारोपण उत्तेजना की भौतिक और जैव-भौतिकीय सीमाओं को समझने पर निर्भर करता है, बल्कि मस्तिष्क के पैटर्न प्रसंस्करण आवश्यकताओं की समझ पर भी निर्भर करता है। आधुनिक [[ संकेत आगे बढ़ाना ]] सबसे महत्वपूर्ण भाषण जानकारी का प्रतिनिधित्व करती है, साथ ही मस्तिष्क को पैटर्न पहचान की जानकारी भी प्रदान करती है जिसकी उसे आवश्यकता होती है। भाषण में महत्वपूर्ण विशेषताओं की पहचान करने में एल्गोरिथम प्रीप्रोसेसिंग की तुलना में मस्तिष्क में पैटर्न की पहचान अधिक प्रभावी है। श्रवण प्रोस्थेटिक्स अंग के प्रदर्शन को अधिकतम करने के लिए प्रौद्योगिकी का सही संतुलन बनाने के लिए इंजीनियरिंग, सिग्नल प्रोसेसिंग, [[जीव पदाथ-विद्य]] और [[संज्ञानात्मक तंत्रिका विज्ञान]] का संयोजन आवश्यक था।<ref>Fayad JN, Otto SR, Shannon RV, Brackmann DE. 2008. Cochlear and brainstern auditory prostheses "neural interface for hearing restoration: Cochlear and brain stem implants". Proceedings of the IEEE 96:1085–95</ref>
जन्मजात बधिर बच्चों में मौखिक भाषा के विकास को प्राप्त करने की अनुमति देने के लिए कॉक्लियर प्रत्यारोपण का भी उपयोग किया गया है, प्रारंभिक प्रत्यारोपण (जीवन के 2-4 वर्ष तक पहुंचने से पहले) में उल्लेखनीय सफलता मिली है।<ref>Kral A, O'Donoghue GM. Profound Deafness in Childhood. New England J Medicine 2010: 363; 1438–50</ref> दुनिया भर में लगभग 80,000 बच्चों का प्रत्यारोपण किया गया है।
जन्मजात बधिर बच्चों में मौखिक भाषा के विकास को प्राप्त करने की अनुमति देने के लिए कॉक्लियर प्रत्यारोपण का भी उपयोग किया गया है, प्रारंभिक प्रत्यारोपण (जीवन के 2-4 वर्ष तक पहुंचने से पहले) में उल्लेखनीय सफलता मिली है।<ref>Kral A, O'Donoghue GM. Profound Deafness in Childhood. New England J Medicine 2010: 363; 1438–50</ref> दुनिया भर में लगभग 80,000 बच्चों का प्रत्यारोपण किया गया है।


बेहतर श्रवण के प्रयोजनों के लिए एक साथ इलेक्ट्रिक ध्वनिक उत्तेजना | इलेक्ट्रिक-ध्वनिक उत्तेजना (ईएएस) के संयोजन की अवधारणा का वर्णन पहली बार 1999 में यूनिवर्सिटैट्सक्लिनिक फ्रैंकफर्ट, जर्मनी के सी. वॉन इलबर्ग और जे. किफ़र द्वारा किया गया था।<ref>V. Ilberg C., Kiefer J., Tillein J., Pfennigdorff T., Hartmann R., Stürzebecher E., Klinke R. (1999). Electric-acoustic stimulation of the auditory system. ORL 61:334–40.</ref> उसी वर्ष पहला ईएएस रोगी प्रत्यारोपित किया गया था। 2000 के दशक की शुरुआत से एफडीए कोक्लियर कॉर्पोरेशन द्वारा हाइब्रिड नामक डिवाइस के नैदानिक ​​​​परीक्षण में शामिल रहा है। इस परीक्षण का उद्देश्य अवशिष्ट कम-आवृत्ति सुनवाई वाले रोगियों में कोक्लीअ प्रत्यारोपण की उपयोगिता की जांच करना है। हाइब्रिड मानक कोक्लीअ प्रत्यारोपण की तुलना में छोटे इलेक्ट्रोड का उपयोग करता है, क्योंकि इलेक्ट्रोड छोटा होता है, यह कोक्लीअ के तुलसी क्षेत्र को उत्तेजित करता है और इसलिए उच्च आवृत्ति टोनोटोपिक क्षेत्र को उत्तेजित करता है। सिद्धांत रूप में इन उपकरणों से महत्वपूर्ण कम-आवृत्ति अवशिष्ट श्रवण वाले रोगियों को लाभ होगा, जिन्होंने भाषण आवृत्ति रेंज में धारणा खो दी है और इसलिए भेदभाव स्कोर में कमी आई है।<ref>B. J. Gantz, C. Turner, and K. E. Gfeller, "Acoustic plus electric speech processing:
बेहतर श्रवण के प्रयोजनों के लिए एक साथ इलेक्ट्रिक ध्वनिक उत्तेजना | इलेक्ट्रिक-ध्वनिक उत्तेजना (ईएएस) के संयोजन की अवधारणा का वर्णन पहली बार 1999 में यूनिवर्सिटैट्सक्लिनिक फ्रैंकफर्ट, जर्मनी के सी. वॉन इलबर्ग और जे. किफ़र द्वारा किया गया था।<ref>V. Ilberg C., Kiefer J., Tillein J., Pfennigdorff T., Hartmann R., Stürzebecher E., Klinke R. (1999). Electric-acoustic stimulation of the auditory system. ORL 61:334–40.</ref> उसी वर्ष पहला ईएएस रोगी प्रत्यारोपित किया गया था। 2000 के दशक की प्रांरम्भसे एफडीए कोक्लियर कॉर्पोरेशन द्वारा हाइब्रिड नामक डिवाइस के नैदानिक ​​​​परीक्षण में सम्मिलित रहा है। इस परीक्षण का उद्देश्य अवशिष्ट कम-आवृत्ति सुनवाई वाले रोगियों में कोक्लीअ प्रत्यारोपण की उपयोगिता की जांच करना है। हाइब्रिड मानक कोक्लीअ प्रत्यारोपण की तुलना में छोटे इलेक्ट्रोड का उपयोग करता है, क्योंकि इलेक्ट्रोड छोटा होता है, यह कोक्लीअ के तुलसी क्षेत्र को उत्तेजित करता है और इसलिए उच्च आवृत्ति टोनोटोपिक क्षेत्र को उत्तेजित करता है। सिद्धांत रूप में इन उपकरणों से महत्वपूर्ण कम-आवृत्ति अवशिष्ट श्रवण वाले रोगियों को लाभ होगा, जिन्होंने भाषण आवृत्ति रेंज में धारणा खो दी है और इसलिए भेदभाव स्कोर में कमी आई है।<ref>B. J. Gantz, C. Turner, and K. E. Gfeller, "Acoustic plus electric speech processing:
Preliminary results of a multicenter clinical trial of the Iowa/Nucleus hybrid implant," Audiol. Neurotol., vol. 11 (suppl.), pp. 63–68, 2006, Vol 1</ref>
Preliminary results of a multicenter clinical trial of the Iowa/Nucleus hybrid implant," Audiol. Neurotol., vol. 11 (suppl.), pp. 63–68, 2006, Vol 1</ref> ध्वनि उत्पन्न करने के लिए वाक् संश्लेषण देखें।
ध्वनि उत्पन्न करने के लिए वाक् संश्लेषण देखें।


===दर्द से राहत के लिए प्रोस्थेटिक्स===
===दर्द से राहत के लिए प्रोस्थेटिक्स===
{{Main|Spinal Cord Stimulator}}
{{Main|स्पाइनल कॉर्ड स्टिमुलेटर}}


एससीएस (स्पाइनल कॉर्ड स्टिमुलेटर) डिवाइस में दो मुख्य घटक होते हैं: एक इलेक्ट्रोड और एक जनरेटर। [[नेऊरोपथिक दर्द]] के लिए एससीएस का तकनीकी लक्ष्य रोगी के दर्द के क्षेत्र को उत्तेजना प्रेरित झुनझुनी के साथ छिपाना है, जिसे [[अपसंवेदन]] के रूप में जाना जाता है, क्योंकि दर्द से राहत पाने के लिए यह ओवरलैप आवश्यक (लेकिन पर्याप्त नहीं) है।<ref>R. B. North, M. E. Ewend, M. A. Lawton, and S. Piantadosi, "Spinal cord stimulation for chronic, intractable pain: Superiority of 'multi-channel' devices," Pain, vol. 4, no. 2, pp. 119–30, 1991</ref> पेरेस्टेसिया कवरेज इस पर निर्भर करता है कि कौन सी अभिवाही तंत्रिकाएं उत्तेजित होती हैं। डोरसम (जीवविज्ञान) मिडलाइन इलेक्ट्रोड द्वारा सबसे आसानी से भर्ती किए जाने वाले, रीढ़ की हड्डी की पियाल सतह के करीब, बड़े [[पृष्ठीय स्तंभ]] अभिवाही होते हैं, जो दुम से खंडों को कवर करने वाले व्यापक पेरेस्टेसिया का उत्पादन करते हैं।
एससीएस स्पाइनल कॉर्ड स्टिमुलेटर (मेरूरज्‍जु उत्तेजक) डिवाइस में दो मुख्य घटक होते हैं: एक इलेक्ट्रोड और एक जनरेटर होता है। [[नेऊरोपथिक दर्द]] के लिए एससीएस का तकनीकी लक्ष्य रोगी के दर्द के क्षेत्र को उत्तेजना प्रेरित झुनझुनी के साथ छिपाना है, जिसे [[अपसंवेदन]] के रूप में जाना जाता है, क्योंकि दर्द से राहत पाने के लिए यह ओवरलैप आवश्यक (लेकिन पर्याप्त नहीं) है।<ref>R. B. North, M. E. Ewend, M. A. Lawton, and S. Piantadosi, "Spinal cord stimulation for chronic, intractable pain: Superiority of 'multi-channel' devices," Pain, vol. 4, no. 2, pp. 119–30, 1991</ref> पेरेस्टेसिया कवरेज इस पर निर्भर करता है कि कौन सी अभिवाही तंत्रिकाएं उत्तेजित होती हैं। डोरसम (जीवविज्ञान) मिडलाइन इलेक्ट्रोड द्वारा सबसे आसानी से भर्ती किए जाने वाले, स्पाइनल कॉर्ड की पियाल सतह के करीब, बड़े [[पृष्ठीय स्तंभ]] अभिवाही होते हैं, जो दुम से खंडों को कवर करने वाले व्यापक पेरेस्टेसिया का उत्पादन करते हैं।


प्राचीन समय में [[इलेक्ट्रोजेनिक]] मछली का उपयोग दर्द को कम करने के लिए शॉकर के रूप में किया जाता था। चिकित्सकों ने सिरदर्द सहित विभिन्न प्रकार के दर्द के इलाज के लिए मछली के उत्पादक गुणों का उपयोग करने के लिए विशिष्ट और विस्तृत तकनीक विकसित की थी। लिविंग शॉक जनरेटर का उपयोग करने की अजीबता के कारण, उचित समय के लिए लक्ष्य तक थेरेपी पहुंचाने के लिए उचित स्तर के कौशल की आवश्यकता थी। (मछली को यथासंभव लंबे समय तक जीवित रखना भी शामिल है)
प्राचीन समय में [[इलेक्ट्रोजेनिक]] मछली का उपयोग दर्द को कम करने के लिए शॉकर के रूप में किया जाता था। चिकित्सकों ने सिरदर्द सहित विभिन्न प्रकार के दर्द के इलाज के लिए मछली के उत्पादक गुणों का उपयोगpain करने के लिए विशिष्ट और विस्तृत तकनीक विकसित की थी। लिविंग शॉक जनरेटर का उपयोग करने की अजीबता के कारण, उचित समय के लिए लक्ष्य तक थेरेपी पहुंचाने के लिए उचित स्तर के कौशल की आवश्यकता थी। (मछली को यथासंभव लंबे समय तक जीवित रखना भी सम्मिलित है)
इलेक्ट्रोएनाल्जेसिया बिजली का पहला जानबूझकर किया गया प्रयोग था। उन्नीसवीं सदी तक, अधिकांश पश्चिमी चिकित्सक अपने मरीजों को पोर्टेबल जनरेटर द्वारा प्रदान की जाने वाली [[ विद्युत ]] की पेशकश कर रहे थे।<ref>D. Fishlock, "Doctor volts [electrotherapy]," Inst. Elect. Eng. Rev., vol. 47, pp. 23–28, May 2001</ref> हालाँकि, 1960 के दशक के मध्य में, विद्युत उत्तेजना के भविष्य को सुनिश्चित करने के लिए तीन चीजें एकजुट हुईं।


# [[पेसमेकर]] तकनीक, जिसकी शुरुआत 1950 में हुई थी, उपलब्ध हो गई।
इलेक्ट्रोएनाल्जेसिया बिजली का पहला जानबूझकर किया गया प्रयोग था। उन्नीसवीं सदी तक, अधिकांश पश्चिमी चिकित्सक अपने मरीजों को पोर्टेबल जनरेटर द्वारा प्रदान की जाने वाली [[ विद्युत | विद्युत]] की पेशकश कर रहे थे।<ref>D. Fishlock, "Doctor volts [electrotherapy]," Inst. Elect. Eng. Rev., vol. 47, pp. 23–28, May 2001</ref> हालाँकि, 1960 के दशक के मध्य में, विद्युत उत्तेजना के भविष्य को सुनिश्चित करने के लिए तीन चीजें एकजुट हुईं।
मेल्ज़ैक और वॉल ने अपना पेन#गेट नियंत्रण प्रकाशित किया, जिसमें प्रस्तावित किया गया कि बड़े अभिवाही तंतुओं की उत्तेजना से दर्द के संचरण को अवरुद्ध किया जा सकता है।<ref>P. Melzack and P. D. Wall, "Pain mechanisms: A new theory," Science, vol. 150, no. 3699, pp. 971–78, Nov. 1965</ref>
# अग्रणी चिकित्सक मरीजों को दर्द से राहत दिलाने के लिए तंत्रिका तंत्र को उत्तेजित करने में रुचि लेने लगे।


इलेक्ट्रोड के डिज़ाइन विकल्पों में उनका आकार, आकार, व्यवस्था, संख्या और संपर्कों का असाइनमेंट और इलेक्ट्रोड को कैसे प्रत्यारोपित किया जाता है, शामिल हैं। [[ पल्स उत्पन्न करने वाला ]] के लिए डिज़ाइन विकल्प में पावर स्रोत, लक्ष्य संरचनात्मक प्लेसमेंट स्थान, वर्तमान या वोल्टेज स्रोत, पल्स दर, पल्स चौड़ाई और कई स्वतंत्र चैनल शामिल हैं। प्रोग्रामिंग विकल्प बहुत अधिक हैं (एक चार-संपर्क इलेक्ट्रोड 50 कार्यात्मक द्विध्रुवी संयोजन प्रदान करता है)। वर्तमान उपकरण उपयोग के लिए सर्वोत्तम विकल्प खोजने के लिए कम्प्यूटरीकृत उपकरणों का उपयोग करते हैं। यह रिप्रोग्रामिंग विकल्प पोस्टुरल परिवर्तन, इलेक्ट्रोड माइग्रेशन, दर्द स्थान में परिवर्तन और उप-इष्टतम इलेक्ट्रोड प्लेसमेंट के लिए क्षतिपूर्ति करता है।<ref>North RB. 2008. Neural interface devices: Spinal cord stimulation technology. Proceedings of the IEEE 96:1108–19</ref>
# [[पेसमेकर]] तकनीक, जिसकी प्रांरम्भ1950 में हुई थी, उपलब्ध हो गई।
2. मेल्ज़ैक और वॉल ने अपना दर्द का गेट नियंत्रण सिद्धांत (गेट कंट्रोल थ्योरी ऑफ़ पेंन) प्रकाशित किया,   जिसमें प्रस्तावित किया गया कि बड़े अभिवाही तंतुओं की उत्तेजना से दर्द के संचरण को अवरुद्ध किया जा सकता हैl<ref>P. Melzack and P. D. Wall, "Pain mechanisms: A new theory," Science, vol. 150, no. 3699, pp. 971–78, Nov. 1965</ref>


3. अग्रणी चिकित्सक मरीजों को दर्द से राहत दिलाने के लिए तंत्रिका तंत्र को उत्तेजित करने में रुचि लेने लगे।


इलेक्ट्रोड के डिज़ाइन विकल्पों में उनका साइज़, आकार, व्यवस्था, संख्या और संपर्कों का असाइनमेंट और इलेक्ट्रोड को कैसे प्रत्यारोपित किया जाता है, सम्मिलित हैं। [[ पल्स उत्पन्न करने वाला | पल्स उत्पन्न करने वाला]] के लिए डिज़ाइन विकल्प में पावर स्रोत, लक्ष्य संरचनात्मक प्लेसमेंट स्थान, वर्तमान या वोल्टेज स्रोत, पल्स रेट, पल्स चौड़ाई और कई स्वतंत्र चैनल सम्मिलित हैं। प्रोग्रामिंग विकल्प बहुत अधिक हैं (एक चार-संपर्क इलेक्ट्रोड 50 कार्यात्मक द्विध्रुवी संयोजन प्रदान करता है)। वर्तमान उपकरण उपयोग के लिए सर्वोत्तम विकल्प खोजने के लिए कम्प्यूटरीकृत उपकरणों का उपयोग करते हैं। यह रिप्रोग्रामिंग विकल्प पोस्टुरल परिवर्तन, इलेक्ट्रोड माइग्रेशन, दर्द स्थान में परिवर्तन और उप-इष्टतम इलेक्ट्रोड प्लेसमेंट के लिए क्षतिपूर्ति करता है।<ref>North RB. 2008. Neural interface devices: Spinal cord stimulation technology. Proceedings of the IEEE 96:1108–19</ref>
==मोटर प्रोस्थेटिक्स==
==मोटर प्रोस्थेटिक्स==
जो उपकरण [[स्वायत्त तंत्रिका तंत्र]] के कार्य का समर्थन करते हैं उनमें [[त्रिक पूर्वकाल जड़ उत्तेजक]] शामिल हैं। दैहिक तंत्रिका तंत्र में गति के सचेत नियंत्रण में सहायता के प्रयासों में कार्यात्मक विद्युत उत्तेजना और काठ पूर्वकाल जड़ उत्तेजक शामिल हैं।
जो उपकरण [[स्वायत्त तंत्रिका तंत्र]] के कार्य का समर्थन करते हैं उनमें [[त्रिक पूर्वकाल जड़ उत्तेजक|त्रिक अग्र रुट उत्तेजक]] सम्मिलित हैं। दैहिक तंत्रिका तंत्र में गति के सचेत नियंत्रण में सहायता के प्रयासों में कार्यात्मक विद्युत उत्तेजना और कटि अग्र रुट उत्तेजक सम्मिलित हैं।


===मूत्राशय नियंत्रण प्रत्यारोपण===
===मूत्राशय नियंत्रण प्रत्यारोपण===
{{Main|Sacral anterior root stimulator}}
{{Main|त्रिक अग्र रुट उत्तेजक}}


जहां रीढ़ की हड्डी में घाव से [[नीचे के अंगों का पक्षाघात]] हो जाता है, वहीं मरीजों को अपने मूत्राशय को खाली करने में कठिनाई होती है और इससे संक्रमण हो सकता है। 1969 से ब्रिंडली ने त्रिक पूर्वकाल जड़ उत्तेजक विकसित किया, 1980 के दशक की शुरुआत से सफल मानव परीक्षण के साथ।<ref>Brindley GS, Polkey CE, Rushton DN (1982): Sacral anterior root stimulator for bladder control in paraplegia. Paraplegia 20: 365–81.</ref> यह उपकरण रीढ़ की हड्डी के त्रिक पूर्वकाल जड़ गैन्ग्लिया पर प्रत्यारोपित किया जाता है; बाहरी ट्रांसमीटर द्वारा नियंत्रित, यह रुक-रुक कर उत्तेजना प्रदान करता है जिससे मूत्राशय खाली होने में सुधार होता है। यह शौच में भी सहायता करता है और पुरुष रोगियों को निरंतर पूर्ण स्तंभन प्राप्त करने में सक्षम बनाता है।
जहां मेरू रज्जु में घाव से [[नीचे के अंगों का पक्षाघात]] हो जाता है, वहीं मरीजों को अपने मूत्राशय को खाली करने में कठिनाई होती है और इससे संक्रमण हो सकता है। 1969 से ब्रिंडली ने त्रिक अग्र रुट उत्तेजक विकसित किया, 1980 के दशक की प्रांरम्भ से सफल मानव परीक्षण के साथ।<ref>Brindley GS, Polkey CE, Rushton DN (1982): Sacral anterior root stimulator for bladder control in paraplegia. Paraplegia 20: 365–81.</ref> यह उपकरण मेरू रज्जु के त्रिक अग्र रुट गैन्ग्लिया पर प्रत्यारोपित किया जाता है; बाहरी ट्रांसमीटर द्वारा नियंत्रित, यह रुक-रुक कर उत्तेजना प्रदान करता है जिससे मूत्राशय खाली होने में सुधार होता है। यह शौच में भी सहायता करता है और पुरुष रोगियों को निरंतर पूर्ण स्तंभन प्राप्त करने में सक्षम बनाता है।


त्रिक तंत्रिका उत्तेजना की संबंधित प्रक्रिया सक्षम शरीर वाले रोगियों में असंयम के नियंत्रण के लिए है।<ref>Schmidt RA, Jonas A, Oleson KA, Janknegt RA, Hassouna MM, Siegel SW, van Kerrebroeck PE. Sacral nerve stimulation for treatment of refractory urinary urge incontinence. Sacral nerve study group. J Urol 1999 Aug;16(2):352–57.</ref>
त्रिक तंत्रिका उत्तेजना की संबंधित प्रक्रिया सक्षम शरीर वाले रोगियों में असंयम के नियंत्रण के लिए है।<ref>Schmidt RA, Jonas A, Oleson KA, Janknegt RA, Hassouna MM, Siegel SW, van Kerrebroeck PE. Sacral nerve stimulation for treatment of refractory urinary urge incontinence. Sacral nerve study group. J Urol 1999 Aug;16(2):352–57.</ref>
===आंदोलन के सचेत नियंत्रण के लिए मोटर प्रोस्थेटिक्स===
===आंदोलन के सचेत नियंत्रण के लिए मोटर प्रोस्थेटिक्स===
{{Main|Brain–computer interface}}
{{Main|ब्रेन-कंप्यूटर इंटरफ़ेस}}


शोधकर्ता वर्तमान में मोटर न्यूरोप्रोस्थेटिक्स की जांच और निर्माण कर रहे हैं जो [[टेट्राप्लाजिया]] या [[पेशीशोषी पार्श्व काठिन्य]] जैसी मोटर विकलांगताओं वाले व्यक्तियों को गति और बाहरी दुनिया के साथ संवाद करने की क्षमता बहाल करने में मदद करेगा। शोध में पाया गया है कि स्ट्रिएटम मोटर संवेदी सीखने में महत्वपूर्ण भूमिका निभाता है। यह एक प्रयोग द्वारा प्रदर्शित किया गया था जिसमें लगातार कार्य करने के बाद लैब चूहों की स्ट्रिएटम की फायरिंग दर उच्च दर पर दर्ज की गई थी।
शोधकर्ता वर्तमान में मोटर न्यूरोप्रोस्थेटिक्स की जांच और निर्माण कर रहे हैं जो [[टेट्राप्लाजिया]] या [[पेशीशोषी पार्श्व काठिन्य]] जैसी मोटर विकलांगताओं वाले व्यक्तियों को गति और बाहरी दुनिया के साथ संवाद करने की क्षमता बहाल करने में मदद करेगा। शोध में पाया गया है कि स्ट्रिएटम मोटर संवेदी सीखने में महत्वपूर्ण भूमिका निभाता है। यह एक प्रयोग द्वारा प्रदर्शित किया गया था जिसमें लगातार कार्य करने के बाद लैब चूहों की स्ट्रिएटम की फायरिंग दर उच्च दर पर दर्ज की गई थी।


मस्तिष्क से विद्युत संकेतों को पकड़ने के लिए, वैज्ञानिकों ने एक वर्ग सेंटीमीटर से छोटे [[माइक्रोइलेक्ट्रोड]] एरे विकसित किए हैं जिन्हें विद्युत गतिविधि को रिकॉर्ड करने के लिए खोपड़ी में प्रत्यारोपित किया जा सकता है, और एक पतली केबल के माध्यम से रिकॉर्ड की गई जानकारी को स्थानांतरित किया जा सकता है। बंदरों पर दशकों के शोध के बाद, न्यूरोवैज्ञानिक [[ neuronal ]] संकेतों को गतिविधियों में डिकोड करने में सक्षम हो गए हैं। अनुवाद को पूरा करते हुए, शोधकर्ताओं ने ऐसे इंटरफेस बनाए हैं जो मरीजों को कंप्यूटर कर्सर को स्थानांतरित करने की अनुमति देते हैं, और वे रोबोटिक अंगों और एक्सोस्केलेटन का निर्माण करना शुरू कर रहे हैं जिन्हें मरीज आंदोलन के बारे में सोचकर नियंत्रित कर सकते हैं।
मस्तिष्क से विद्युत संकेतों को पकड़ने के लिए, वैज्ञानिकों ने एक वर्ग सेंटीमीटर से छोटे [[माइक्रोइलेक्ट्रोड]] एरे विकसित किए हैं जिन्हें विद्युत गतिविधि को रिकॉर्ड करने के लिए कपाल में प्रत्यारोपित किया जा सकता है, और एक पतली केबल के माध्यम से रिकॉर्ड की गई जानकारी को स्थानांतरित किया जा सकता है। बंदरों पर दशकों के शोध के बाद, न्यूरोवैज्ञानिक [[ neuronal |न्यूरोनल]] संकेतों को गतिविधियों में डिकोड करने में सक्षम हो गए हैं। अनुवाद को पूरा करते हुए, शोधकर्ताओं ने ऐसे इंटरफेस बनाए हैं जो मरीजों को कंप्यूटर कर्सर को स्थानांतरित करने की अनुमति देते हैं, और वे रोबोटिक अंगों और एक्सोस्केलेटन का निर्माण करना प्रारम्भ कर रहे हैं जिन्हें मरीज आंदोलन के बारे में सोचकर नियंत्रित कर सकते हैं।


मोटर न्यूरोप्रोस्थेसिस के पीछे की तकनीक अभी भी अपनी प्रारंभिक अवस्था में है। जांचकर्ता और अध्ययन प्रतिभागी [[कृत्रिम अंग]] के उपयोग के विभिन्न तरीकों के साथ प्रयोग करना जारी रखते हैं। उदाहरण के लिए, मरीज़ को मुट्ठी बंद करने के बारे में सोचने पर उंगली दबाने के बारे में सोचने से अलग परिणाम मिलता है। कृत्रिम अंग में उपयोग किए जाने वाले फिल्टर को भी ठीक किया जा रहा है, और भविष्य में, डॉक्टरों को एक ऐसा प्रत्यारोपण बनाने की उम्मीद है जो केबल के बजाय खोपड़ी के अंदर से [[ तार रहित ]] तरीके से सिग्नल संचारित करने में सक्षम होगा।
मोटर न्यूरोप्रोस्थेसिस के पीछे की तकनीक अभी भी अपनी प्रारंभिक अवस्था में है। जांचकर्ता और अध्ययन प्रतिभागी [[कृत्रिम अंग|प्रोस्थेटिक्स अंग]] के उपयोग के विभिन्न तरीकों के साथ प्रयोग करना जारी रखते हैं। उदाहरण के लिए, मरीज़ को मुट्ठी बंद करने के बारे में सोचने पर उंगली दबाने के बारे में सोचने से अलग परिणाम मिलता है। प्रोस्थेटिक्स अंग में उपयोग किए जाने वाले फिल्टर को भी ठीक किया जा रहा है, और भविष्य में, डॉक्टरों को एक ऐसा प्रत्यारोपण बनाने की उम्मीद है जो केबल के बजाय कपाल के अंदर से [[ तार रहित ]] तरीके से सिग्नल संचारित करने में सक्षम होगा।


इन प्रगतियों से पहले, फिलिप कैनेडी ([[ एमोरी विश्वविद्यालय ]] और [[जॉर्जिया तकनीकी संस्थान]]) के पास कुछ हद तक आदिम प्रणाली थी, जो पक्षाघात से पीड़ित व्यक्ति को अपने मस्तिष्क की गतिविधि को संशोधित करके शब्दों का उच्चारण करने की अनुमति देती थी। कैनेडी के उपकरण में दो [[न्यूरोट्रॉफिक इलेक्ट्रोड]] का उपयोग किया गया था: पहला एक अक्षुण्ण मोटर कॉर्टिकल क्षेत्र (उदाहरण के लिए उंगली प्रतिनिधित्व क्षेत्र) में प्रत्यारोपित किया गया था और इसका उपयोग अक्षरों के समूह के बीच कर्सर को स्थानांतरित करने के लिए किया गया था। दूसरे को एक अलग मोटर क्षेत्र में प्रत्यारोपित किया गया और चयन को इंगित करने के लिए उपयोग किया गया।<ref>{{cite web |url=http://gtalumni.org/news/magazine/sum99/harnessing.html |title=विचार की शक्ति का दोहन|author=Gary Goettling |access-date=April 22, 2006 |archive-url=https://web.archive.org/web/20060414085019/http://gtalumni.org/news/magazine/sum99/harnessing.html <!-- Bot retrieved archive --> |archive-date=April 14, 2006}}</ref>
इन प्रगतियों से पहले, फिलिप कैनेडी ([[ एमोरी विश्वविद्यालय |एमोरी विश्वविद्यालय]] और [[जॉर्जिया तकनीकी संस्थान]]) के पास कुछ हद तक आदिम प्रणाली थी, जो पक्षाघात से पीड़ित व्यक्ति को अपने मस्तिष्क की गतिविधि को संशोधित करके शब्दों का उच्चारण करने की अनुमति देती थी। कैनेडी के उपकरण में दो [[न्यूरोट्रॉफिक इलेक्ट्रोड]] का उपयोग किया गया था: पहला एक अक्षुण्ण मोटर कॉर्टिकल क्षेत्र (उदाहरण के लिए उंगली प्रतिनिधित्व क्षेत्र) में प्रत्यारोपित किया गया था और इसका उपयोग अक्षरों के समूह के बीच कर्सर को स्थानांतरित करने के लिए किया गया था। दूसरे को एक अलग मोटर क्षेत्र में प्रत्यारोपित किया गया और चयन को इंगित करने के लिए उपयोग किया गया।<ref>{{cite web |url=http://gtalumni.org/news/magazine/sum99/harnessing.html |title=विचार की शक्ति का दोहन|author=Gary Goettling |access-date=April 22, 2006 |archive-url=https://web.archive.org/web/20060414085019/http://gtalumni.org/news/magazine/sum99/harnessing.html <!-- Bot retrieved archive --> |archive-date=April 14, 2006}}</ref>
आमतौर पर पेक्टोरलिस मांसपेशियों से जुड़ी नसों का उपयोग करके खोई हुई भुजाओं को साइबरनेटिक प्रतिस्थापन के साथ बदलने में विकास जारी है। ये हथियार गति की थोड़ी सीमित सीमा की अनुमति देते हैं, और कथित तौर पर दबाव और तापमान का पता लगाने के लिए सेंसर की सुविधा दी जाती है।<ref>{{cite news |url=https://www.washingtonpost.com/wp-dyn/content/article/2006/09/13/AR2006091302271.html |title=वाशिंगटन पोस्ट|author=David Brown |access-date=September 14, 2006 |date=September 14, 2006}}</ref>
नॉर्थवेस्टर्न यूनिवर्सिटी और शिकागो के पुनर्वास संस्थान के डॉ. टॉड कुइकेन ने मोटर चालित कृत्रिम उपकरणों को नियंत्रित करने और संवेदी प्रतिक्रिया प्राप्त करने के लिए एक विकलांग व्यक्ति के लिए [[लक्षित पुनर्जीवन]] नामक एक विधि विकसित की है।


2002 में 100 इलेक्ट्रोडों का एक [[मल्टीइलेक्ट्रोड सरणी]], जो अब [[बरैंगते]] का सेंसर भाग बनता है, सीधे वैज्ञानिक [[केविन वारविक]] के मध्य तंत्रिका तंतुओं में प्रत्यारोपित किया गया था। रिकॉर्ड किए गए संकेतों का उपयोग वारविक के सहयोगी, [[पीटर क्यबर्ड]] द्वारा विकसित एक [[रोबोट भुजा]] को नियंत्रित करने के लिए किया गया था और यह वारविक की अपनी भुजा के कार्यों की नकल करने में सक्षम था।<ref name="warwick">Warwick, K, Gasson, M, Hutt, B, Goodhew, I, Kyberd, P, Andrews, B, Teddy, P and Shad, A:"The Application of Implant Technology for Cybernetic Systems", ''Archives of Neurology'', 60(10), pp. 1369–73, 2003</ref> इसके अतिरिक्त, तंत्रिका में छोटी विद्युत धाराएँ प्रवाहित करके प्रत्यारोपण के माध्यम से संवेदी प्रतिक्रिया का एक रूप प्रदान किया गया था। इससे हाथ की पहली लुम्ब्रिकल मांसपेशी (हाथ) में संकुचन हुआ और इसी गति को महसूस किया गया।<ref name="warwick" />
प्रारम्भ पेक्टोरलिस मांसपेशियों से जुड़ी नसों का उपयोग करके खोई हुई भुजाओं को साइबरनेटिक प्रतिस्थापन के साथ बदलने में विकास जारी है। ये हथियार गति की थोड़ी सीमित सीमा की अनुमति देते हैं, और कथित तौर पर दबाव और तापमान का पता लगाने के लिए सेंसर की सुविधा दी जाती है।<ref>{{cite news |url=https://www.washingtonpost.com/wp-dyn/content/article/2006/09/13/AR2006091302271.html |title=वाशिंगटन पोस्ट|author=David Brown |access-date=September 14, 2006 |date=September 14, 2006}}</ref>


जून 2014 में, पैराप्लेजिक एथलीट जूलियानो पिंटो ने मस्तिष्क इंटरफेस के साथ संचालित एक्सोस्केलेटन का उपयोग करके [[2014 फीफा विश्व कप]] में औपचारिक पहली किक का प्रदर्शन किया।<ref name="did">[https://www.nbcnews.com/storyline/world-cup/we-did-it-brain-controlled-iron-man-suit-kicks-world-n129941 'We Did It!' Brain-Controlled 'Iron Man' Suit Kicks Off World Cup]</ref> एक्सोस्केलेटन को ब्राजील सरकार द्वारा वित्त पोषित मिगुएल निकोलेलिस की प्रयोगशाला में वॉक अगेन प्रोजेक्ट द्वारा विकसित किया गया था।<ref name="did" />निकोलेलिस का कहना है कि प्रतिस्थापन अंगों से प्रतिक्रिया (उदाहरण के लिए, जमीन को छूने वाले कृत्रिम पैर द्वारा अनुभव किए गए दबाव के बारे में जानकारी) संतुलन के लिए आवश्यक है।<ref name="Think" />उन्होंने पाया है कि जब तक लोग मस्तिष्क इंटरफ़ेस द्वारा नियंत्रित किए जा रहे अंगों को ऐसा करने का आदेश जारी करने के साथ-साथ चलते हुए देख सकते हैं, बार-बार उपयोग के साथ मस्तिष्क बाहरी रूप से संचालित अंग को आत्मसात कर लेगा और इसे समझना शुरू कर देगा ( स्थिति जागरूकता और प्रतिक्रिया के संदर्भ में) शरीर के हिस्से के रूप में।<ref name="Think">[https://think.kera.org/2016/02/09/if-you-gave-a-mouse-a-computer/ Brain-To-Brain Communication] (audio interview with Dr. Miguel Nicolelis)</ref>
नॉर्थवेस्टर्न यूनिवर्सिटी और शिकागो के पुनर्वास संस्थान के डॉ. टॉड कुइकेन ने मोटर चालित प्रोस्थेटिक्स उपकरणों को नियंत्रित करने और संवेदी प्रतिक्रिया प्राप्त करने के लिए एक विकलांग व्यक्ति के लिए [[लक्षित पुनर्जीवन]] नामक एक विधि विकसित की है।


2002 में 100 इलेक्ट्रोडों का एक [[मल्टीइलेक्ट्रोड सरणी]], जो अब [[बरैंगते]] का सेंसर भाग बनता है, सीधे वैज्ञानिक [[केविन वारविक]] के मध्य तंत्रिका तंतुओं में प्रत्यारोपित किया गया था। रिकॉर्ड किए गए संकेतों का उपयोग वारविक के सहयोगी, [[पीटर क्यबर्ड]] द्वारा विकसित एक [[रोबोट भुजा]] को नियंत्रित करने के लिए किया गया था और यह वारविक की अपनी भुजा के कार्यों की नकल करने में सक्षम था।<ref name="warwick">Warwick, K, Gasson, M, Hutt, B, Goodhew, I, Kyberd, P, Andrews, B, Teddy, P and Shad, A:"The Application of Implant Technology for Cybernetic Systems", ''Archives of Neurology'', 60(10), pp. 1369–73, 2003</ref> इसके अतिरिक्त, तंत्रिका में छोटी विद्युत धाराएँ प्रवाहित करके प्रत्यारोपण के माध्यम से संवेदी प्रतिक्रिया का एक रूप प्रदान किया गया था। इससे हाथ की पहली लुम्ब्रिकल मांसपेशी (हाथ) में संकुचन हुआ और इसी गति को महसूस किया गया।<ref name="warwick" />


===विच्छेदन तकनीक===
जून 2014 में, पैराप्लेजिक एथलीट जूलियानो पिंटो ने मस्तिष्क इंटरफेस के साथ संचालित एक्सोस्केलेटन का उपयोग करके [[2014 फीफा विश्व कप]] में औपचारिक पहली किक का प्रदर्शन किया।<ref name="did">[https://www.nbcnews.com/storyline/world-cup/we-did-it-brain-controlled-iron-man-suit-kicks-world-n129941 'We Did It!' Brain-Controlled 'Iron Man' Suit Kicks Off World Cup]</ref> एक्सोस्केलेटन को ब्राजील सरकार द्वारा वित्त पोषित मिगुएल निकोलेलिस की प्रयोगशाला में वॉक अगेन प्रोजेक्ट द्वारा विकसित किया गया था।<ref name="did" />निकोलेलिस का कहना है कि प्रतिस्थापन अंगों से प्रतिक्रिया (उदाहरण के लिए, जमीन को छूने वाले प्रोस्थेटिक्स पैर द्वारा अनुभव किए गए दबाव के बारे में जानकारी) संतुलन के लिए आवश्यक है।<ref name="Think" />उन्होंने पाया है कि जब तक लोग मस्तिष्क इंटरफ़ेस द्वारा नियंत्रित किए जा रहे अंगों को ऐसा करने का आदेश जारी करने के साथ-साथ चलते हुए देख सकते हैं, बार-बार उपयोग के साथ मस्तिष्क बाहरी रूप से संचालित अंग को आत्मसात कर लेगा और इसे अपने शरीर के हिस्से के रूप में (स्थिति जागरूकता और प्रतिक्रिया के संदर्भ में) समझना प्रारम्भ कर देगा।<ref name="Think">[https://think.kera.org/2016/02/09/if-you-gave-a-mouse-a-computer/ Brain-To-Brain Communication] (audio interview with Dr. Miguel Nicolelis)</ref>
===अंगच्छेदन तकनीक===


एमआईटी बायोमेक्ट्रोनिक्स ग्रुप ने एक नया विच्छेदन प्रतिमान डिजाइन किया है जो जैविक मांसपेशियों और मायोइलेक्ट्रिक कृत्रिम अंगों को उच्च विश्वसनीयता के साथ तंत्रिका रूप से इंटरफेस करने में सक्षम बनाता है। यह सर्जिकल प्रतिमान, जिसे एगोनिस्ट-एंटागोनिस्ट मायोन्यूरल इंटरफ़ेस (एएमआई) कहा जाता है, उपयोगकर्ता को एक कृत्रिम अंग का उपयोग करने के बजाय अपने शरीर के विस्तार के रूप में अपने कृत्रिम अंग को समझने और नियंत्रित करने की क्षमता प्रदान करता है जो केवल एक उपांग जैसा दिखता है। एक सामान्य एगोनिस्ट-प्रतिपक्षी मांसपेशी जोड़ी संबंध (उदाहरण के लिए बाइसेप-ट्राइसेप) में, जब एगोनिस्ट मांसपेशी सिकुड़ती है, तो प्रतिपक्षी मांसपेशी खिंच जाती है, और इसके विपरीत, व्यक्ति को अपने अंग की स्थिति का ज्ञान बिना देखे ही मिल जाता है। . एक मानक विच्छेदन के दौरान, एगोनिस्ट-प्रतिपक्षी मांसपेशियां (उदाहरण के लिए बाइसेप-ट्राइसेप) एक दूसरे से अलग हो जाती हैं, जिससे संवेदी प्रतिक्रिया उत्पन्न करने वाले गतिशील अनुबंध-विस्तार तंत्र की क्षमता को रोका जा सकता है। इसलिए, वर्तमान विकलांगों के पास उस भौतिक वातावरण को महसूस करने का कोई तरीका नहीं है जिसका उनके कृत्रिम अंग सामना करते हैं। इसके अलावा, वर्तमान विच्छेदन सर्जरी के साथ, जो 200 वर्षों से अधिक समय से चली आ रही है, 1/3 मरीज़ अपने स्टंप में दर्द के कारण पुनरीक्षण सर्जरी से गुजरते हैं।
एमआईटी बायोमेक्ट्रोनिक्स ग्रुप ने एक नया अंगच्छेदन प्रतिमान डिजाइन किया है जो जैविक मांसपेशियों और मायोइलेक्ट्रिक प्रोस्थेटिक्स अंगों को उच्च विश्वसनीयता के साथ तंत्रिका रूप से इंटरफेस करने में सक्षम बनाता है। यह सर्जिकल प्रतिमान, जिसे एगोनिस्ट-एंटागोनिस्ट मायोन्यूरल इंटरफ़ेस (एएमआई) कहा जाता है, उपयोगकर्ता को एक प्रोस्थेटिक्स अंग का उपयोग करने के बजाय अपने शरीर के विस्तार के रूप में अपने प्रोस्थेटिक्स अंग को समझने और नियंत्रित करने की क्षमता प्रदान करता है जो केवल एक उपांग जैसा दिखता है। एक सामान्य एगोनिस्ट-प्रतिपक्षी मांसपेशी जोड़ी संबंध (उदाहरण के लिए बाइसेप-ट्राइसेप) में, जब एगोनिस्ट मांसपेशी सिकुड़ती है, तो प्रतिपक्षी मांसपेशी खिंच जाती है, और इसके विपरीत, व्यक्ति को अपने अंग की स्थिति का ज्ञान बिना देखे ही मिल जाता है। . एक मानक अंगच्छेदन के दौरान, एगोनिस्ट-प्रतिपक्षी मांसपेशियां (उदाहरण के लिए बाइसेप-ट्राइसेप) एक दूसरे से अलग हो जाती हैं, जिससे संवेदी प्रतिक्रिया उत्पन्न करने वाले गतिशील अनुबंध-विस्तार तंत्र की क्षमता को रोका जा सकता है। इसलिए, वर्तमान विकलांगों के पास उस भौतिक वातावरण को महसूस करने का कोई तरीका नहीं है जिसका उनके प्रोस्थेटिक्स अंग सामना करते हैं। इसके अलावा, वर्तमान अंगच्छेदन सर्जरी के साथ, जो 200 वर्षों से अधिक समय से चली आ रही है, 1/3 मरीज़ अपने स्टंप में दर्द के कारण पुनरीक्षण सर्जरी से गुजरते हैं।


एएमआई दो मांसपेशियों से बना है जो मूल रूप से एक एगोनिस्ट-प्रतिपक्षी संबंध साझा करते हैं। विच्छेदन सर्जरी के दौरान, इन दोनों मांसपेशियों को कटे हुए स्टंप के भीतर यांत्रिक रूप से एक साथ जोड़ा जाता है।<ref name="robotics.sciencemag.org">[https://www.science.org/doi/10.1126/scirobotics.aan2971 "On prosthetic control: A regenerative agonist-antagonist myoneural interface"],''Science Robotics'', 31 May 2017</ref> कई कृत्रिम जोड़ों पर नियंत्रण और संवेदना स्थापित करने के लिए एक मरीज में प्रत्येक संयुक्त स्वतंत्रता की डिग्री के लिए एक एएमआई मांसपेशी जोड़ी बनाई जा सकती है। इस नए तंत्रिका इंटरफ़ेस के प्रारंभिक परीक्षण में, एएमआई वाले रोगियों ने कृत्रिम अंग पर अधिक नियंत्रण का प्रदर्शन और रिपोर्ट किया है। इसके अतिरिक्त, पारंपरिक विच्छेदन वाले विषयों की तुलना में सीढ़ी पर चलने के दौरान अधिक स्वाभाविक रूप से प्रतिवर्ती व्यवहार देखा गया।<ref>[https://www.science.org/doi/10.1126/scitranslmed.aap8373 "Proprioception from a neurally controlled lower-extremity prosthesis"],'' Science Translational Medicine'', 30 May 2018</ref> एएमआई का निर्माण दो डीवास्कुलराइज्ड मांसपेशी ग्राफ्ट के संयोजन के माध्यम से भी किया जा सकता है। ये मांसपेशी ग्राफ्ट (या फ्लैप) अतिरिक्त मांसपेशियां हैं जिन्हें विकृत किया जाता है (मूल तंत्रिकाओं से अलग किया जाता है) और शरीर के एक हिस्से से हटा दिया जाता है ताकि काटे जाने वाले अंग में पाई जाने वाली कटी हुई नसों को फिर से संक्रमित किया जा सके।<ref name="robotics.sciencemag.org"/>पुनर्जीवित मांसपेशी फ्लैप के उपयोग के माध्यम से, मांसपेशियों के ऊतकों वाले उन रोगियों के लिए एएमआई बनाया जा सकता है जिन्होंने अत्यधिक शोष या क्षति का अनुभव किया है या उन रोगियों के लिए जो न्यूरोमा दर्द, हड्डी के स्पर्स आदि जैसे कारणों से कटे हुए अंग के पुनरीक्षण से गुजर रहे हैं।
एएमआई दो मांसपेशियों से बना है जो मूल रूप से एक एगोनिस्ट-प्रतिपक्षी संबंध साझा करते हैं। अंगच्छेदन सर्जरी के दौरान, इन दोनों मांसपेशियों को कटे हुए स्टंप के भीतर यांत्रिक रूप से एक साथ जोड़ा जाता है।<ref name="robotics.sciencemag.org">[https://www.science.org/doi/10.1126/scirobotics.aan2971 "On prosthetic control: A regenerative agonist-antagonist myoneural interface"],''Science Robotics'', 31 May 2017</ref> कई प्रोस्थेटिक्स जोड़ों पर नियंत्रण और संवेदना स्थापित करने के लिए एक मरीज में प्रत्येक संयुक्त स्वतंत्रता की डिग्री के लिए एक एएमआई मांसपेशी जोड़ी बनाई जा सकती है। इस नए तंत्रिका इंटरफ़ेस के प्रारंभिक परीक्षण में, एएमआई वाले रोगियों ने प्रोस्थेटिक्स अंग पर अधिक नियंत्रण का प्रदर्शन और रिपोर्ट किया है। इसके अतिरिक्त, पारंपरिक अंगच्छेदन वाले विषयों की तुलना में सीढ़ी पर चलने के दौरान अधिक स्वाभाविक रूप से प्रतिवर्ती व्यवहार देखा गया।<ref>[https://www.science.org/doi/10.1126/scitranslmed.aap8373 "Proprioception from a neurally controlled lower-extremity prosthesis"],'' Science Translational Medicine'', 30 May 2018</ref> एएमआई का निर्माण दो डीवास्कुलराइज्ड मांसपेशी ग्राफ्ट के संयोजन के माध्यम से भी किया जा सकता है। ये मांसपेशी ग्राफ्ट (या फ्लैप) अतिरिक्त मांसपेशियां हैं जिन्हें विकृत किया जाता है (मूल तंत्रिकाओं से अलग किया जाता है) और शरीर के एक हिस्से से हटा दिया जाता है ताकि काटे जाने वाले अंग में पाई जाने वाली कटी हुई नसों को फिर से संक्रमित किया जा सके।<ref name="robotics.sciencemag.org"/>पुनर्जीवित मांसपेशी फ्लैप के उपयोग के माध्यम से, मांसपेशियों के ऊतकों वाले उन रोगियों के लिए एएमआई बनाया जा सकता है जिन्होंने अत्यधिक शोष या क्षति का अनुभव किया है या उन रोगियों के लिए जो न्यूरोमा दर्द, हड्डी के स्पर्स आदि जैसे कारणों से कटे हुए अंग के पुनरीक्षण से गुजर रहे हैं।


== बाधाएँ ==
== बाधाएँ ==


=== गणितीय मॉडलिंग ===
=== गणितीय मॉडलिंग ===
प्रतिस्थापित किए जाने वाले सामान्य रूप से कार्यशील ऊतक के नॉनलाइनियर इनपुट/आउटपुट (आई/ओ) मापदंडों का सटीक लक्षण वर्णन एक कृत्रिम अंग को डिजाइन करने के लिए सर्वोपरि है जो सामान्य जैविक सिनैप्टिक संकेतों की नकल करता है।<ref name="Bertaccini_2009">बर्टाकिनी, डी., और फ़ैनेली, एस. (2009)। कॉक्लियर सेंसरिनुरल हाइपोएक्यूसिया के लिए एक अलग मॉडल के कम्प्यूटेशनल और कंडीशनिंग मुद्दे। [लेख]। अनुप्रयुक्त संख्यात्मक गणित, 59(8), 1989-2001।</ref><ref name="Marmarelis_1993">मार्मारेलिस, वी.जेड. (1993)। गुठली के लैगुएरे विस्तार का उपयोग करके गैर-रेखीय जैविक-प्रणालियों की पहचान। [लेख]। एनल्स ऑफ बायोमेडिकल इंजीनियरिंग, 21(6), 573-89।</ref> इन संकेतों का गणितीय मॉडलिंग एक जटिल कार्य है क्योंकि न्यूरॉन्स और उनके सिनैप्टिक कनेक्शन वाले सेलुलर/आणविक तंत्र में निहित गैर-रेखीय गतिशीलता के कारण।<ref name="Berger_1991">टी.डब्ल्यू. बर्जर, टी.पी. हार्टी, एक्स. ज़ी, जी. बैरियोन्यूवो, और आर.जे. स्क्लाबैसी, मॉडलिंग
प्रतिस्थापित किए जाने वाले सामान्य रूप से कार्यशील ऊतक के नॉनलाइनियर इनपुट/आउटपुट (आई/ओ) मापदंडों का सटीक लक्षण वर्णन एक प्रोस्थेटिक्स अंग को डिजाइन करने के लिए सर्वोपरि है जो सामान्य जैविक सिनैप्टिक संकेतों की नकल करता है।<ref name="Bertaccini_2009">बर्टाकिनी, डी., और फ़ैनेली, एस. (2009)। कॉक्लियर सेंसरिनुरल हाइपोएक्यूसिया के लिए एक अलग मॉडल के कम्प्यूटेशनल और कंडीशनिंग मुद्दे। [लेख]। अनुप्रयुक्त संख्यात्मक गणित, 59(8), 1989-2001।</ref><ref name="Marmarelis_1993">मार्मारेलिस, वी.जेड. (1993)। गुठली के लैगुएरे विस्तार का उपयोग करके गैर-रेखीय जैविक-प्रणालियों की पहचान। [लेख]। एनल्स ऑफ बायोमेडिकल इंजीनियरिंग, 21(6), 573-89।</ref> इन संकेतों का गणितीय मॉडलिंग एक जटिल कार्य है क्योंकि न्यूरॉन्स और उनके सिनैप्टिक कनेक्शन वाले सेलुलर/आणविक तंत्र में निहित गैर-रेखीय गतिशीलता के कारण।<ref name="Berger_1991">टी.डब्ल्यू. बर्जर, टी.पी. हार्टी, एक्स. ज़ी, जी. बैरियोन्यूवो, और आर.जे. स्क्लाबैसी, मॉडलिंग
प्रोक में प्रयोगात्मक अपघटन के माध्यम से न्यूरोनल नेटवर्क का। आईईईई 34वीं मध्य
प्रोक में प्रयोगात्मक अपघटन के माध्यम से न्यूरोनल नेटवर्क का। आईईईई 34वीं मध्य
सिम्प. सर्क. सिस., मोंटेरे, सीए, 1991, वॉल्यूम। 1, पृ. 91-97.</ref><ref name="Berger_1994">टी.डब्ल्यू. बर्जर, जी. चौवेट, और आर.जे. स्क्लैबैसी, एक जैविक रूप से आधारित मॉडल
सिम्प. सर्क. सिस., मोंटेरे, सीए, 1991, वॉल्यूम। 1, पृ. 91-97.</ref><ref name="Berger_1994">टी.डब्ल्यू. बर्जर, जी. चौवेट, और आर.जे. स्क्लैबैसी, एक जैविक रूप से आधारित मॉडल
Line 113: Line 115:
Neural Computation, California, 1997, vol. 7, pp. 68–75.</ref> लगभग सभी मस्तिष्क न्यूरॉन्स का आउटपुट इस बात पर निर्भर करता है कि कौन से पोस्ट-सिनैप्टिक इनपुट सक्रिय हैं और किस क्रम में इनपुट प्राप्त होते हैं। (क्रमशः स्थानिक और लौकिक गुण)।<ref name="Berger_Restoring">बर्जर, टी.डब्ल्यू., आहूजा, ए., कौरेलिस, एस.एच., डेडवाइलर, एस.ए., एरिंजिपपुरथ, जी., गेरहार्ड्ट, जी.ए., एट अल। (2005)। खोए हुए संज्ञानात्मक कार्य को पुनर्स्थापित करना। आईईईई इंजीनियरिंग इन मेडिसिन एंड बायोलॉजी पत्रिका, 24(5), 30-44।</ref>
Neural Computation, California, 1997, vol. 7, pp. 68–75.</ref> लगभग सभी मस्तिष्क न्यूरॉन्स का आउटपुट इस बात पर निर्भर करता है कि कौन से पोस्ट-सिनैप्टिक इनपुट सक्रिय हैं और किस क्रम में इनपुट प्राप्त होते हैं। (क्रमशः स्थानिक और लौकिक गुण)।<ref name="Berger_Restoring">बर्जर, टी.डब्ल्यू., आहूजा, ए., कौरेलिस, एस.एच., डेडवाइलर, एस.ए., एरिंजिपपुरथ, जी., गेरहार्ड्ट, जी.ए., एट अल। (2005)। खोए हुए संज्ञानात्मक कार्य को पुनर्स्थापित करना। आईईईई इंजीनियरिंग इन मेडिसिन एंड बायोलॉजी पत्रिका, 24(5), 30-44।</ref>


एक बार जब I/O मापदंडों को गणितीय रूप से मॉडल किया जाता है, तो एकीकृत सर्किट को सामान्य जैविक संकेतों की नकल करने के लिए डिज़ाइन किया जाता है। कृत्रिम को सामान्य ऊतक की तरह कार्य करने के लिए, उसे सामान्य ऊतक की तरह ही इनपुट संकेतों को संसाधित करना होगा, एक प्रक्रिया जिसे [[ अभिन्न परिवर्तन ]] के रूप में जाना जाता है।
एक बार जब I/O मापदंडों को गणितीय रूप से मॉडल किया जाता है, तो एकीकृत परिपथ को सामान्य जैविक संकेतों की नकल करने के लिए डिज़ाइन किया जाता है। प्रोस्थेटिक्स को सामान्य ऊतक की तरह कार्य करने के लिए, उसे सामान्य ऊतक की तरह ही इनपुट संकेतों को संसाधित करना होगा, एक प्रक्रिया जिसे [[ अभिन्न परिवर्तन ]] के रूप में जाना जाता है।


=== आकार ===
=== आकार ===
प्रत्यारोपण योग्य उपकरण सीधे मस्तिष्क में प्रत्यारोपित करने के लिए बहुत छोटे होने चाहिए, लगभग एक चौथाई के आकार के। माइक्रोइम्प्लांटेबल इलेक्ट्रोड ऐरे का एक उदाहरण यूटा ऐरे है।<ref>{{cite journal|authors=R. Bhandari, S. Negi, F. Solzbacher|title=पेनेट्रेटिंग न्यूरल इलेक्ट्रोड एरेज़ का वेफर स्केल निर्माण|journal=Biomedical Microdevices|volume=12|issue=5|pages=797–807|year=2010|doi=10.1007/s10544-010-9434-1|pmid=20480240|s2cid=25288723}}</ref>
प्रत्यारोपण योग्य उपकरण सीधे मस्तिष्क में प्रत्यारोपित करने के लिए बहुत छोटे होने चाहिए, लगभग एक चौथाई के आकार के। माइक्रोइम्प्लांटेबल इलेक्ट्रोड ऐरे का एक उदाहरण यूटा ऐरे है।<ref>{{cite journal|authors=R. Bhandari, S. Negi, F. Solzbacher|title=पेनेट्रेटिंग न्यूरल इलेक्ट्रोड एरेज़ का वेफर स्केल निर्माण|journal=Biomedical Microdevices|volume=12|issue=5|pages=797–807|year=2010|doi=10.1007/s10544-010-9434-1|pmid=20480240|s2cid=25288723}}</ref>
वायरलेस नियंत्रण उपकरण खोपड़ी के बाहर लगाए जा सकते हैं और पेजर से छोटे होने चाहिए।
 
वायरलेस नियंत्रण उपकरण कपाल के बाहर लगाए जा सकते हैं और पेजर से छोटे होने चाहिए।


=== बिजली की खपत ===
=== बिजली की खपत ===
बिजली की खपत बैटरी के आकार को बढ़ाती है। प्रत्यारोपित सर्किट के अनुकूलन से बिजली की आवश्यकता कम हो जाती है। प्रत्यारोपित उपकरणों को वर्तमान में ऑन-बोर्ड बिजली स्रोतों की आवश्यकता होती है। एक बार बैटरी खत्म हो जाने पर, यूनिट को बदलने के लिए सर्जरी की आवश्यकता होती है। लंबी बैटरी लाइफ का संबंध बैटरियों को बदलने के लिए आवश्यक कम सर्जरी से है। एक विकल्प जिसका उपयोग सर्जरी या तारों के बिना इम्प्लांट बैटरियों को रिचार्ज करने के लिए किया जा सकता है, उसका उपयोग संचालित टूथब्रश में किया जा रहा है।<ref>{{Cite journal|title=इंडक्टिव कपलिंग का उपयोग कर वायरलेस मोबाइल चार्जर|year=2017|first1=Otchere|last1=Kweku|journal=International Journal of Engineering and Advanced Technology|volume=7|issue=1|pages=84–99}}</ref> ये उपकरण बैटरी को रिचार्ज करने के लिए [[आगमनात्मक चार्जिंग]] का उपयोग करते हैं। एक अन्य रणनीति रेडियो-फ़्रीक्वेंसी पहचान टैग की तरह, विद्युत चुम्बकीय ऊर्जा को विद्युत ऊर्जा में परिवर्तित करना है।
बिजली की खपत बैटरी के आकार को बढ़ाती है। प्रत्यारोपित परिपथ के अनुकूलन से बिजली की आवश्यकता कम हो जाती है। प्रत्यारोपित उपकरणों को वर्तमान में ऑन-बोर्ड बिजली स्रोतों की आवश्यकता होती है। एक बार बैटरी खत्म हो जाने पर, यूनिट को बदलने के लिए सर्जरी की आवश्यकता होती है। लंबी बैटरी लाइफ का संबंध बैटरियों को बदलने के लिए आवश्यक कम सर्जरी से है। एक विकल्प जिसका उपयोग सर्जरी या तारों के बिना इम्प्लांट बैटरियों को रिचार्ज करने के लिए किया जा सकता है, उसका उपयोग संचालित टूथब्रश में किया जा रहा है।<ref>{{Cite journal|title=इंडक्टिव कपलिंग का उपयोग कर वायरलेस मोबाइल चार्जर|year=2017|first1=Otchere|last1=Kweku|journal=International Journal of Engineering and Advanced Technology|volume=7|issue=1|pages=84–99}}</ref> ये उपकरण बैटरी को रिचार्ज करने के लिए [[आगमनात्मक चार्जिंग]] का उपयोग करते हैं। एक अन्य रणनीति रेडियो-फ़्रीक्वेंसी पहचान टैग की तरह, विद्युत चुम्बकीय ऊर्जा को विद्युत ऊर्जा में परिवर्तित करना है।


=== [[जैव]] अनुकूलता ===
=== [[जैव]] अनुकूलता ===
Line 135: Line 138:


=== सही प्रत्यारोपण ===
=== सही प्रत्यारोपण ===
डिवाइस के इम्प्लांटेशन में कई समस्याएं आती हैं। सबसे पहले, सही प्रीसिनेप्टिक इनपुट को डिवाइस पर सही पोस्टसिनेप्टिक इनपुट से जोड़ा जाना चाहिए। दूसरे, डिवाइस से आउटपुट वांछित ऊतक पर सही ढंग से लक्षित होना चाहिए। तीसरा, मस्तिष्क को सीखना चाहिए कि इम्प्लांट का उपयोग कैसे किया जाए। [[न्यूरोप्लास्टिकिटी]] पर विभिन्न अध्ययनों से पता चलता है कि उचित प्रेरणा के साथ डिज़ाइन किए गए अभ्यासों के माध्यम से यह संभव हो सकता है।
डिवाइस के इम्प्लांटेशन में कई समस्याएं आती हैं। सबसे पहले, सही प्रीसिनेप्टिक इनपुट को डिवाइस पर सही पोस्टसिनेप्टिक इनपुट से जोड़ा जाना चाहिए। दूसरे, डिवाइस से आउटपुट वांछित ऊतक पर सही ढंग से लक्षित होना चाहिए। तीसरा, मस्तिष्क को सीखना चाहिए कि इम्प्लांट का उपयोग कैसे किया जाए। [[न्यूरोप्लास्टिकिटी]] पर विभिन्न अध्ययनों से पता चलता है कि उचित प्रेरणा के साथ डिज़ाइन किए गए अभ्यासों के माध्यम से यह संभव हो सकता हैl


== शामिल प्रौद्योगिकियाँ ==
== सम्मिलित प्रौद्योगिकियाँ ==


=== स्थानीय क्षेत्र की संभावनाएं ===
=== स्थानीय क्षेत्र की संभावनाएं ===
स्थानीय क्षेत्र क्षमता|स्थानीय क्षेत्र क्षमता (एलएफपी) [[इलेक्ट्रोफिजियोलॉजी]] संकेत हैं जो ऊतक की मात्रा के भीतर सभी [[ डेन्ड्राइट ]] रासायनिक सिनैप्स के योग से संबंधित हैं। हाल के अध्ययनों से पता चलता है कि लक्ष्य और अपेक्षित मूल्य उच्च-स्तरीय संज्ञानात्मक कार्य हैं जिनका उपयोग तंत्रिका संज्ञानात्मक कृत्रिम अंगों के लिए किया जा सकता है।<ref name="Andersen">Andersen, R. A., Burdick, J. W., Musallam, S., Pesaran, B., & Cham, J. G. (2004). Cognitive neural prosthetics. Trends in Cognitive Sciences, 8(11), 486–93.</ref>
स्थानीय क्षेत्र क्षमता (एलएफपी) [[इलेक्ट्रोफिजियोलॉजी]] संकेत हैं जो ऊतक की मात्रा के भीतर सभी [[ डेन्ड्राइट ]] रासायनिक सिनैप्स के योग से संबंधित हैं। हाल के अध्ययनों से पता चलता है कि लक्ष्य और अपेक्षित मूल्य उच्च-स्तरीय संज्ञानात्मक कार्य हैं जिनका उपयोग तंत्रिका संज्ञानात्मक प्रोस्थेटिक्स अंगों के लिए किया जा सकता है।<ref name="Andersen">Andersen, R. A., Burdick, J. W., Musallam, S., Pesaran, B., & Cham, J. G. (2004). Cognitive neural prosthetics. Trends in Cognitive Sciences, 8(11), 486–93.</ref> इसके अलावा, राइस यूनिवर्सिटी के वैज्ञानिकों ने सतह पर मामूली बदलाव के माध्यम से नैनोकणों के प्रकाश-प्रेरित कंपन को ट्यून करने की एक नई विधि की खोज की है, जिससे कण जुड़े हुए हैं। विश्वविद्यालय के अनुसार, इस खोज से आणविक संवेदन से लेकर वायरलेस संचार तक फोटोनिक्स के नए अनुप्रयोगों को बढ़ावा मिल सकता है। उन्होंने सोने के नैनोडिस्क में परमाणुओं को कंपन करने के लिए प्रेरित करने के लिए अल्ट्राफास्ट लेजर पल्स का उपयोग किया था।<ref>The Engineer. London. Centaur Communications Ltd. 2015, May 8</ref>
इसके अलावा, राइस यूनिवर्सिटी के वैज्ञानिकों ने सतह पर मामूली बदलाव के माध्यम से नैनोकणों के प्रकाश-प्रेरित कंपन को ट्यून करने की एक नई विधि की खोज की है, जिससे कण जुड़े हुए हैं। विश्वविद्यालय के अनुसार, इस खोज से आणविक संवेदन से लेकर वायरलेस संचार तक फोटोनिक्स के नए अनुप्रयोगों को बढ़ावा मिल सकता है। उन्होंने सोने के नैनोडिस्क में परमाणुओं को कंपन करने के लिए प्रेरित करने के लिए अल्ट्राफास्ट लेजर पल्स का उपयोग किया।<ref>The Engineer. London. Centaur Communications Ltd. 2015, May 8</ref>
=== स्वचालित चलायमान विद्युत जांच ===
 
बाधा को दूर करने के लिए एक उपाय है इलेक्ट्रोड का दीर्घकालिक आरोपण। यदि इलेक्ट्रोड को शारीरिक झटके से स्थानांतरित किया जाता है या मस्तिष्क इलेक्ट्रोड स्थिति के संबंध में चलता है, तो इलेक्ट्रोड विभिन्न तंत्रिकाओं को रिकॉर्ड कर सकते हैं। इष्टतम सिग्नल बनाए रखने के लिए इलेक्ट्रोड का समायोजन आवश्यक है। मल्टी इलेक्ट्रोड सरणियों को व्यक्तिगत रूप से समायोजित करना एक बहुत ही कठिन और समय लेने वाली प्रक्रिया है। स्वचालित रूप से समायोजित इलेक्ट्रोड का विकास इस समस्या को कम करेगा। एंडरसन का समूह वर्तमान में ऐसी प्रणाली बनाने के लिए यू-चोंग ताई की प्रयोगशाला और बर्डिक लैब (सभी कैलटेक में) के साथ सहयोग कर रहा है जो इलेक्ट्रोड के क्रोनिक रूप से प्रत्यारोपित सरणी में इलेक्ट्रोड को स्वतंत्र रूप से समायोजित करने के लिए इलेक्ट्रोलिसिस-आधारित एक्चुएटर्स का उपयोग करता है।<ref name="Andersen_Trends">एंडरसन, आर.ए. एट अल (2004) कॉग्निटिव न्यूरल प्रोस्थेटिक्स। संज्ञानात्मक विज्ञान में रुझान. 8(11):486-93.</ref>
 
=== स्वचालित चल विद्युत जांच ===
दूर करने के लिए एक बाधा इलेक्ट्रोड का दीर्घकालिक आरोपण है। यदि इलेक्ट्रोड को शारीरिक झटके से स्थानांतरित किया जाता है या मस्तिष्क इलेक्ट्रोड स्थिति के संबंध में चलता है, तो इलेक्ट्रोड विभिन्न तंत्रिकाओं को रिकॉर्ड कर सकते हैं। इष्टतम सिग्नल बनाए रखने के लिए इलेक्ट्रोड का समायोजन आवश्यक है। मल्टी इलेक्ट्रोड सरणियों को व्यक्तिगत रूप से समायोजित करना एक बहुत ही कठिन और समय लेने वाली प्रक्रिया है। स्वचालित रूप से समायोजित इलेक्ट्रोड का विकास इस समस्या को कम करेगा। एंडरसन का समूह वर्तमान में ऐसी प्रणाली बनाने के लिए यू-चोंग ताई की प्रयोगशाला और बर्डिक लैब (सभी कैलटेक में) के साथ सहयोग कर रहा है जो इलेक्ट्रोड के क्रोनिक रूप से प्रत्यारोपित सरणी में इलेक्ट्रोड को स्वतंत्र रूप से समायोजित करने के लिए इलेक्ट्रोलिसिस-आधारित एक्चुएटर्स का उपयोग करता है।<ref name="Andersen_Trends">एंडरसन, आर.ए. एट अल (2004) कॉग्निटिव न्यूरल प्रोस्थेटिक्स। संज्ञानात्मक विज्ञान में रुझान. 8(11):486-93.</ref>


=== छवि निर्देशित सर्जिकल तकनीक ===
=== छवि निर्देशित सर्जिकल तकनीक ===
छवि-निर्देशित सर्जरी का उपयोग मस्तिष्क प्रत्यारोपण को सटीक स्थिति में लाने के लिए किया जाता है।<ref name="Andersen" />
छवि-निर्देशित सर्जरी का उपयोग मस्तिष्क प्रत्यारोपण को सटीक स्थिति में लाने के लिए किया जाता है।<ref name="Andersen" />
==यह भी देखें==
==यह भी देखें==
{{col div|colwidth=30em}}
{{col div|colwidth=30em}}
* जैवचिकित्सा अभियांत्रिकी
* जैवचिकित्सा अभियांत्रिकी
* ब्रेन-कंप्यूटर इंटरफ़ेस
* ब्रेन-कंप्यूटर इंटरफ़ेस
* [[मस्तिष्क-पढ़ना]]
* [[ब्रेन रीडिंग ]]
* [[साइबोर्ग]]
* [[साइबोर्ग]]
* [[अनुभव मशीन]]
* [[अनुभव मशीन]]
Line 162: Line 160:
* [[प्रोस्थेटिक न्यूरोनल मेमोरी सिलिकॉन चिप्स]]
* [[प्रोस्थेटिक न्यूरोनल मेमोरी सिलिकॉन चिप्स]]
*प्रोस्थेटिक्स
*प्रोस्थेटिक्स
* [[नकली वास्तविकता]]
* [[अनुकारित वास्तविकता]]
* [[वायरहेड (विज्ञान कथा)]]
* [[वायरहेड (विज्ञान कथा)]]
{{colend}}
{{colend}}
Line 185: Line 183:


==बाहरी संबंध==
==बाहरी संबंध==
{{Commons category}}
*[http://openeeg.sourceforge.net/doc/ The open-source Electroencephalography project] and [http://pceeg.sourceforge.net/ Programmable chip version], ''Sourceforge'' open source EEG projects
*[http://openeeg.sourceforge.net/doc/ The open-source Electroencephalography project] and [http://pceeg.sourceforge.net/ Programmable chip version], ''Sourceforge'' open source EEG projects
*[https://web.archive.org/web/20170226032813/http://neural-prosthesis.com/ Dr. Theodore W. Berger's website] (WayBack machine snapshot from 2017)
*[https://web.archive.org/web/20170226032813/http://neural-prosthesis.com/ Dr. Theodore W. Berger's website] (WayBack machine snapshot from 2017)
*[http://www.neuroprosthetic.org/ Neuroprosthetic.org] (Neuroscience, Artificial Intelligence, Prosthetics, Deep learning and Robotics)
*[http://www.neuroprosthetic.org/ Neuroprosthetic.org] (Neuroscience, Artificial Intelligence, Prosthetics, Deep learning and Robotics)
*[http://www.cimit.org/ CIMIT – Center For Integration Of Medicine And Innovative Technology – Advances & Research in Neuroprosthetics]
*[http://www.cimit.org/ CIMIT – Center For Integration Of Medicine And Innovative Technology – Advances & Research in Neuroprosthetics]
{{Authority control}}
[[Category: न्यूरोप्रोस्थेटिक्स| न्यूरोप्रोस्थेटिक्स]] [[Category: उभरती तकनीकी]] [[Category: प्रत्यारोपण (चिकित्सा)]]


[[Category: Machine Translated Page]]
[[Category:All articles containing potentially dated statements]]
[[Category:All articles with specifically marked weasel-worded phrases]]
[[Category:Articles containing potentially dated statements from 2012]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with specifically marked weasel-worded phrases from October 2011]]
[[Category:CS1 maint]]
[[Category:Created On 14/08/2023]]
[[Category:Created On 14/08/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Vigyan Ready]]

Latest revision as of 22:36, 10 October 2023

न्यूरोप्रोस्थेटिक्स (न्यूरल प्रोस्थेटिक्स भी कहा जाता है) तंत्रिका विज्ञान और जैवचिकित्सा अभियांत्रिकी से संबंधित एक अनुशासन है जो तंत्रिका प्रोस्थेटिक्स के विकास से संबंधित है। कभी-कभी उनकी तुलना मस्तिष्क (ब्रेन)-कंप्यूटर इंटरफ़ेस से की जाती है, जो ब्रेन को लुप्त (मिसिंग) जैविक कार्यक्षमता को बदलने के लिए बनाए गए उपकरण के बजाय कंप्यूटर से जोड़ता है।[1]

तंत्रिका प्रोस्थेटिक्स अंग उपकरणों की एक श्रृंखला है जो मोटर, संवेदी या संज्ञानात्मक तौर-तरीकों को प्रतिस्थापित कर सकती है जो किसी चोट या बीमारी के परिणामस्वरूप क्षतिग्रस्त हो सकते हैं। कॉकलीयर इम्प्लांट ऐसे उपकरणों का एक उदाहरण प्रदान करते हैं। ये उपकरण कोक्लीअ में किए गए आवृत्ति विश्लेषण का अनुकरण करते हुए कान का परदा और स्टेपीज़ द्वारा किए गए कार्यों को प्रतिस्थापित करते हैं। बाहरी इकाई पर एक माइक्रोफ़ोन ध्वनि एकत्र करता है और उसे संसाधित करता है; संसाधित सिग्नल को फिर एक प्रत्यारोपित इकाई में स्थानांतरित किया जाता है जो माइक्रोइलेक्ट्रोड सरणी के माध्यम से ऑडिटरी नर्व (श्रवण तंत्रिका) को उत्तेजित करता है।[2] क्षतिग्रस्त इंद्रियों के प्रतिस्थापन या संवर्द्धन के माध्यम से, इन उपकरणों का उद्देश्य विकलांग लोगों के लिए जीवन की गुणवत्ता में सुधार करना है।

इन प्रत्यारोपित उपकरणों का उपयोग प्रारम्भ मानव मस्तिष्क और इसकी कार्यप्रणाली की बेहतर समझ विकसित करने में न्यूरोवैज्ञानिकों की सहायता के लिए एक उपकरण के रूप में पशु प्रयोग में भी किया जाता है। विषय के मस्तिष्क में प्रत्यारोपित इलेक्ट्रोड द्वारा भेजे गए मस्तिष्क के विद्युत संकेतों की वायरलेस तरीके से निगरानी करके, डिवाइस के परिणामों को प्रभावित किए बिना विषय का अध्ययन किया जा सकता है। मस्तिष्क में विद्युत संकेतों की सटीक जांच और रिकॉर्डिंग से न्यूरॉन्स की स्थानीय आबादी के बीच संबंधों को बेहतर ढंग से समझने में मदद मिलेगी जो एक विशिष्ट कार्य के लिए जिम्मेदार हैं।[3]

तंत्रिका प्रत्यारोपण को जितना संभव हो उतना छोटा डिज़ाइन किया गया है ताकि न्यूनतम आक्रामक हो, विशेष रूप से मस्तिष्क, आंखों या कोक्लीअ के आसपास के क्षेत्रों में। ये प्रत्यारोपण प्रारम्भ अपने प्रोस्थेटिक्स समकक्षों के साथ वायरलेस तरीके से संचार करते हैं। इसके अतिरिक्त, बिजली वर्तमान में त्वचा के माध्यम से वायरलेस पॉवर ट्रांसमिशन के माध्यम से प्राप्त की जाती है। इम्प्लांट के आसपास के ऊतक प्रारम्भ तापमान वृद्धि के प्रति अत्यधिक संवेदनशील होते हैं, जिसका अर्थ है कि ऊतक क्षति को रोकने के लिए बिजली की खपत न्यूनतम होनी चाहिए।[4]

वर्तमान में न्यूरोप्रोस्थेटिक का सबसे व्यापक उपयोग कॉक्लियर इम्प्लांट है, जिसका दुनिया भर में 300,000 से अधिक उपयोग किया जाता है। as of 2012.[5]


इतिहास

पहला ज्ञात कॉक्लियर इम्प्लांट 1957 में बनाया गया था। अन्य परिवर्धनपाथवे शिला 1961 में अर्धांगघात (हेमिप्लेजिया) में पैर गिराने के लिए पहला मोटर प्रोस्थेसिस, 1977 में पहला श्रवण (ऑडिटरी) ब्रेनस्टेम प्रत्यारोपण और 1981 में एक वयस्क चूहे की रीढ़ की हड्डी में प्रत्यारोपित एक पेरीफेरल नर्व ब्रिज (परिधीय तंत्रिका पुल) सम्मिलित है। 1988, लम्बर एंटीरियर रुट इम्प्लांट (कटि कोर्सेट अग्र रुट प्रत्यारोप) और कार्यात्मक विद्युत उत्तेजना (एफईएस) ने पैराप्लेजिक्स के एक समूह के लिए क्रमशः खड़े होने और चलने की सुविधा प्रदान की है।[6]

मस्तिष्क में प्रत्यारोपित इलेक्ट्रोड के विकास के संबंध में, प्रारंभिक कठिनाई इलेक्ट्रोड का विश्वसनीय रूप से पता लगाना था, जो मूल रूप से सुइयों के साथ इलेक्ट्रोड डालने और वांछित गहराई पर सुइयों को तोड़ने के द्वारा किया जाता था।[7] हाल की प्रणालियाँ अधिक उन्नत जांचों का उपयोग करती हैं, जैसे कि पार्किंसंस रोग के लक्षणों को कम करने के लिए गहरी मस्तिष्क उत्तेजना (डीप ब्रेन स्टिमुलेशन) में उपयोग की जाने वाली जांचें। किसी भी दृष्टिकोण के साथ समस्या यह है कि मस्तिष्क कपाल में स्वतंत्र रूप से तैरता रहता है जबकि जांच नहीं होती है, और अपेक्षाकृत छोटे प्रभाव, जैसे कि कम गति वाली कार दुर्घटना, संभावित रूप से हानिकारक होते हैं। मिशिगन विश्वविद्यालय के केंसल वाइज जैसे कुछ शोधकर्ताओं ने कपाल की आंतरिक सतह पर 'मस्तिष्क की बाहरी सतह पर लगाए जाने वाले इलेक्ट्रोड' को बांधने का प्रस्ताव दिया है।[8] हालाँकि, सफल होने पर भी, टेदरिंग मस्तिष्क में गहराई तक डाले जाने वाले उपकरणों में समस्या का समाधान नहीं करेगी, जैसे कि डीप ब्रेन स्टिमुलेशन (डीबीएस) के परिस्थिति में करते हैं।

संवेदी प्रोस्थेटिक्स

विज़ुअल प्रोस्थेटिक्स

एक विज़ुअल प्रोस्थेटिक्स अंग विज़ुअल प्रणाली में न्यूरॉन्स को विद्युत रूप से उत्तेजित करके छवि की भावना उन्नत कर सकता है। एक कैमरा वायरलेस तरीके से इम्प्लांट तक संचारित होगा, इम्प्लांट इलेक्ट्रोड की एक श्रृंखला में छवि को मैप करेगा। इलेक्ट्रोड की श्रृंखला को 600-1000 स्थानों को प्रभावी ढंग से उत्तेजित करना होता है, रेटिना में इन ऑप्टिक न्यूरॉन्स को उत्तेजित करने से एक छवि बनेगी। उत्तेजना ऑप्टिक सिग्नल के पाथवे पर कहीं भी की जा सकती है। एक छवि बनाने के लिए ऑप्टिकल तंत्रिका को उत्तेजित किया जा सकता है, या विज़ुअल कॉर्टेक्स को उत्तेजित किया जा सकता है, हालांकि रेटिना प्रत्यारोपण के लिए नैदानिक ​​​​परीक्षण सबसे सफल साबित हुए हैं।

एक विज़ुअल प्रोस्थेटिक्स अंग प्रणाली में एक बाहरी (या प्रत्यारोपण योग्य) इमेजिंग प्रणाली होती है जो वीडियो प्राप्त करती है और संसाधित करती है। बाहरी इकाई द्वारा पावर और डेटा को वायरलेस तरीके से इम्प्लांट तक प्रेषित किया जाएगा। इम्प्लांट डिजिटल डेटा को एनालॉग आउटपुट में परिवर्तित करने के लिए प्राप्त पावर/डेटा का उपयोग करता है जिसे माइक्रो इलेक्ट्रोड के माध्यम से तंत्रिका तक पहुंचाया जाएगा।

फोटोरिसेप्टर कोशिका विशेष न्यूरॉन्स हैं जो फोटॉन को विद्युत संकेतों में परिवर्तित करते हैं। वे रेटिना का हिस्सा हैं, एक बहुपरत तंत्रिका संरचना जो लगभग 200 um मोटी होती है जो मानव आंख के पीछे की रेखा बनाती है। संसाधित सिग्नल ऑप्टिकल तंत्रिका के माध्यम से मस्तिष्क को भेजा जाता है। यदि इस पाथवे का कोई भी भाग क्षतिग्रस्त हो तो अंधापन हो सकता है।

ऑप्टिकल पाथवे (कॉर्निया, जलीय हास्य, क्रिस्टलीय लेंस और कांच का हास्य) को नुकसान होने से अंधापन हो सकता है। ऐसा दुर्घटना या बीमारी के परिणामस्वरूप हो सकता है। दो सबसे आम रेटिना अपक्षयी रोग, जिनके परिणामस्वरूप फोटोरिसेप्टर हानि के बाद अंधापन होता है, उम्र से संबंधित मैक्यूलर डिजनरेशन (एएमडी) और रेटिनाइटिस पिगमेंटोसा (आरपी) हैं।

स्थायी रूप से प्रत्यारोपित रेटिनल प्रोस्थेसिस का पहला नैदानिक ​​परीक्षण 3500 तत्वों के साथ एक निष्क्रिय माइक्रोफोटोडायोड सरणी वाला एक उपकरण था।[9] यह परीक्षण 2000 में ऑप्टोबायोनिक्स, इंक. में लागू किया गया था। 2002 में, दूसरी दृष्टि चिकित्सा उत्पाद, इंक. (सिल्मर, सीए) ने 16 इलेक्ट्रोड के साथ एक प्रोटोटाइप एपिरेटिनल इम्प्लांट के साथ एक परीक्षण प्रारम्भ किया। विषय छह व्यक्ति थे जिनकी नग्न प्रकाश धारणा आरपी के बाद गौण थी। विषयों ने सांख्यिकीय रूप से अवसर से ऊपर के स्तर पर तीन सामान्य वस्तुओं (प्लेट, कप और चाकू) के बीच अंतर करने की अपनी क्षमता का प्रदर्शन किया। रेटिना इंप्लांट जीएमबीएच (राउटलिंगन, जर्मनी) द्वारा विकसित एक सक्रिय उप रेटिनल डिवाइस का 2006 में नैदानिक ​​परीक्षण प्रारम्भ हुआ। 1500 माइक्रोफोटोडायोड वाला एक आईसी रेटिना के नीचे प्रत्यारोपित किया गया था। माइक्रोफोटोडायोड फोटो डायोड पर आपतित प्रकाश की मात्रा के आधार पर वर्तमान दालों को नियंत्रित करने का काम करते हैं।[10]

विज़ुअल प्रोस्थेटिक्स अंग के विकास की दिशा में मौलिक प्रायोगिक कार्य बड़े सतह इलेक्ट्रोड के ग्रिड का उपयोग करके कॉर्टिकल उत्तेजना द्वारा किया गया था। 1968 में गाइल्स ब्रिंडली ने एक 52 वर्षीय अंधी महिला की विज़ुअल कॉर्टिकल सतह पर 80 इलेक्ट्रोड डिवाइस प्रत्यारोपित किया। उत्तेजना के परिणामस्वरूप रोगी विज़ुअल क्षेत्र की 40 विभिन्न स्थितियों में फॉस्फीन को देखने में सक्षम था।[11] इस प्रयोग से पता चला कि एक प्रत्यारोपित विद्युत उत्तेजक उपकरण कुछ हद तक दृष्टि बहाल कर सकता है। विज़ुअल कॉर्टेक्स प्रोस्थेसिस में हाल के प्रयासों ने एक गैर-मानव प्राइमेट में विज़ुअल कॉर्टेक्स उत्तेजना की प्रभावकारिता का मूल्यांकन किया है। इस प्रयोग में प्रशिक्षण और मानचित्रण प्रक्रिया के बाद बंदर प्रकाश और विद्युत उत्तेजना दोनों के साथ समान विज़ुअल सैकेड कार्य करने में सक्षम है।

उच्च रिज़ॉल्यूशन रेटिनल प्रोस्थेसिस की आवश्यकताएं नेत्रहीन व्यक्तियों की आवश्यकताओं और इच्छाओं के अनुरूप होनी चाहिए जिन्हें डिवाइस से लाभ होगा। इन रोगियों के साथ बातचीत से संकेत मिलता है कि छड़ी के बिना गतिशीलता, चेहरे की पहचान और पढ़ना मुख्य आवश्यक सक्षम क्षमताएं हैं।[12]

पूरी तरह कार्यात्मक विज़ुअल प्रोस्थेटिक्स अंग के परिणाम और निहितार्थ रोमांचक हैं। हालाँकि, चुनौतियाँ गंभीर हैं। रेटिना में अच्छी गुणवत्ता वाली छवि मैप करने के लिए बड़ी संख्या में माइक्रो-स्केल इलेक्ट्रोड सरणियों की आवश्यकता होती है। साथ ही, छवि गुणवत्ता इस बात पर निर्भर करती है कि वायरलेस लिंक पर कितनी जानकारी भेजी जा सकती है। इसके अलावा, इस उच्च मात्रा में जानकारी को इम्प्लांट द्वारा बिना अधिक शक्ति अपव्यय के प्राप्त और संसाधित किया जाना चाहिए जो ऊतक को नुकसान पहुंचा सकता है। इम्प्लांट का आकार भी बड़ी चिंता का विषय है। किसी भी इम्प्लांट को न्यूनतम इनवेसिव होना पसंद किया जाएगा।[12]

इस नई तकनीक के साथ, ड्रेक्सेल विश्वविद्यालय में करेन मोक्सन, एसयूएनवाई में जॉन चैपिन और ड्यूक विश्वविद्यालय में मिगुएल निकोलेलिस सहित कई वैज्ञानिकों ने एक परिष्कृत विज़ुअल प्रोस्थेटिक्स अंग के डिजाइन पर शोध प्रारम्भ किया। अन्य वैज्ञानिक[who?] उनके अनुसंधान के फोकस से असहमत हैं, उनका तर्क है कि घनी आबादी वाले सूक्ष्म तार का बुनियादी अनुसंधान और डिज़ाइन आगे बढ़ने के लिए पर्याप्त परिष्कृत नहीं था।

ऑडिटरी प्रोस्थेटिक्स

कर्णावर्त तंत्रिका का प्रत्यारोपण (सीआई), ऑडिटरी (श्रवण) मस्तिष्क स्टेम प्रत्यारोपण (एबीआई), और श्रवण मध्यमस्तिष्क प्रत्यारोपण (एएमआई) श्रवण प्रोस्थेटिक्स अंग के लिए तीन मुख्य श्रेणियां हैं। सीआई इलेक्ट्रोड ऐरे को कोक्लीअ में प्रत्यारोपित किया जाता है, एबीआई इलेक्ट्रोड ऐरे निचले मस्तिष्क स्टेम में कोक्लियर न्यूक्लियस कॉम्प्लेक्स को उत्तेजित करते हैं, और एएमआई अवर कोलिकुलस में श्रवण न्यूरॉन्स को उत्तेजित करते हैं। इन तीन श्रेणियों में कॉकलियर इम्प्लांट बहुत सफल रहे हैं। आज एडवांस्ड बायोनिक्स कॉरपोरेशन, कॉक्लियर लिमिटेड कॉरपोरेशन और औसत |मेड-एल कॉरपोरेशन कॉक्लियर इम्प्लांट के प्रमुख वाणिज्यिक प्रदाता हैं।

पारंपरिक श्रवण यंत्रों के विपरीत, जो ध्वनि को बढ़ाते हैं और इसे बाहरी कान के माध्यम से भेजते हैं, कॉकलियर प्रत्यारोपण ध्वनि को प्राप्त करते हैं और संसाधित करते हैं और इसे श्रवण तंत्रिका तक पहुंचाने के लिए इसे विद्युत ऊर्जा में परिवर्तित करते हैं। CI प्रणाली का माइक्रोफ़ोन बाहरी वातावरण से ध्वनि प्राप्त करता है और इसे प्रोसेसर को भेजता है। प्रोसेसर ध्वनि को डिजिटाइज़ करता है और इसे अलग-अलग आवृत्ति बैंड में फ़िल्टर करता है जो कोक्लीअ में उपयुक्त टोनोटोनिक क्षेत्र में भेजा जाता है जो लगभग उन आवृत्तियों से मेल खाता है।

1957 में, फ्रांसीसी शोधकर्ताओं ए. डिजर्नो और सी. आइरीज़ ने डी. कैसर की मदद से मानव विषय में श्रवण तंत्रिका को सीधे उत्तेजित करने का पहला विस्तृत विवरण प्रदान किया।[13] व्यक्तियों ने उत्तेजना के दौरान चहकने की आवाज़ सुनने का वर्णन किया। 1972 में, एक वयस्क में पहला पोर्टेबल कॉक्लियर इम्प्लांट सिस्टम हाउस ईयर क्लिनिक में प्रत्यारोपित किया गया था। अमेरिकी खाद्य एवं औषधि प्रशासन (एफडीए) ने नवंबर 1984 में औपचारिक रूप से हाउस-3एम कॉक्लियर इम्प्लांट के विपणन को मंजूरी दे दी।[14] कॉक्लियर प्रत्यारोपण में बेहतर प्रदर्शन न केवल प्रत्यारोपण उत्तेजना की भौतिक और जैव-भौतिकीय सीमाओं को समझने पर निर्भर करता है, बल्कि मस्तिष्क के पैटर्न प्रसंस्करण आवश्यकताओं की समझ पर भी निर्भर करता है। आधुनिक संकेत आगे बढ़ाना सबसे महत्वपूर्ण भाषण जानकारी का प्रतिनिधित्व करती है, साथ ही मस्तिष्क को पैटर्न पहचान की जानकारी भी प्रदान करती है जिसकी उसे आवश्यकता होती है। भाषण में महत्वपूर्ण विशेषताओं की पहचान करने में एल्गोरिथम प्रीप्रोसेसिंग की तुलना में मस्तिष्क में पैटर्न की पहचान अधिक प्रभावी है। श्रवण प्रोस्थेटिक्स अंग के प्रदर्शन को अधिकतम करने के लिए प्रौद्योगिकी का सही संतुलन बनाने के लिए इंजीनियरिंग, सिग्नल प्रोसेसिंग, जीव पदाथ-विद्य और संज्ञानात्मक तंत्रिका विज्ञान का संयोजन आवश्यक था।[15] जन्मजात बधिर बच्चों में मौखिक भाषा के विकास को प्राप्त करने की अनुमति देने के लिए कॉक्लियर प्रत्यारोपण का भी उपयोग किया गया है, प्रारंभिक प्रत्यारोपण (जीवन के 2-4 वर्ष तक पहुंचने से पहले) में उल्लेखनीय सफलता मिली है।[16] दुनिया भर में लगभग 80,000 बच्चों का प्रत्यारोपण किया गया है।

बेहतर श्रवण के प्रयोजनों के लिए एक साथ इलेक्ट्रिक ध्वनिक उत्तेजना | इलेक्ट्रिक-ध्वनिक उत्तेजना (ईएएस) के संयोजन की अवधारणा का वर्णन पहली बार 1999 में यूनिवर्सिटैट्सक्लिनिक फ्रैंकफर्ट, जर्मनी के सी. वॉन इलबर्ग और जे. किफ़र द्वारा किया गया था।[17] उसी वर्ष पहला ईएएस रोगी प्रत्यारोपित किया गया था। 2000 के दशक की प्रांरम्भसे एफडीए कोक्लियर कॉर्पोरेशन द्वारा हाइब्रिड नामक डिवाइस के नैदानिक ​​​​परीक्षण में सम्मिलित रहा है। इस परीक्षण का उद्देश्य अवशिष्ट कम-आवृत्ति सुनवाई वाले रोगियों में कोक्लीअ प्रत्यारोपण की उपयोगिता की जांच करना है। हाइब्रिड मानक कोक्लीअ प्रत्यारोपण की तुलना में छोटे इलेक्ट्रोड का उपयोग करता है, क्योंकि इलेक्ट्रोड छोटा होता है, यह कोक्लीअ के तुलसी क्षेत्र को उत्तेजित करता है और इसलिए उच्च आवृत्ति टोनोटोपिक क्षेत्र को उत्तेजित करता है। सिद्धांत रूप में इन उपकरणों से महत्वपूर्ण कम-आवृत्ति अवशिष्ट श्रवण वाले रोगियों को लाभ होगा, जिन्होंने भाषण आवृत्ति रेंज में धारणा खो दी है और इसलिए भेदभाव स्कोर में कमी आई है।[18] ध्वनि उत्पन्न करने के लिए वाक् संश्लेषण देखें।

दर्द से राहत के लिए प्रोस्थेटिक्स

एससीएस स्पाइनल कॉर्ड स्टिमुलेटर (मेरूरज्‍जु उत्तेजक) डिवाइस में दो मुख्य घटक होते हैं: एक इलेक्ट्रोड और एक जनरेटर होता है। नेऊरोपथिक दर्द के लिए एससीएस का तकनीकी लक्ष्य रोगी के दर्द के क्षेत्र को उत्तेजना प्रेरित झुनझुनी के साथ छिपाना है, जिसे अपसंवेदन के रूप में जाना जाता है, क्योंकि दर्द से राहत पाने के लिए यह ओवरलैप आवश्यक (लेकिन पर्याप्त नहीं) है।[19] पेरेस्टेसिया कवरेज इस पर निर्भर करता है कि कौन सी अभिवाही तंत्रिकाएं उत्तेजित होती हैं। डोरसम (जीवविज्ञान) मिडलाइन इलेक्ट्रोड द्वारा सबसे आसानी से भर्ती किए जाने वाले, स्पाइनल कॉर्ड की पियाल सतह के करीब, बड़े पृष्ठीय स्तंभ अभिवाही होते हैं, जो दुम से खंडों को कवर करने वाले व्यापक पेरेस्टेसिया का उत्पादन करते हैं।

प्राचीन समय में इलेक्ट्रोजेनिक मछली का उपयोग दर्द को कम करने के लिए शॉकर के रूप में किया जाता था। चिकित्सकों ने सिरदर्द सहित विभिन्न प्रकार के दर्द के इलाज के लिए मछली के उत्पादक गुणों का उपयोगpain करने के लिए विशिष्ट और विस्तृत तकनीक विकसित की थी। लिविंग शॉक जनरेटर का उपयोग करने की अजीबता के कारण, उचित समय के लिए लक्ष्य तक थेरेपी पहुंचाने के लिए उचित स्तर के कौशल की आवश्यकता थी। (मछली को यथासंभव लंबे समय तक जीवित रखना भी सम्मिलित है)

इलेक्ट्रोएनाल्जेसिया बिजली का पहला जानबूझकर किया गया प्रयोग था। उन्नीसवीं सदी तक, अधिकांश पश्चिमी चिकित्सक अपने मरीजों को पोर्टेबल जनरेटर द्वारा प्रदान की जाने वाली विद्युत की पेशकश कर रहे थे।[20] हालाँकि, 1960 के दशक के मध्य में, विद्युत उत्तेजना के भविष्य को सुनिश्चित करने के लिए तीन चीजें एकजुट हुईं।

  1. पेसमेकर तकनीक, जिसकी प्रांरम्भ1950 में हुई थी, उपलब्ध हो गई।

2. मेल्ज़ैक और वॉल ने अपना दर्द का गेट नियंत्रण सिद्धांत (गेट कंट्रोल थ्योरी ऑफ़ पेंन) प्रकाशित किया, जिसमें प्रस्तावित किया गया कि बड़े अभिवाही तंतुओं की उत्तेजना से दर्द के संचरण को अवरुद्ध किया जा सकता हैl[21]

3. अग्रणी चिकित्सक मरीजों को दर्द से राहत दिलाने के लिए तंत्रिका तंत्र को उत्तेजित करने में रुचि लेने लगे।

इलेक्ट्रोड के डिज़ाइन विकल्पों में उनका साइज़, आकार, व्यवस्था, संख्या और संपर्कों का असाइनमेंट और इलेक्ट्रोड को कैसे प्रत्यारोपित किया जाता है, सम्मिलित हैं। पल्स उत्पन्न करने वाला के लिए डिज़ाइन विकल्प में पावर स्रोत, लक्ष्य संरचनात्मक प्लेसमेंट स्थान, वर्तमान या वोल्टेज स्रोत, पल्स रेट, पल्स चौड़ाई और कई स्वतंत्र चैनल सम्मिलित हैं। प्रोग्रामिंग विकल्प बहुत अधिक हैं (एक चार-संपर्क इलेक्ट्रोड 50 कार्यात्मक द्विध्रुवी संयोजन प्रदान करता है)। वर्तमान उपकरण उपयोग के लिए सर्वोत्तम विकल्प खोजने के लिए कम्प्यूटरीकृत उपकरणों का उपयोग करते हैं। यह रिप्रोग्रामिंग विकल्प पोस्टुरल परिवर्तन, इलेक्ट्रोड माइग्रेशन, दर्द स्थान में परिवर्तन और उप-इष्टतम इलेक्ट्रोड प्लेसमेंट के लिए क्षतिपूर्ति करता है।[22]

मोटर प्रोस्थेटिक्स

जो उपकरण स्वायत्त तंत्रिका तंत्र के कार्य का समर्थन करते हैं उनमें त्रिक अग्र रुट उत्तेजक सम्मिलित हैं। दैहिक तंत्रिका तंत्र में गति के सचेत नियंत्रण में सहायता के प्रयासों में कार्यात्मक विद्युत उत्तेजना और कटि अग्र रुट उत्तेजक सम्मिलित हैं।

मूत्राशय नियंत्रण प्रत्यारोपण

जहां मेरू रज्जु में घाव से नीचे के अंगों का पक्षाघात हो जाता है, वहीं मरीजों को अपने मूत्राशय को खाली करने में कठिनाई होती है और इससे संक्रमण हो सकता है। 1969 से ब्रिंडली ने त्रिक अग्र रुट उत्तेजक विकसित किया, 1980 के दशक की प्रांरम्भ से सफल मानव परीक्षण के साथ।[23] यह उपकरण मेरू रज्जु के त्रिक अग्र रुट गैन्ग्लिया पर प्रत्यारोपित किया जाता है; बाहरी ट्रांसमीटर द्वारा नियंत्रित, यह रुक-रुक कर उत्तेजना प्रदान करता है जिससे मूत्राशय खाली होने में सुधार होता है। यह शौच में भी सहायता करता है और पुरुष रोगियों को निरंतर पूर्ण स्तंभन प्राप्त करने में सक्षम बनाता है।

त्रिक तंत्रिका उत्तेजना की संबंधित प्रक्रिया सक्षम शरीर वाले रोगियों में असंयम के नियंत्रण के लिए है।[24]

आंदोलन के सचेत नियंत्रण के लिए मोटर प्रोस्थेटिक्स

शोधकर्ता वर्तमान में मोटर न्यूरोप्रोस्थेटिक्स की जांच और निर्माण कर रहे हैं जो टेट्राप्लाजिया या पेशीशोषी पार्श्व काठिन्य जैसी मोटर विकलांगताओं वाले व्यक्तियों को गति और बाहरी दुनिया के साथ संवाद करने की क्षमता बहाल करने में मदद करेगा। शोध में पाया गया है कि स्ट्रिएटम मोटर संवेदी सीखने में महत्वपूर्ण भूमिका निभाता है। यह एक प्रयोग द्वारा प्रदर्शित किया गया था जिसमें लगातार कार्य करने के बाद लैब चूहों की स्ट्रिएटम की फायरिंग दर उच्च दर पर दर्ज की गई थी।

मस्तिष्क से विद्युत संकेतों को पकड़ने के लिए, वैज्ञानिकों ने एक वर्ग सेंटीमीटर से छोटे माइक्रोइलेक्ट्रोड एरे विकसित किए हैं जिन्हें विद्युत गतिविधि को रिकॉर्ड करने के लिए कपाल में प्रत्यारोपित किया जा सकता है, और एक पतली केबल के माध्यम से रिकॉर्ड की गई जानकारी को स्थानांतरित किया जा सकता है। बंदरों पर दशकों के शोध के बाद, न्यूरोवैज्ञानिक न्यूरोनल संकेतों को गतिविधियों में डिकोड करने में सक्षम हो गए हैं। अनुवाद को पूरा करते हुए, शोधकर्ताओं ने ऐसे इंटरफेस बनाए हैं जो मरीजों को कंप्यूटर कर्सर को स्थानांतरित करने की अनुमति देते हैं, और वे रोबोटिक अंगों और एक्सोस्केलेटन का निर्माण करना प्रारम्भ कर रहे हैं जिन्हें मरीज आंदोलन के बारे में सोचकर नियंत्रित कर सकते हैं।

मोटर न्यूरोप्रोस्थेसिस के पीछे की तकनीक अभी भी अपनी प्रारंभिक अवस्था में है। जांचकर्ता और अध्ययन प्रतिभागी प्रोस्थेटिक्स अंग के उपयोग के विभिन्न तरीकों के साथ प्रयोग करना जारी रखते हैं। उदाहरण के लिए, मरीज़ को मुट्ठी बंद करने के बारे में सोचने पर उंगली दबाने के बारे में सोचने से अलग परिणाम मिलता है। प्रोस्थेटिक्स अंग में उपयोग किए जाने वाले फिल्टर को भी ठीक किया जा रहा है, और भविष्य में, डॉक्टरों को एक ऐसा प्रत्यारोपण बनाने की उम्मीद है जो केबल के बजाय कपाल के अंदर से तार रहित तरीके से सिग्नल संचारित करने में सक्षम होगा।

इन प्रगतियों से पहले, फिलिप कैनेडी (एमोरी विश्वविद्यालय और जॉर्जिया तकनीकी संस्थान) के पास कुछ हद तक आदिम प्रणाली थी, जो पक्षाघात से पीड़ित व्यक्ति को अपने मस्तिष्क की गतिविधि को संशोधित करके शब्दों का उच्चारण करने की अनुमति देती थी। कैनेडी के उपकरण में दो न्यूरोट्रॉफिक इलेक्ट्रोड का उपयोग किया गया था: पहला एक अक्षुण्ण मोटर कॉर्टिकल क्षेत्र (उदाहरण के लिए उंगली प्रतिनिधित्व क्षेत्र) में प्रत्यारोपित किया गया था और इसका उपयोग अक्षरों के समूह के बीच कर्सर को स्थानांतरित करने के लिए किया गया था। दूसरे को एक अलग मोटर क्षेत्र में प्रत्यारोपित किया गया और चयन को इंगित करने के लिए उपयोग किया गया।[25]

प्रारम्भ पेक्टोरलिस मांसपेशियों से जुड़ी नसों का उपयोग करके खोई हुई भुजाओं को साइबरनेटिक प्रतिस्थापन के साथ बदलने में विकास जारी है। ये हथियार गति की थोड़ी सीमित सीमा की अनुमति देते हैं, और कथित तौर पर दबाव और तापमान का पता लगाने के लिए सेंसर की सुविधा दी जाती है।[26]

नॉर्थवेस्टर्न यूनिवर्सिटी और शिकागो के पुनर्वास संस्थान के डॉ. टॉड कुइकेन ने मोटर चालित प्रोस्थेटिक्स उपकरणों को नियंत्रित करने और संवेदी प्रतिक्रिया प्राप्त करने के लिए एक विकलांग व्यक्ति के लिए लक्षित पुनर्जीवन नामक एक विधि विकसित की है।

2002 में 100 इलेक्ट्रोडों का एक मल्टीइलेक्ट्रोड सरणी, जो अब बरैंगते का सेंसर भाग बनता है, सीधे वैज्ञानिक केविन वारविक के मध्य तंत्रिका तंतुओं में प्रत्यारोपित किया गया था। रिकॉर्ड किए गए संकेतों का उपयोग वारविक के सहयोगी, पीटर क्यबर्ड द्वारा विकसित एक रोबोट भुजा को नियंत्रित करने के लिए किया गया था और यह वारविक की अपनी भुजा के कार्यों की नकल करने में सक्षम था।[27] इसके अतिरिक्त, तंत्रिका में छोटी विद्युत धाराएँ प्रवाहित करके प्रत्यारोपण के माध्यम से संवेदी प्रतिक्रिया का एक रूप प्रदान किया गया था। इससे हाथ की पहली लुम्ब्रिकल मांसपेशी (हाथ) में संकुचन हुआ और इसी गति को महसूस किया गया।[27]

जून 2014 में, पैराप्लेजिक एथलीट जूलियानो पिंटो ने मस्तिष्क इंटरफेस के साथ संचालित एक्सोस्केलेटन का उपयोग करके 2014 फीफा विश्व कप में औपचारिक पहली किक का प्रदर्शन किया।[28] एक्सोस्केलेटन को ब्राजील सरकार द्वारा वित्त पोषित मिगुएल निकोलेलिस की प्रयोगशाला में वॉक अगेन प्रोजेक्ट द्वारा विकसित किया गया था।[28]निकोलेलिस का कहना है कि प्रतिस्थापन अंगों से प्रतिक्रिया (उदाहरण के लिए, जमीन को छूने वाले प्रोस्थेटिक्स पैर द्वारा अनुभव किए गए दबाव के बारे में जानकारी) संतुलन के लिए आवश्यक है।[29]उन्होंने पाया है कि जब तक लोग मस्तिष्क इंटरफ़ेस द्वारा नियंत्रित किए जा रहे अंगों को ऐसा करने का आदेश जारी करने के साथ-साथ चलते हुए देख सकते हैं, बार-बार उपयोग के साथ मस्तिष्क बाहरी रूप से संचालित अंग को आत्मसात कर लेगा और इसे अपने शरीर के हिस्से के रूप में (स्थिति जागरूकता और प्रतिक्रिया के संदर्भ में) समझना प्रारम्भ कर देगा।[29]

अंगच्छेदन तकनीक

एमआईटी बायोमेक्ट्रोनिक्स ग्रुप ने एक नया अंगच्छेदन प्रतिमान डिजाइन किया है जो जैविक मांसपेशियों और मायोइलेक्ट्रिक प्रोस्थेटिक्स अंगों को उच्च विश्वसनीयता के साथ तंत्रिका रूप से इंटरफेस करने में सक्षम बनाता है। यह सर्जिकल प्रतिमान, जिसे एगोनिस्ट-एंटागोनिस्ट मायोन्यूरल इंटरफ़ेस (एएमआई) कहा जाता है, उपयोगकर्ता को एक प्रोस्थेटिक्स अंग का उपयोग करने के बजाय अपने शरीर के विस्तार के रूप में अपने प्रोस्थेटिक्स अंग को समझने और नियंत्रित करने की क्षमता प्रदान करता है जो केवल एक उपांग जैसा दिखता है। एक सामान्य एगोनिस्ट-प्रतिपक्षी मांसपेशी जोड़ी संबंध (उदाहरण के लिए बाइसेप-ट्राइसेप) में, जब एगोनिस्ट मांसपेशी सिकुड़ती है, तो प्रतिपक्षी मांसपेशी खिंच जाती है, और इसके विपरीत, व्यक्ति को अपने अंग की स्थिति का ज्ञान बिना देखे ही मिल जाता है। . एक मानक अंगच्छेदन के दौरान, एगोनिस्ट-प्रतिपक्षी मांसपेशियां (उदाहरण के लिए बाइसेप-ट्राइसेप) एक दूसरे से अलग हो जाती हैं, जिससे संवेदी प्रतिक्रिया उत्पन्न करने वाले गतिशील अनुबंध-विस्तार तंत्र की क्षमता को रोका जा सकता है। इसलिए, वर्तमान विकलांगों के पास उस भौतिक वातावरण को महसूस करने का कोई तरीका नहीं है जिसका उनके प्रोस्थेटिक्स अंग सामना करते हैं। इसके अलावा, वर्तमान अंगच्छेदन सर्जरी के साथ, जो 200 वर्षों से अधिक समय से चली आ रही है, 1/3 मरीज़ अपने स्टंप में दर्द के कारण पुनरीक्षण सर्जरी से गुजरते हैं।

एएमआई दो मांसपेशियों से बना है जो मूल रूप से एक एगोनिस्ट-प्रतिपक्षी संबंध साझा करते हैं। अंगच्छेदन सर्जरी के दौरान, इन दोनों मांसपेशियों को कटे हुए स्टंप के भीतर यांत्रिक रूप से एक साथ जोड़ा जाता है।[30] कई प्रोस्थेटिक्स जोड़ों पर नियंत्रण और संवेदना स्थापित करने के लिए एक मरीज में प्रत्येक संयुक्त स्वतंत्रता की डिग्री के लिए एक एएमआई मांसपेशी जोड़ी बनाई जा सकती है। इस नए तंत्रिका इंटरफ़ेस के प्रारंभिक परीक्षण में, एएमआई वाले रोगियों ने प्रोस्थेटिक्स अंग पर अधिक नियंत्रण का प्रदर्शन और रिपोर्ट किया है। इसके अतिरिक्त, पारंपरिक अंगच्छेदन वाले विषयों की तुलना में सीढ़ी पर चलने के दौरान अधिक स्वाभाविक रूप से प्रतिवर्ती व्यवहार देखा गया।[31] एएमआई का निर्माण दो डीवास्कुलराइज्ड मांसपेशी ग्राफ्ट के संयोजन के माध्यम से भी किया जा सकता है। ये मांसपेशी ग्राफ्ट (या फ्लैप) अतिरिक्त मांसपेशियां हैं जिन्हें विकृत किया जाता है (मूल तंत्रिकाओं से अलग किया जाता है) और शरीर के एक हिस्से से हटा दिया जाता है ताकि काटे जाने वाले अंग में पाई जाने वाली कटी हुई नसों को फिर से संक्रमित किया जा सके।[30]पुनर्जीवित मांसपेशी फ्लैप के उपयोग के माध्यम से, मांसपेशियों के ऊतकों वाले उन रोगियों के लिए एएमआई बनाया जा सकता है जिन्होंने अत्यधिक शोष या क्षति का अनुभव किया है या उन रोगियों के लिए जो न्यूरोमा दर्द, हड्डी के स्पर्स आदि जैसे कारणों से कटे हुए अंग के पुनरीक्षण से गुजर रहे हैं।

बाधाएँ

गणितीय मॉडलिंग

प्रतिस्थापित किए जाने वाले सामान्य रूप से कार्यशील ऊतक के नॉनलाइनियर इनपुट/आउटपुट (आई/ओ) मापदंडों का सटीक लक्षण वर्णन एक प्रोस्थेटिक्स अंग को डिजाइन करने के लिए सर्वोपरि है जो सामान्य जैविक सिनैप्टिक संकेतों की नकल करता है।[32][33] इन संकेतों का गणितीय मॉडलिंग एक जटिल कार्य है क्योंकि न्यूरॉन्स और उनके सिनैप्टिक कनेक्शन वाले सेलुलर/आणविक तंत्र में निहित गैर-रेखीय गतिशीलता के कारण।[34][35][36] लगभग सभी मस्तिष्क न्यूरॉन्स का आउटपुट इस बात पर निर्भर करता है कि कौन से पोस्ट-सिनैप्टिक इनपुट सक्रिय हैं और किस क्रम में इनपुट प्राप्त होते हैं। (क्रमशः स्थानिक और लौकिक गुण)।[37]

एक बार जब I/O मापदंडों को गणितीय रूप से मॉडल किया जाता है, तो एकीकृत परिपथ को सामान्य जैविक संकेतों की नकल करने के लिए डिज़ाइन किया जाता है। प्रोस्थेटिक्स को सामान्य ऊतक की तरह कार्य करने के लिए, उसे सामान्य ऊतक की तरह ही इनपुट संकेतों को संसाधित करना होगा, एक प्रक्रिया जिसे अभिन्न परिवर्तन के रूप में जाना जाता है।

आकार

प्रत्यारोपण योग्य उपकरण सीधे मस्तिष्क में प्रत्यारोपित करने के लिए बहुत छोटे होने चाहिए, लगभग एक चौथाई के आकार के। माइक्रोइम्प्लांटेबल इलेक्ट्रोड ऐरे का एक उदाहरण यूटा ऐरे है।[38]

वायरलेस नियंत्रण उपकरण कपाल के बाहर लगाए जा सकते हैं और पेजर से छोटे होने चाहिए।

बिजली की खपत

बिजली की खपत बैटरी के आकार को बढ़ाती है। प्रत्यारोपित परिपथ के अनुकूलन से बिजली की आवश्यकता कम हो जाती है। प्रत्यारोपित उपकरणों को वर्तमान में ऑन-बोर्ड बिजली स्रोतों की आवश्यकता होती है। एक बार बैटरी खत्म हो जाने पर, यूनिट को बदलने के लिए सर्जरी की आवश्यकता होती है। लंबी बैटरी लाइफ का संबंध बैटरियों को बदलने के लिए आवश्यक कम सर्जरी से है। एक विकल्प जिसका उपयोग सर्जरी या तारों के बिना इम्प्लांट बैटरियों को रिचार्ज करने के लिए किया जा सकता है, उसका उपयोग संचालित टूथब्रश में किया जा रहा है।[39] ये उपकरण बैटरी को रिचार्ज करने के लिए आगमनात्मक चार्जिंग का उपयोग करते हैं। एक अन्य रणनीति रेडियो-फ़्रीक्वेंसी पहचान टैग की तरह, विद्युत चुम्बकीय ऊर्जा को विद्युत ऊर्जा में परिवर्तित करना है।

जैव अनुकूलता

न्यूरोप्रोस्थेटिक्स#संज्ञानात्मक प्रोस्थेटिक्स को सीधे मस्तिष्क में प्रत्यारोपित किया जाता है, इसलिए बायोकम्पैटिबिलिटी को दूर करना एक बहुत ही महत्वपूर्ण बाधा है। उपकरण के आवास में प्रयुक्त सामग्री, इलेक्ट्रोड सामग्री (जैसे इरिडियम ऑक्साइड)।[40]), और दीर्घकालिक प्रत्यारोपण के लिए इलेक्ट्रोड इन्सुलेशन को चुना जाना चाहिए। मानकों के अधीन: आईएसओ 14708-3 2008-11-15, सर्जरी के लिए प्रत्यारोपण - सक्रिय प्रत्यारोपण योग्य चिकित्सा उपकरण भाग 3: प्रत्यारोपण योग्य न्यूरोस्टिमुलेटर।

रक्त-मस्तिष्क बाधा को पार करने से रोगज़नक़ या अन्य सामग्रियां प्रवेश कर सकती हैं जो प्रतिरक्षा प्रतिक्रिया का कारण बन सकती हैं। मस्तिष्क की अपनी प्रतिरक्षा प्रणाली होती है जो शरीर के बाकी हिस्सों की प्रतिरक्षा प्रणाली से अलग कार्य करती है।

डेटा ट्रांसमिशन

व्यक्तियों के दैनिक जीवन में न्यूरोनल संकेतों की निरंतर रिकॉर्डिंग की अनुमति देने के लिए वायरलेस ट्रांसमिशन विकसित किया जा रहा है। यह चिकित्सकों और चिकित्सकों को अधिक डेटा कैप्चर करने की अनुमति देता है, जिससे यह सुनिश्चित होता है कि मिर्गी के दौरे जैसी अल्पकालिक घटनाओं को रिकॉर्ड किया जा सकता है, जिससे तंत्रिका रोग के बेहतर उपचार और लक्षण वर्णन की अनुमति मिलती है।

एक छोटा, हल्के वजन का उपकरण विकसित किया गया है जो स्टैनफोर्ड विश्वविद्यालय में प्राइमेट मस्तिष्क न्यूरॉन्स की निरंतर रिकॉर्डिंग की अनुमति देता है।[41] यह तकनीक न्यूरोवैज्ञानिकों को प्रयोगशाला के नियंत्रित वातावरण के बाहर मस्तिष्क का अध्ययन करने में भी सक्षम बनाती है।

तंत्रिका प्रोस्थेटिक्स और बाहरी प्रणालियों के बीच डेटा ट्रांसमिशन के तरीके मजबूत और सुरक्षित होने चाहिए। वायरलेस न्यूरल इम्प्लांट में किसी भी अन्य आईटी सिस्टम की तरह ही साइबर सुरक्षा कमजोरियां हो सकती हैं, जिससे न्यूरो सिक्योरिटी शब्द का जन्म होता है। न्यूरोसुरक्षा उल्लंघन को चिकित्सा गोपनीयता का उल्लंघन माना जा सकता है।

सही प्रत्यारोपण

डिवाइस के इम्प्लांटेशन में कई समस्याएं आती हैं। सबसे पहले, सही प्रीसिनेप्टिक इनपुट को डिवाइस पर सही पोस्टसिनेप्टिक इनपुट से जोड़ा जाना चाहिए। दूसरे, डिवाइस से आउटपुट वांछित ऊतक पर सही ढंग से लक्षित होना चाहिए। तीसरा, मस्तिष्क को सीखना चाहिए कि इम्प्लांट का उपयोग कैसे किया जाए। न्यूरोप्लास्टिकिटी पर विभिन्न अध्ययनों से पता चलता है कि उचित प्रेरणा के साथ डिज़ाइन किए गए अभ्यासों के माध्यम से यह संभव हो सकता हैl

सम्मिलित प्रौद्योगिकियाँ

स्थानीय क्षेत्र की संभावनाएं

स्थानीय क्षेत्र क्षमता (एलएफपी) इलेक्ट्रोफिजियोलॉजी संकेत हैं जो ऊतक की मात्रा के भीतर सभी डेन्ड्राइट रासायनिक सिनैप्स के योग से संबंधित हैं। हाल के अध्ययनों से पता चलता है कि लक्ष्य और अपेक्षित मूल्य उच्च-स्तरीय संज्ञानात्मक कार्य हैं जिनका उपयोग तंत्रिका संज्ञानात्मक प्रोस्थेटिक्स अंगों के लिए किया जा सकता है।[42] इसके अलावा, राइस यूनिवर्सिटी के वैज्ञानिकों ने सतह पर मामूली बदलाव के माध्यम से नैनोकणों के प्रकाश-प्रेरित कंपन को ट्यून करने की एक नई विधि की खोज की है, जिससे कण जुड़े हुए हैं। विश्वविद्यालय के अनुसार, इस खोज से आणविक संवेदन से लेकर वायरलेस संचार तक फोटोनिक्स के नए अनुप्रयोगों को बढ़ावा मिल सकता है। उन्होंने सोने के नैनोडिस्क में परमाणुओं को कंपन करने के लिए प्रेरित करने के लिए अल्ट्राफास्ट लेजर पल्स का उपयोग किया था।[43]

स्वचालित चलायमान विद्युत जांच

बाधा को दूर करने के लिए एक उपाय है इलेक्ट्रोड का दीर्घकालिक आरोपण। यदि इलेक्ट्रोड को शारीरिक झटके से स्थानांतरित किया जाता है या मस्तिष्क इलेक्ट्रोड स्थिति के संबंध में चलता है, तो इलेक्ट्रोड विभिन्न तंत्रिकाओं को रिकॉर्ड कर सकते हैं। इष्टतम सिग्नल बनाए रखने के लिए इलेक्ट्रोड का समायोजन आवश्यक है। मल्टी इलेक्ट्रोड सरणियों को व्यक्तिगत रूप से समायोजित करना एक बहुत ही कठिन और समय लेने वाली प्रक्रिया है। स्वचालित रूप से समायोजित इलेक्ट्रोड का विकास इस समस्या को कम करेगा। एंडरसन का समूह वर्तमान में ऐसी प्रणाली बनाने के लिए यू-चोंग ताई की प्रयोगशाला और बर्डिक लैब (सभी कैलटेक में) के साथ सहयोग कर रहा है जो इलेक्ट्रोड के क्रोनिक रूप से प्रत्यारोपित सरणी में इलेक्ट्रोड को स्वतंत्र रूप से समायोजित करने के लिए इलेक्ट्रोलिसिस-आधारित एक्चुएटर्स का उपयोग करता है।[44]

छवि निर्देशित सर्जिकल तकनीक

छवि-निर्देशित सर्जरी का उपयोग मस्तिष्क प्रत्यारोपण को सटीक स्थिति में लाने के लिए किया जाता है।[42]

यह भी देखें

संदर्भ

  1. Krucoff, Max O.; Rahimpour, Shervin; Slutzky, Marc W.; Edgerton, V. Reggie; Turner, Dennis A. (2016-01-01). "न्यूरोबायोलॉजिक्स, न्यूरल इंटरफ़ेस ट्रेनिंग और न्यूरोरेहैबिलिटेशन के माध्यम से तंत्रिका तंत्र की रिकवरी को बढ़ाना". Frontiers in Neuroscience. 10: 584. doi:10.3389/fnins.2016.00584. PMC 5186786. PMID 28082858.
  2. "कर्णावर्त तंत्रिका का प्रत्यारोपण". NIDCD (in English). 24 March 2021. Retrieved 2022-06-27.
  3. Kansaku, Kenji (2021-03-08). "सिस्टम न्यूरोसाइंस और मेडिसिन में न्यूरोप्रोस्थेटिक्स". Scientific Reports (in English). 11 (1): 5404. Bibcode:2021NatSR..11.5404K. doi:10.1038/s41598-021-85134-4. ISSN 2045-2322. PMC 7970876. PMID 33686138.
  4. Daniel Garrison (2007). "Minimizing Thermal Effects of In Vivo Body Sensors". 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007). IFMBE Proceedings. Vol. 13. pp. 284–89. doi:10.1007/978-3-540-70994-7_47. ISBN 978-3-540-70993-0.
  5. "कर्णावर्त तंत्रिका का प्रत्यारोपण". 2015-08-18.
  6. Handa G (2006) "Neural Prosthesis – Past, Present and Future" Indian Journal of Physical Medicine & Rehabilitation 17(1)
  7. Choi, Jung-Ryul (2018). "Implantable Neural Probes for Brain-Machine Interfaces – Current Developments and Future Prospects". Experimental Neurobiology. 27 (6): 453–471. doi:10.5607/en.2018.27.6.453. PMC 6318554. PMID 30636899.
  8. Seymour, John (January 2017). "मस्तिष्क अनुसंधान के लिए अत्याधुनिक एमईएमएस और माइक्रोसिस्टम उपकरण". Microsystems & Nanoengineering. 3: 16066. doi:10.1038/micronano.2016.66. PMC 6445015. PMID 31057845.
  9. A. Y. Chow, V. Y. Chow, K. Packo, J. Pollack, G. Peyman, and R. Schuchard, "The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa," Arch.Ophthalmol., vol. 122, p. 460, 2004
  10. M. J. McMahon, A. Caspi, J. D.Dorn, K. H. McClure, M. Humayun, and R. Greenberg, "Spatial vision in blind subjects implanted with the second sight retinal prosthesis," presented at the ARVO Annu. Meeting, Ft. Lauderdale, FL, 2007.
  11. G. S. Brindley and W. S. Lewin, "The sensations produced by electrical stimulation of the visual cortex," J. Physiol., vol. 196, p. 479, 1968
  12. 12.0 12.1 Weiland JD, Humayun MS. 2008. Visual prosthesis. Proceedings of the IEEE 96:1076–84
  13. J. K. Niparko and B. W. Wilson, "History of cochlear implants," in Cochlear Implants:Principles and Practices. Philadelphia, PA: Lippincott Williams & Wilkins, 2000, pp. 103–08
  14. W. F. House, Cochlear implants: My perspective
  15. Fayad JN, Otto SR, Shannon RV, Brackmann DE. 2008. Cochlear and brainstern auditory prostheses "neural interface for hearing restoration: Cochlear and brain stem implants". Proceedings of the IEEE 96:1085–95
  16. Kral A, O'Donoghue GM. Profound Deafness in Childhood. New England J Medicine 2010: 363; 1438–50
  17. V. Ilberg C., Kiefer J., Tillein J., Pfennigdorff T., Hartmann R., Stürzebecher E., Klinke R. (1999). Electric-acoustic stimulation of the auditory system. ORL 61:334–40.
  18. B. J. Gantz, C. Turner, and K. E. Gfeller, "Acoustic plus electric speech processing: Preliminary results of a multicenter clinical trial of the Iowa/Nucleus hybrid implant," Audiol. Neurotol., vol. 11 (suppl.), pp. 63–68, 2006, Vol 1
  19. R. B. North, M. E. Ewend, M. A. Lawton, and S. Piantadosi, "Spinal cord stimulation for chronic, intractable pain: Superiority of 'multi-channel' devices," Pain, vol. 4, no. 2, pp. 119–30, 1991
  20. D. Fishlock, "Doctor volts [electrotherapy]," Inst. Elect. Eng. Rev., vol. 47, pp. 23–28, May 2001
  21. P. Melzack and P. D. Wall, "Pain mechanisms: A new theory," Science, vol. 150, no. 3699, pp. 971–78, Nov. 1965
  22. North RB. 2008. Neural interface devices: Spinal cord stimulation technology. Proceedings of the IEEE 96:1108–19
  23. Brindley GS, Polkey CE, Rushton DN (1982): Sacral anterior root stimulator for bladder control in paraplegia. Paraplegia 20: 365–81.
  24. Schmidt RA, Jonas A, Oleson KA, Janknegt RA, Hassouna MM, Siegel SW, van Kerrebroeck PE. Sacral nerve stimulation for treatment of refractory urinary urge incontinence. Sacral nerve study group. J Urol 1999 Aug;16(2):352–57.
  25. Gary Goettling. "विचार की शक्ति का दोहन". Archived from the original on April 14, 2006. Retrieved April 22, 2006.
  26. David Brown (September 14, 2006). "वाशिंगटन पोस्ट". Retrieved September 14, 2006.
  27. 27.0 27.1 Warwick, K, Gasson, M, Hutt, B, Goodhew, I, Kyberd, P, Andrews, B, Teddy, P and Shad, A:"The Application of Implant Technology for Cybernetic Systems", Archives of Neurology, 60(10), pp. 1369–73, 2003
  28. 28.0 28.1 'We Did It!' Brain-Controlled 'Iron Man' Suit Kicks Off World Cup
  29. 29.0 29.1 Brain-To-Brain Communication (audio interview with Dr. Miguel Nicolelis)
  30. 30.0 30.1 "On prosthetic control: A regenerative agonist-antagonist myoneural interface",Science Robotics, 31 May 2017
  31. "Proprioception from a neurally controlled lower-extremity prosthesis", Science Translational Medicine, 30 May 2018
  32. बर्टाकिनी, डी., और फ़ैनेली, एस. (2009)। कॉक्लियर सेंसरिनुरल हाइपोएक्यूसिया के लिए एक अलग मॉडल के कम्प्यूटेशनल और कंडीशनिंग मुद्दे। [लेख]। अनुप्रयुक्त संख्यात्मक गणित, 59(8), 1989-2001।
  33. मार्मारेलिस, वी.जेड. (1993)। गुठली के लैगुएरे विस्तार का उपयोग करके गैर-रेखीय जैविक-प्रणालियों की पहचान। [लेख]। एनल्स ऑफ बायोमेडिकल इंजीनियरिंग, 21(6), 573-89।
  34. टी.डब्ल्यू. बर्जर, टी.पी. हार्टी, एक्स. ज़ी, जी. बैरियोन्यूवो, और आर.जे. स्क्लाबैसी, मॉडलिंग प्रोक में प्रयोगात्मक अपघटन के माध्यम से न्यूरोनल नेटवर्क का। आईईईई 34वीं मध्य सिम्प. सर्क. सिस., मोंटेरे, सीए, 1991, वॉल्यूम। 1, पृ. 91-97.
  35. टी.डब्ल्यू. बर्जर, जी. चौवेट, और आर.जे. स्क्लैबैसी, एक जैविक रूप से आधारित मॉडल हिप्पोकैम्पस के कार्यात्मक गुण, न्यूरल नेटवर्क, वॉल्यूम। 7, नहीं। 6-7, पृ. 1031-64, 1994.
  36. S.S. Dalal, V.Z. Marmarelis, and T.W. Berger, "A nonlinear positive feedback model of glutamatergic synaptic transmission in dentate gyrus," in Proc. 4th Joint Symp. Neural Computation, California, 1997, vol. 7, pp. 68–75.
  37. बर्जर, टी.डब्ल्यू., आहूजा, ए., कौरेलिस, एस.एच., डेडवाइलर, एस.ए., एरिंजिपपुरथ, जी., गेरहार्ड्ट, जी.ए., एट अल। (2005)। खोए हुए संज्ञानात्मक कार्य को पुनर्स्थापित करना। आईईईई इंजीनियरिंग इन मेडिसिन एंड बायोलॉजी पत्रिका, 24(5), 30-44।
  38. R. Bhandari, S. Negi, F. Solzbacher (2010). "पेनेट्रेटिंग न्यूरल इलेक्ट्रोड एरेज़ का वेफर स्केल निर्माण". Biomedical Microdevices. 12 (5): 797–807. doi:10.1007/s10544-010-9434-1. PMID 20480240. S2CID 25288723.{{cite journal}}: CS1 maint: uses authors parameter (link)
  39. Kweku, Otchere (2017). "इंडक्टिव कपलिंग का उपयोग कर वायरलेस मोबाइल चार्जर". International Journal of Engineering and Advanced Technology. 7 (1): 84–99.
  40. S Negi, R. Bhandari, L Rieth, R V Wagenen, and F Solzbacher, “Neural Electrode Degradation from Continuous Electrical Stimulation: Comparison of Sputtered and Activated Iridium Oxide”, Journal of Neuroscience Methods, vol. 186, pp. 8–17, 2010.
  41. HermesC: Low-Power Wireless Neural Recording System for Freely Moving Primates Chestek, C.A.; Gilja, V.; Nuyujukian, P.; Kier, R.J.; Solzbacher, F.; Ryu, S.I.; Harrison, R.R.; Shenoy, K.V.; Neural Systems and Rehabilitation Engineering, IEEE Transactions on Volume 17, Issue 4, Aug. 2009, pp. 330–38.
  42. 42.0 42.1 Andersen, R. A., Burdick, J. W., Musallam, S., Pesaran, B., & Cham, J. G. (2004). Cognitive neural prosthetics. Trends in Cognitive Sciences, 8(11), 486–93.
  43. The Engineer. London. Centaur Communications Ltd. 2015, May 8


अग्रिम पठन

  • Santhanam G, Ryu SI, Yu BM, Afshar A, Shenoy KV. 2006. "A high-performance brain-computer interface". Nature 442:195–98
  • Patil PG, Turner DA. 2008. "The development of brain-machine interface neuroprosthetic devices". Neurotherapeutics 5:137–46
  • Liu WT, Humayun MS, Liker MA. 2008. "Implantable biomimetic microelectronics systems". Proceedings of the IEEE 96:1073–74
  • Harrison RR. 2008. "The design of integrated circuits to observe brain activity." Proceedings of the IEEE 96:1203–16
  • Abbott A. 2006. "Neuroprosthetics: In search of the sixth sense". Nature 442:125–27
  • Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB (2008) "Cortical control of a prosthetic arm for self-feeding." Nature. 19;453(7198):1098–101.
  • Schwartz AB, Cui XT, Weber DJ, Moran DW "Brain-controlled interfaces: movement restoration with neural prosthetics." (2006) Neuron 5;52(1):205–20
  • Santucci DM, Kralik JD, Lebedev MA, Nicolelis MA (2005) "Frontal and parietal cortical ensembles predict single-trial muscle activity during reaching movements in primates." Eur J Neurosci. 22(6): 1529–40.
  • Lebedev MA, Carmena JM, O'Doherty JE, Zacksenhouse M, Henriquez CS, Principe JC, Nicolelis MA (2005) "Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain-machine interface." J Neurosci. 25: 4681–93.
  • Nicolelis MA (2003) "Brain-machine interfaces to restore motor function and probe neural circuits." Nat Rev Neurosci. 4: 417–22.
  • Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M, Chapin JK, Kim J, Biggs SJ, Srinivasan MA, Nicolelis MA. (2000) "Real-time prediction of hand trajectory by ensembles of cortical neurons in primates." Nature 16: 361–65.


बाहरी संबंध