जॉर्डन वक्र प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(38 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|Division by a closed curve of the plane into two regions}}
{{Short description|Division by a closed curve of the plane into two regions}}
[[Image:Jordan curve theorem.svg|thumb|200px|जॉर्डन वक्र प्रमेय का चित्रण। एक जॉर्डन वक्र (काले रंग में खींचा गया) विमान को एक आंतरिक क्षेत्र (हल्का नीला) और एक बाहरी क्षेत्र (गुलाबी) में विभाजित करता है।]][[ टोपोलॉजी ]] में, [[ जॉर्डन वक्र ]][[ प्रमेय ]] का अर्थ है  कि ''सारे जॉर्डन वक्र समतल को''  [[ आंतरिक (टोपोलॉजी) |आंतरिक]] क्षेत्र और [[ बाहरी (टोपोलॉजी) |बाहरी]] [[ सीमा (टोपोलॉजी) |सीमा]] में विभाजित करता है जिसमें सभी पास और दूर के बाहरी बिंदु होते हैं। एक क्षेत्र का बिंदु और दूसरे क्षेत्र का बिंदु से जोड़ने वाला हर[[ पथ (टोपोलॉजी) | पथ]] वक्र के साथ खंडित होता है। जबकि प्रमेय के कथन से स्पष्ट दिख रहा है कि प्राथमिक माध्यमों  के द्वारा सिद्ध करने के लिए सरलता की आवश्यकता होती है। जबकि ''जेसीटी लोकप्रिय टोपोलॉजिकल प्रमेयों में से एक है,लेकिन गणितज्ञों में कई ऐसे है जिन्होंने कभी इसका प्रमाण नहीं पढ़ा है ''{{harvtxt|  टवरबर्ग ||loc=}} का कहना है कि बीजगणितीय टोपोलॉजी का पारदर्शी प्रमाण गणितीय मशीनरी पर निर्भर करता हैं, और खाली स्थान में उच्च-आयामी को सामान्यीकरण की ओर ले जाते हैं।
[[Image:Jordan curve theorem.svg|thumb|200px|जॉर्डन वक्र प्रमेय का चित्रण। एक जॉर्डन वक्र समतल क्षेत्र को "अंदर" और "बाहरी" क्षेत्र में विभाजित करता हैI]][[टोपोलॉजी]] में, '''जॉर्डन वक्र [[प्रमेय]]'''का अर्थ है  कि सभी ''जॉर्डन वक्र समतल के''  आंतरिक क्षेत्र और बाहरी [[ सीमा (टोपोलॉजी) |सीमा]] को विभाजित करता है जिसमें उपस्थित पास और दूर के बाहरी बिंदु होते हैं। एक क्षेत्र का बिंदु और दूसरे क्षेत्र के बिंदु से जोड़ने वाले[[ पथ (टोपोलॉजी) | पथ]] के वक्र को खंडित करता है। जबकि प्रमेय के कथन से स्पष्ट दिख रहा है कि प्राथमिक माध्यमों  के द्वारा सिद्ध करने के लिए सरलता की आवश्यकता होती है। जबकि ''जेसीटी लोकप्रिय टोपोलॉजिकल प्रमेयों में से एक है,लेकिन गणितज्ञों में कई ऐसे है जिन्होंने कभी इसका प्रमाण नहीं पढ़ा है I ''{{harvtxt|  टवरबर्ग ||loc=}} का कहना है कि बीजगणितीय टोपोलॉजी का पारदर्शी प्रमाण गणितीय मशीनरी पर निर्भर करता हैं, और उच्च-आयामी खाली स्थान को सामान्यीकृत करते हैI


इसका पहला प्रमाण[[ गणितज्ञ |  गणितज्ञ]] [[ केमिली जॉर्डन |केमिली जॉर्डन]] ने पाया था, इसलिए जॉर्डन वक्र प्रमेय को गणितज्ञ केमिली जॉर्डन के नाम से भी जाना जाता है। गणितज्ञों द्वारा सोचा गया था कि इस प्रमाण में बहुत सी कमियां होगी और पहला कठोर प्रमाण [[ ओसवाल्ड वेब्लेन |ओसवाल्ड वेब्लेन]] ने किया गया था। लेकिन, इस धारणा को थॉमस कॉलिस्टर हेल्स और अन्य लोगो ने बदल दिया है।
इसका पहला प्रमाण[[ गणितज्ञ |  गणितज्ञ]] [[ केमिली जॉर्डन |केमिली जॉर्डन]] ने पाया था, इसलिए जॉर्डन वक्र प्रमेय को गणितज्ञ केमिली जॉर्डन के नाम से भी जाना जाता है। गणितज्ञों द्वारा सोचा गया था कि इस प्रमाण में बहुत सी कमियां होगी और पहला कठोर प्रमाण [[ ओसवाल्ड वेब्लेन |ओसवाल्ड वेब्लेन]] ने किया गया था। लेकिन, इस धारणा को थॉमस कॉलिस्टर हेल्स और अन्य लोगो ने बदल दिया है।


== परिभाषाएं और जॉर्डन प्रमेय का बयान ==
== परिभाषाएं और जॉर्डन प्रमेय का अर्थ ==


एक जॉर्डन वक्र 'आर ' में साधारण बंद वक्र<sup>2</sup> के एक वृत्त के समतल में एक निरंतर [[ इंजेक्शन |इंजेक्शन]] मानचित्र है, एस<sup>1</sup> → आर<sup>2</सुप>. समतल {{math|[''a'', ''b'']}} में जॉर्डन चाप एक बंद और बंधे हुए अंतराल के इंजेक्शन निरंतर मानचित्र की छवि है।यह एक[[ समतल वक्र ]]है जो आवश्यक रूप से ना विभेदक वक्र है और ना ही [[ बीजीय वक्र ]]है।
एक जॉर्डन वक्र ''''R'''<sup>2</sup> ' में साधारण बंद वक्र के एक वृत्त के समतल में एक निरंतर [[ इंजेक्शन |एकैकी फलन]] है,''φ'': ''S''<sup>1</sup> → '''R'''<sup>2 .</sup>


वैकल्पिक रूप से, जॉर्डन वक्र एक सतत मानचित्र की छवि है φ: [0,1] → 'R'<sup>2</sup> जैसे कि φ(0) = φ(1) और φ से [0,1) का प्रतिबंध इंजेक्शन है। पहली दो स्थितियां कहती हैं कि C एक सतत लूप है, जबकि अंतिम शर्त यह निर्धारित करती है कि C में कोई आत्म-प्रतिच्छेदन बिंदु नहीं है।
<sup>समतल {{math|[''a'', ''b'']}}  में जॉर्डन चाप एक बंद और बंधे हुए अंतराल के इंजेक्शन निरंतर मानचित्र की छवि है।</sup>


इन परिभाषाओं के साथ, जॉर्डन वक्र प्रमेय को निम्नानुसार कहा जा सकता है:
यह एक[[ समतल वक्र | समतल वक्र]] है जो आवश्यक रूप से ना विभेदक वक्र है और ना ही [[ बीजीय वक्र | बीजीय वक्र]] है। जॉर्डन वक्र मानचित्र की छवि है φ: [0,1] →'R'<sup>2 जैसे कि φ(0) = φ(1) और φ से [0,1) का रुकावट इंजेक्शन है। दो स्थितियां हैं पहली स्थिति में सी एक लूप है, दूसरी स्थिति में सी आत्म-रुकावट बिंदु नहीं है।


{{math theorem|math_statement=
इन परिभाषाओं के अनुसार, जॉर्डन वक्र प्रमेय को कहा जा सकता है:-
Let ''C'' be a Jordan curve in the plane '''R'''<sup>2</sup>. Then its [[complement (set theory)|complement]], '''R'''<sup>2</sup>&nbsp;\&nbsp;''C'', consists of exactly two [[connected component (topology)|connected component]]s. One of these components is [[bounded set|bounded]] (the '''interior''') and the other is unbounded (the '''exterior'''), and the curve ''C'' is the [[boundary (topology)|boundary]] of each component.
}}
इसके विपरीत, विमान में जॉर्डन चाप का पूरक जुड़ा हुआ है।


== सबूत और सामान्यीकरण ==
{| class="wikitable"
!प्रमेय - मान लीजिए ''C'' विमान '''R'''<sup>2</sup> में एक जॉर्डन वक्र है। फिर इसके पूरक,  '''R'''<sup>2</sup> \ ''C'', में ठीक दो जुड़े हुए घटक होते हैं। इनमें से एक घटक परिबद्ध ('''आंतरिक''') है और दूसरा असंबद्ध ('''बाहरी''') है, और वक्र ''C'' प्रत्येक घटक की सीमा है।
|}
इसके विपरीत, जॉर्डन चाप समतल क्षेत्र से जुड़ा हुआ है I


जॉर्डन वक्र प्रमेय को स्वतंत्र रूप से एच. लेबेस्ग्यू और एल.ई.जे. द्वारा उच्च आयामों के लिए सामान्यीकृत किया गया था। 1911 में ब्रौवर, जिसके परिणामस्वरूप जॉर्डन-ब्राउवर पृथक्करण प्रमेय हुआ।
== प्रमाण और सामान्यीकरण ==


{{math theorem|math_statement=
जॉर्डन वक्र प्रमेय को एच. लेबेस्ग्यू और एल.ई.जे. ने उच्च आयामों के लिए सामान्यीकृत किया था।  जिसके परिणामस्वरूप 1911 में ब्रौवर के द्वारा जॉर्डन-ब्राउवर प्रमेय को अलग किया गया।
Let ''X'' be an ''n''-dimensional ''[[topological sphere]]'' in the (''n''+1)-dimensional [[Euclidean space]] '''R'''<sup>''n''+1</sup> (''n'' > 0), i.e. the image of an injective continuous mapping of the [[n-sphere|''n''-sphere]] ''S<sup>n</sup>'' into '''R'''<sup>''n''+1</sup>. Then the complement ''Y'' of ''X'' in '''R'''<sup>''n''+1</sup> consists of exactly two connected components.  One of these components is bounded (the interior) and the other is unbounded (the exterior).  The set ''X'' is their common boundary.
 
}}
{| class="wikitable"
सबूत होमोलॉजी सिद्धांत का उपयोग करता है। यह पहली बार स्थापित किया गया है कि, आम तौर पर, यदि एक्स के-क्षेत्र के लिए होमियोमॉर्फिक है, तो वाई = 'आर' के कम किए गए होमोलॉजी समूह<sup>n+1</sup> \ X इस प्रकार हैं:
!प्रमेय - मान लीजिए कि X (n+1)-आयामी यूक्लिडियन अंतरिक्ष '''R'''<sup>''n''+1</sup> (''n'' > 0) में एक n-विमीय स्थलाकृतिक क्षेत्र है, यानी n-गोले Sn की '''R'''<sup>''n''+1</sup>  में प्रतिच्छेदी निरंतर मानचित्रण की छवि। फिर '''R'''<sup>''n''+1</sup> में X के पूरक Y में वास्तव में दो जुड़े घटक हैं। इन घटकों में से एक बाउंड (आंतरिक) है और दूसरा अनबाउंड (बाहरी) है। समुच्चय X उनकी सामान्य सीमा है।
|}
प्रमाण होमोलॉजी सिद्धांत का उपयोग करता है। यह पहली बार स्थापित किया गया है कि, X, k-क्षेत्र के लिए होमोमोर्फिक है, तो ''Y'' = '''R'''<sup>''n''+1</sup> \ ''X'' के घटे हुए अभिन्न होमोलॉजी समूह इस प्रकार हैं:


<math display="block">\tilde{H}_{q}(Y)= \begin{cases}\mathbb{Z}, & q=n-k\text{ or }q=n, \\ \{0\}, & \text{otherwise}.\end{cases}</math>
<math display="block">\tilde{H}_{q}(Y)= \begin{cases}\mathbb{Z}, & q=n-k\text{ or }q=n, \\ \{0\}, & \text{otherwise}.\end{cases}</math>
यह मेयर-विएटोरिस अनुक्रम का उपयोग करके k में प्रेरण द्वारा सिद्ध होता है। जब n = k, Y के ज़ीरोथ रिड्यूस्ड होमोलॉजी का रैंक 1 होता है, जिसका अर्थ है कि Y में 2 जुड़े हुए घटक हैं (जो कि, इसके अलावा, पथ से जुड़े हुए हैं), और थोड़े अतिरिक्त काम के साथ, कोई यह दर्शाता है कि उनकी सामान्य सीमा X है। एक और सामान्यीकरण जेम्स वाडेल अलेक्जेंडर II | जे द्वारा पाया गया। डब्ल्यू एलेक्जेंडर, जिन्होंने 'आर' के एक [[ कॉम्पैक्ट स्पेस ]] सबसेट एक्स के कम होमोलोजी के बीच [[ सिकंदर द्वैत ]] की स्थापना की<sup>n+1</sup> और इसके पूरक की घटी हुई कोहोलॉजी। यदि X 'R' का एक n-आयामी कॉम्पैक्ट कनेक्टेड सबमैनफोल्ड है<sup>n+1</sup> (या 'एस'<sup>n+1</sup>) बिना सीमा के, इसके पूरक में 2 जुड़े हुए घटक हैं।
यह मेयर-विएटोरिस अनुक्रम का उपयोग करके के(k) में प्रेरण द्वारा सिद्ध होता है। जब n = k, Y के उपरांत ज़ीरोथ होमोलॉजी का रैंक 1 होता है, जिसका अर्थ है कि Y में 2 घटक जुड़े हैं और थोड़े काम के साथ यह दिखता है कि उनकी सामान्य सीमा एक्स(X) है। सामान्यीकरण जेम्स वाडेल अलेक्जेंडर II जे द्वारा पाया गया। डब्ल्यू एलेक्जेंडर, जिन्होंने 'RN + 1' [[ कॉम्पैक्ट स्पेस ]] सबसेट एक्स के कम होमोलोजी और इसके पूरक के कम कोहोलॉजी के बीच सिकंदर द्वैत की स्थापना की। यदि एक्स(X) बिना सीमा के 'R <sup>n+1</sup>' (या 'S'<sup>n+1</sup>) का  n-आयामी सघन जोड़ सबमैनफोल्ड है तो इसके पूरक में 2 घटक जुड़े हैं।


जॉर्डन वक्र प्रमेय की मजबूती है, जिसे जॉर्डन-शॉनफ्लाइज प्रमेय कहा जाता है, जिसमें कहा गया है कि आंतरिक और बाहरी तलीय क्षेत्र 'आर' में जॉर्डन वक्र द्वारा निर्धारित होते हैं।<sup>2</sup> [[ यूनिट डिस्क ]] के आंतरिक और बाहरी हिस्से के लिए [[ होमोमोर्फिक ]] हैं। विशेष रूप से, आंतरिक क्षेत्र में किसी भी बिंदु P और जॉर्डन वक्र पर एक बिंदु A के लिए, एक जॉर्डन चाप मौजूद है जो P को A से जोड़ता है और, समापन बिंदु A के अपवाद के साथ, पूरी तरह से आंतरिक क्षेत्र में स्थित है। जॉर्डन-शॉनफ्लाइज़ प्रमेय का एक वैकल्पिक और समकक्ष सूत्रीकरण यह दावा करता है कि कोई भी जॉर्डन वक्र φ: S<sup>1</sup> → आर<sup>2</sup>, जहाँ S<sup>1</sup> को विमान में इकाई वृत्त के रूप में देखा जाता है, जिसे होमोमोर्फिज्म तक बढ़ाया जा सकता है : 'R'<sup>2</sup> → आर<sup>2</sup> विमान का। लेब्सग्यू और ब्रौवर के जॉर्डन वक्र प्रमेय के सामान्यीकरण के विपरीत, यह कथन उच्च आयामों में गलत हो जाता है: जबकि 'R' में यूनिट बॉल का बाहरी भाग<sup>3</sup> [[ बस जुड़ा हुआ ]] है, क्योंकि यह इकाई क्षेत्र पर विरूपण वापस ले लेता है, सिकंदर सींग वाला क्षेत्र आर का सबसेट है<sup>3</sup> एक गोले के लिए होमोमोर्फिक, लेकिन अंतरिक्ष में इतना मुड़ा हुआ कि R में इसके पूरक का असंबद्ध घटक<sup>3</sup> केवल कनेक्टेड नहीं है, और इसलिए यूनिट बॉल के बाहरी भाग से होमियोमॉर्फिक नहीं है।
जॉर्डन वक्र प्रमेय एक सशक्ती है, जिसे जॉर्डन-शॉनफ्लाइज प्रमेय कहा जाता है, जॉर्डन वक्र प्रमेय के लेबेस्ग्यू और ब्रोवर के सामान्यीकरण के विपरीत, यह कथन उच्च आयामों में गलत हो जाता है जबकि R<sup>3</sup> यूनिट में  बॉल का बाहरी हिस्सा जुड़ा हुआ है, क्योंकि यूनिट वृत्त पर वापस जाता है, अलेक्जेंडर हॉर्न्ड वृत्त R<sup>3</sup> गोले के लिए होमियोमॉर्फिक का सबसेट है,अंतरिक्ष में इतना मुड़ा हुआ है कि R<sup>3</sup> का अबाधित घटक जुड़ा नहीं है, और इसलिए बॉल के बाहरी भाग के लिए होमियोमॉर्फिक नहीं है।


=== असतत संस्करण ===
=== असतत संस्करण ===
जॉर्डन वक्र प्रमेय को [[ ब्रौवर नियत-बिंदु प्रमेय ]] (2 आयामों में) से सिद्ध किया जा सकता है,{{sfnp|Maehara|1984|p=641}} और ब्रौवर निश्चित बिंदु प्रमेय को हेक्स प्रमेय से सिद्ध किया जा सकता है: प्रत्येक [[ हेक्स (बोर्ड गेम) ]] में कम से कम एक विजेता होता है, जिससे हम एक तार्किक निहितार्थ प्राप्त करते हैं: हेक्स प्रमेय का अर्थ ब्रौवर निश्चित बिंदु प्रमेय है, जिसका अर्थ जॉर्डन वक्र प्रमेय है।<ref>{{Cite journal |last=Gale |first=David |date=December 1979 |title=हेक्स का खेल और ब्रौवर फिक्स्ड-पॉइंट प्रमेय|url=http://dx.doi.org/10.2307/2320146 |journal=The American Mathematical Monthly |volume=86 |issue=10 |pages=818 |doi=10.2307/2320146 |issn=0002-9890}}</ref>
जॉर्डन वक्र प्रमेय को [[ ब्रौवर नियत-बिंदु प्रमेय ]]द्वारा और ब्रौवर निश्चित बिंदु प्रमेय को हेक्स प्रमेय द्वारा सिद्ध किया जा सकता हैI तार्किक निहितार्थ प्राप्त करने के लिए [[ हेक्स (बोर्ड गेम) | हेक्स  गेम]] में एक विजेता का होना आवश्यक है, हेक्स प्रमेय का अर्थ ब्रौवर निश्चित बिंदु प्रमेय से है, जिसका अर्थ जॉर्डन वक्र प्रमेय है।<ref>{{Cite journal |last=Gale |first=David |date=December 1979 |title=हेक्स का खेल और ब्रौवर फिक्स्ड-पॉइंट प्रमेय|url=http://dx.doi.org/10.2307/2320146 |journal=The American Mathematical Monthly |volume=86 |issue=10 |pages=818 |doi=10.2307/2320146 |issn=0002-9890}}</ref> यह स्पष्ट है कि जॉर्डन वक्र प्रमेय से सशक्त हेक्स प्रमेय का तात्पर्य है, कि हेक्स खेल एक विजेता के साथ समाप्त होता है, दोनों पक्षों के हारने या जीतने की कोई संभावना नहीं होती है, इस प्रकार जॉर्डन वक्र प्रमेय सशक्त हेक्स प्रमेय के बराबर है, और  विशुद्ध रूप से गणित प्रमेय है।
यह स्पष्ट है कि जॉर्डन वक्र प्रमेय मजबूत हेक्स प्रमेय का तात्पर्य है: हेक्स का प्रत्येक गेम बिल्कुल एक विजेता के साथ समाप्त होता है, दोनों पक्षों के हारने या दोनों पक्षों के जीतने की कोई संभावना नहीं है, इस प्रकार जॉर्डन वक्र प्रमेय मजबूत हेक्स प्रमेय के बराबर है, जो है एक विशुद्ध रूप से असतत गणित प्रमेय।


दो समकक्ष प्रमेयों के बीच सैंडविच होने के कारण बाउवर निश्चित बिंदु प्रमेय भी दोनों के बराबर है।<ref>{{Cite journal |last=Nguyen |first=Phuong |last2=Cook |first2=Stephen A. |date=2007 |title=असतत जॉर्डन वक्र प्रमेय साबित करने की जटिलता|url=http://dx.doi.org/10.1109/lics.2007.48 |journal=22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007) |publisher=IEEE |doi=10.1109/lics.2007.48}}</ref>
बाउवर निश्चित बिंदु प्रमेयों के बीच दो टुकड़े होने के कारण समतुल्य है I<ref>{{Cite journal |last=Nguyen |first=Phuong |last2=Cook |first2=Stephen A. |date=2007 |title=असतत जॉर्डन वक्र प्रमेय साबित करने की जटिलता|url=http://dx.doi.org/10.1109/lics.2007.48 |journal=22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007) |publisher=IEEE |doi=10.1109/lics.2007.48}}</ref>और गणित को उल्टा, कंप्यूटर-औपचारिक गणित में, जॉर्डन वक्र प्रमेय को सशक्त हेक्स प्रमेय के समान परिवर्तित करके सिद्ध किया जाता है, फिर असतत संस्करण को सिद्ध किया जाता हैI <ref>{{Cite journal |last=Hales |first=Thomas C. |date=December 2007 |title=जॉर्डन वक्र प्रमेय, औपचारिक और अनौपचारिक रूप से|url=http://dx.doi.org/10.1080/00029890.2007.11920481 |journal=The American Mathematical Monthly |volume=114 |issue=10 |pages=882–894 |doi=10.1080/00029890.2007.11920481 |issn=0002-9890}}</ref>
रिवर्स गणित, और कंप्यूटर-औपचारिक गणित में, जॉर्डन वक्र प्रमेय आमतौर पर पहले इसे मजबूत हेक्स प्रमेय के समान समकक्ष असतत संस्करण में परिवर्तित करके सिद्ध किया जाता है, फिर असतत संस्करण को साबित करता है।<ref>{{Cite journal |last=Hales |first=Thomas C. |date=December 2007 |title=जॉर्डन वक्र प्रमेय, औपचारिक और अनौपचारिक रूप से|url=http://dx.doi.org/10.1080/00029890.2007.11920481 |journal=The American Mathematical Monthly |volume=114 |issue=10 |pages=882–894 |doi=10.1080/00029890.2007.11920481 |issn=0002-9890}}</ref>


==== छवि प्रसंस्करण के लिए आवेदन ====
[[ डिजिटल इमेज प्रोसेसिंग |छवि  प्रसंस्करण]] में, चित्र के अनुसार वर्ग क्षेत्र में बाइनरी नंबर जीरो(0) और एक(1) है, एक सघन का उपसमुच्चय बराबर होता  है <math>\Z^2</math>. टोपोलॉजिकल इनवेरिएंट ऑन <math>\R^2</math>, जैसे कि घटकों की संख्या को अच्छी तरह से परिभाषित करने में असफलता हो सकती है I <math>\Z^2</math> यदि <math>\Z^2</math> उचित रूप से परिभाषित ग्राफ़ संरचना नहीं हैI


==== इमेज प्रोसेसिंग के लिए आवेदन ====
<math>\Z^2</math> पर दो स्पष्ट ग्राफ संरचनाएं हैं-
[[ डिजिटल इमेज प्रोसेसिंग ]] में, एक बाइनरी चित्र 0 और 1 का असतत वर्ग ग्रिड है, या समकक्ष, का एक कॉम्पैक्ट उपसमुच्चय है <math>\Z^2</math>. टोपोलॉजिकल इनवेरिएंट ऑन <math>\R^2</math>, जैसे कि घटकों की संख्या, के लिए अच्छी तरह से परिभाषित होने में विफल हो सकती है <math>\Z^2</math> यदि <math>\Z^2</math> उपयुक्त रूप से परिभाषित पिक्सेल कनेक्टिविटी नहीं है#कनेक्टिविटी के प्रकार।
[[File:Sasiedztwa_4_8.svg|right|thumb|8-पड़ोसी और 4-पड़ोसी वर्ग ग्रिड।]]


पर दो स्पष्ट ग्राफ संरचनाएं हैं <math>\Z^2</math>:
* चार-पड़ोसी वर्ग, जिसके सभी शीर्ष <math>(x, y)</math> के साथ जुड़े है <math>(x+1, y), (x-1, y), (x, y+1), (x, y-1)</math>.
[[File:Sasiedztwa_4_8.svg|right|thumb|8-पड़ोसी और 4-पड़ोसी वर्ग ग्रिड।]]* 4-पड़ोसी वर्ग ग्रिड , जहां प्रत्येक शीर्ष <math>(x, y)</math> के साथ जुड़ा हुआ है <math>(x+1, y), (x-1, y), (x, y+1), (x, y-1)</math>.
* 8-पड़ोसी वर्ग ग्रिड , जहाँ प्रत्येक शीर्ष <math>(x, y)</math> के साथ जुड़ा हुआ है <math>(x', y')</math> आईएफएफ <math>|x-x'| \leq 1, |y-y'| \leq 1</math>, तथा <math>(x, y) \neq (x', y')</math>.


दोनों ग्राफ संरचनाएं मजबूत हेक्स प्रमेय को संतुष्ट करने में विफल रहती हैं। 4-पड़ोसी वर्ग ग्रिड एक गैर-विजेता स्थिति की अनुमति देता है, और 8-पड़ोसी वर्ग ग्रिड दो-विजेता स्थिति की अनुमति देता है। नतीजतन, कनेक्टिविटी गुण <math>\R^2</math>, जैसे कि जॉर्डन वक्र प्रमेय, को सामान्यीकृत न करें <math>\Z^2</math> या तो ग्राफ संरचना के तहत।
* आठ -पड़ोसी वर्ग, जिसके सभी शीर्ष <math>(x, y)</math> के साथ जुड़े है <math>(x', y')</math> आईएफएफ <math>|x-x'| \leq 1, |y-y'| \leq 1</math>, तथा <math>(x, y) \neq (x', y')</math>.


यदि 6-पड़ोसी वर्ग ग्रिड संरचना पर लगाया जाता है <math>\Z^2</math>, तो यह हेक्सागोनल ग्रिड है, और इस प्रकार मजबूत हेक्स प्रमेय को संतुष्ट करता है, जिससे जॉर्डन वक्र प्रमेय सामान्य हो जाता है। इस कारण से, बाइनरी छवि में जुड़े घटकों की गणना करते समय, आमतौर पर 6-पड़ोसी वर्ग ग्रिड का उपयोग किया जाता है।<ref>{{Cite web |last=Nayar |first=Shree |date=Mar 1, 2021 |title=कंप्यूटर विजन के पहले सिद्धांत: सेगमेंटेशन बाइनरी इमेज {{!}} बाइनरी इमेज|url=https://www.youtube.com/watch?v=2ckNxEwF5YU&ab_channel=FirstPrinciplesofComputerVision}}</ref>
दोनों ग्राफ संरचनाएं सशक्त हेक्स प्रमेय को संतुष्ट करने में असफल रहती हैं। चार-पड़ोसी वर्ग में एक विजेता स्थिति को अनुमति देता है, और 8-पड़ोसी वर्ग में  दो-विजेता स्थिति को अनुमति देता है। जिसके फलस्वरूप किसी भी ग्राफ़ संरचना <math>\R^2</math> के अंतर्गत जॉर्डन वक्र प्रमेय <math>\Z^2</math> सामान्यीकृत नहीं होते हैंI


यदि छ:-पड़ोसी वर्ग संरचना पर  <math>\Z^2</math> लगाया जाता है, तो यह हेक्सागोनल जाल बन जाएगा I और इसी प्रकार यह सशक्त हेक्स प्रमेय को संतुष्ट करता है, और फिर जॉर्डन वक्र प्रमेय सामान्य हो जाता है। बाइनरी छवि में जुड़े घटकों की गिनती करते समय, साधारणतया छ:- पड़ोसी वर्ग जाल का उपयोग किया जाता है।<ref>{{Cite web |last=Nayar |first=Shree |date=Mar 1, 2021 |title=कंप्यूटर विजन के पहले सिद्धांत: सेगमेंटेशन बाइनरी इमेज {{!}} बाइनरी इमेज|url=https://www.youtube.com/watch?v=2ckNxEwF5YU&ab_channel=FirstPrinciplesofComputerVision}}</ref>


==== स्टीनहॉस शतरंज की बिसात प्रमेय ====
==== स्टीनहॉस शतरंज की बिसात प्रमेय ====
कुछ अर्थों में स्टाइनहॉस शतरंजबोर्ड प्रमेय से पता चलता है कि 4-पड़ोसी ग्रिड और 8-पड़ोसी ग्रिड एक साथ जॉर्डन वक्र प्रमेय का अर्थ है, और 6-पड़ोसी ग्रिड उनके बीच एक सटीक प्रक्षेप है।<ref>{{Cite journal |last=Šlapal |first=J |date=April 2004 |title=जॉर्डन वक्र प्रमेय का एक डिजिटल एनालॉग|url=http://dx.doi.org/10.1016/j.dam.2002.11.003 |journal=Discrete Applied Mathematics |volume=139 |issue=1-3 |pages=231–251 |doi=10.1016/j.dam.2002.11.003 |issn=0166-218X}}</ref><ref>{{Cite journal |last=Surówka |first=Wojciech |date=1993 |title=जॉर्डन वक्र प्रमेय का एक असतत रूप|url=https://rebus.us.edu.pl/handle/20.500.12128/14250 |language=en |issn=0860-2107}}</ref>
स्टाइनहॉस शतरंजबोर्ड प्रमेय से पता चलता है कि चार-पड़ोसी वर्ग और आठ-पड़ोसी वर्ग जॉर्डन वक्र प्रमेय का अर्थ है, और छ:-पड़ोसी वर्ग उनके बीच एक सटीक प्रक्षेप करता है।<ref>{{Cite journal |last=Šlapal |first=J |date=April 2004 |title=जॉर्डन वक्र प्रमेय का एक डिजिटल एनालॉग|url=http://dx.doi.org/10.1016/j.dam.2002.11.003 |journal=Discrete Applied Mathematics |volume=139 |issue=1-3 |pages=231–251 |doi=10.1016/j.dam.2002.11.003 |issn=0166-218X}}</ref><ref>{{Cite journal |last=Surówka |first=Wojciech |date=1993 |title=जॉर्डन वक्र प्रमेय का एक असतत रूप|url=https://rebus.us.edu.pl/handle/20.500.12128/14250 |language=en |issn=0860-2107}}</ref>
प्रमेय कहता है कि: मान लीजिए कि आप कुछ चौकों पर बम डालते हैं a <math>n\times n</math> शतरंज की बिसात, ताकि कोई राजा बम पर कदम रखे बिना नीचे की तरफ से ऊपर की तरफ न जा सके, तो एक किश्ती केवल बम पर कदम रखते हुए बाईं ओर से दाईं ओर जा सकता है।
मान लीजिए कि a <math>n\times n</math> शतरंज की बिसात पर कुछ चौकों पर चाल चलते हैं,जिससे एक राजा अपनी चाल चलने पर पैर रखे बिना नीचे की तरफ से ऊपर ना जा सके, तो एक बदमाश अपनी चाल चलने पर बाईं ओर से दाईं ओर जा सकेI  


== इतिहास और आगे के सबूत ==
== इतिहास और आगे के प्रमाण ==


जॉर्डन वक्र प्रमेय का कथन पहली बार में स्पष्ट लग सकता है, लेकिन यह साबित करना एक कठिन प्रमेय है। [[ बर्नार्ड बोलजानो ]] एक सटीक अनुमान तैयार करने वाले पहले व्यक्ति थे, यह देखते हुए कि यह एक स्व-स्पष्ट कथन नहीं था, लेकिन इसके लिए एक प्रमाण की आवश्यकता थी।{{citation needed|date=March 2019}}
जॉर्डन वक्र प्रमेय में स्पष्ट प्रतीत होता है, इस प्रमेय को सिद्ध करना कठिन है। बर्नार्ड बोलजानो ऐसे व्यक्ति थे जिनके अनुमान लगाने से ज्ञात होता था कि यह एक स्व-स्पष्ट कथन नहीं था, इसलिए प्रमाण की आवश्यकता थी।{{citation needed|date=March 2019}}
[[ बहुभुज ]] के लिए इस परिणाम को स्थापित करना आसान है, लेकिन समस्या सभी प्रकार के बुरे व्यवहार वाले वक्रों के सामान्यीकरण में आई, जिसमें कहीं भी अलग-अलग वक्र शामिल नहीं हैं, जैसे [[ कोच हिमपात ]] और अन्य [[ भग्न वक्र ]], या यहां तक ​​​​कि [[ ऑसगूड वक्र ]] द्वारा निर्मित {{harvtxt|Osgood|1903}}.


इस प्रमेय का पहला प्रमाण केमिली जॉर्डन ने [[ वास्तविक विश्लेषण ]] पर अपने व्याख्यान में दिया था, और उनकी पुस्तक Cours d'analyse de l'École Polytechnique में प्रकाशित हुआ था।<ref>{{harvs|txt|authorlink=Camille Jordan|first=Camille|last= Jordan|year=1887}}</ref> इस बारे में कुछ विवाद है कि क्या जॉर्डन का प्रमाण पूर्ण था: इस पर अधिकांश टिप्पणीकारों ने दावा किया है कि पहला पूर्ण प्रमाण बाद में ओसवाल्ड वेब्लेन द्वारा दिया गया था, जिन्होंने जॉर्डन के प्रमाण के बारे में निम्नलिखित कहा था:
बहुभुज  के लिए इस परिणाम को स्थापित करना आसान है, लेकिन सभी प्रकार के बुरे व्यवहार वाले वक्रों के लिए इसे सामान्य बनाने में समस्या आई, जिसमें कहीं भी अलग-अलग वक्र सम्मिलित नहीं हैं, जैसे  कोच हिमपात और अन्य भग्न वक्र, या यहां तक ​​​​कि ऑसगूड वक्र द्वारा निर्मित {{harvtxt|ओस्गुड|1903}}.


<blockquote>उनका प्रमाण, हालांकि, कई गणितज्ञों के लिए असंतोषजनक है। यह एक साधारण बहुभुज के महत्वपूर्ण विशेष मामले में बिना सबूत के प्रमेय को मानता है, और उस बिंदु से तर्क के लिए, कम से कम यह स्वीकार करना चाहिए कि सभी विवरण नहीं दिए गए हैं।<ref>{{harvs|txt|authorlink=Oswald Veblen|first=Oswald |last=Veblen|year=1905}}</ref></blockquote>
इस प्रमेय का पहला प्रमाण केमिली जॉर्डन ने वास्तविक विश्लेषण पर अपने व्याख्यान में दिया था, और उनकी पुस्तक कोर्स डी'एनालिसिस डे ल'इकोले पॉलिटेक्निक में प्रकाशित हुआ था।<ref>{{harvs|txt|authorlink=Camille Jordan|first=Camille|last= Jordan|year=1887}}</ref> इस बारे में कुछ विवाद है कि क्या जॉर्डन का प्रमाण पूर्ण था I इस पर अधिकांश टिप्पणीकारों का अर्थ  है कि पहला पूर्ण प्रमाण बाद में ओसवाल्ड वेब्लेन द्वारा दिया गया था, जिन्होंने जॉर्डन के प्रमाण के बारे में निम्नलिखित कहा था:


हालांकि, थॉमस कॉलिस्टर हेल्स|थॉमस सी. हेल्स ने लिखा:
<blockquote>उनका प्रमाण, जबकि, कई गणितज्ञों के लिए असंतोषजनक है। यह एक साधारण बहुभुज की विशेष घटना के बिना प्रमाण के प्रमेय को मानता है, और उस बिंदु के कारण, कम से कम यह स्वीकार करना चाहिए कि सभी विवरण नहीं दिए गए हैं।<ref>{{harvs|txt|authorlink=Oswald Veblen|first=Oswald |last=Veblen|year=1905}}</ref></blockquote>


<blockquote>लगभग हर आधुनिक उद्धरण जो मैंने पाया है, इससे सहमत हैं कि पहला सही प्रमाण वेब्लेन के कारण है... जॉर्डन के प्रमाण की भारी आलोचना को देखते हुए, मुझे आश्चर्य हुआ जब मैं उसके प्रमाण को पढ़ने के लिए बैठ गया, जिसमें कुछ भी आपत्तिजनक नहीं पाया गया। यह। तब से, मैंने कई लेखकों से संपर्क किया है जिन्होंने जॉर्डन की आलोचना की है, और प्रत्येक मामले में लेखक ने स्वीकार किया है कि जॉर्डन के सबूत में त्रुटि का कोई प्रत्यक्ष ज्ञान नहीं है।<ref>{{harvtxt|Hales|2007b}}</ref></blockquote>
थॉमस सी. हेल्स ने लिखा:


हेल्स ने यह भी बताया कि साधारण बहुभुजों का विशेष मामला न केवल एक आसान अभ्यास है, बल्कि वास्तव में जॉर्डन द्वारा वैसे भी उपयोग नहीं किया गया था, और माइकल रीकेन को यह कहते हुए उद्धृत किया:
<blockquote>लगभग हर आधुनिक उद्धरण जो मुझे मिला है, इस बात को मानते  है कि पहला सही प्रमाण वेब्लेन के कारण हैI जॉर्डन के प्रमाण की भारी आलोचना को देखते हुए, जब मैं उसके प्रमाण को पढ़ने के लिए बैठा तो मुझे आश्चर्य हुआ कि उसके बारे में कुछ भी आपत्तिजनक नहीं है। तब से, मैंने कई लेखकों से संपर्क किया है जिन्होंने जॉर्डन की आलोचना की है, और सभी घटना को लेखक ने स्वीकार किया है कि उसे जॉर्डन के प्रमाण में किसी त्रुटि का प्रत्यक्ष ज्ञान नहीं है।<ref>{{harvtxt|Hales|2007b}}</ref></blockquote>
<blockquote>जॉर्डन का प्रमाण अनिवार्य रूप से सही है... जॉर्डन का प्रमाण संतोषजनक तरीके से विवरण प्रस्तुत नहीं करता है। लेकिन विचार सही है, और कुछ पॉलिशिंग के साथ प्रमाण त्रुटिहीन होगा।<ref>{{harvtxt|Hales|2007b}}</ref></blockquote>


इससे पहले, जॉर्डन के सबूत और चार्ल्स जीन डे ला वेली पॉसिन द्वारा एक और प्रारंभिक सबूत का पहले ही गंभीर रूप से विश्लेषण किया गया था और स्कोनफ्लाइज (1 9 24) द्वारा पूरा किया गया था।<ref>{{cite journal |author=A. Schoenflies |author-link=Arthur Moritz Schoenflies |title=सी. जॉर्डन और चै. जे. डे ला वल्ली पुसीना के प्रमाणों पर टिप्पणी|journal=Jahresber. Deutsch. Math.-Verein |volume=33 |year=1924 |pages=157–160}}</ref>
हेल्स ने यह भी बताया कि साधारण बहुभुजों की विशेष घटना न केवल एक आसान अभ्यास है, बल्कि माइकल रीकेन को यह कहते हुए उद्धृत किया है वास्तव में जॉर्डन द्वारा वैसे भी उपयोग नहीं किया गया था,
[[ निम्न-आयामी टोपोलॉजी ]] और [[ जटिल विश्लेषण ]] में जॉर्डन वक्र प्रमेय के महत्व के कारण, 20 वीं शताब्दी के पूर्वार्द्ध के प्रमुख गणितज्ञों ने इसे बहुत ध्यान दिया। प्रमेय और इसके सामान्यीकरण के विभिन्न प्रमाणों का निर्माण जेम्स वाडेल अलेक्जेंडर II | जे द्वारा किया गया था। डब्ल्यू अलेक्जेंडर, लुई एंटोनी, [[ लुडविग बीबरबाक ]], [[ लुइट्ज़न ब्रौवर ]], [[ अरनौद डेनजॉय ]], [[ फ्रेडरिक हार्टोग्स ]], बेला केरेकजार्टो, [[ अल्फ्रेड प्रिंग्सहेम ]], और [[ आर्थर मोरित्ज़ शोएनफ्लाइज़ ]]
<blockquote>जॉर्डन का प्रमाण अनिवार्य रूप से सही हैI जॉर्डन का प्रमाण संतोषजनक उपाय से विवरण प्रस्तुत नहीं करता है। लेकिन विचार सही है, और कुछ घर्षण के साथ प्रमाण त्रुटिहीन होगा।<ref>{{harvtxt|Hales|2007b}}</ref></blockquote>


जॉर्डन वक्र प्रमेय के नए प्राथमिक प्रमाण, साथ ही पहले के प्रमाणों के सरलीकरण को जारी रखा गया है।
इससे पहले, जॉर्डन का प्रमाण और चार्ल्स जीन डे ला वेली पॉसिन द्वारा एक और प्रारंभिक प्रमाण का पहले ही गंभीर रूप से विश्लेषण किया गया था और स्कोनफ्लाइज (1924) द्वारा पूरा किया गया था।<ref>{{cite journal |author=A. Schoenflies |author-link=Arthur Moritz Schoenflies |title=सी. जॉर्डन और चै. जे. डे ला वल्ली पुसीना के प्रमाणों पर टिप्पणी|journal=Jahresber. Deutsch. Math.-Verein |volume=33 |year=1924 |pages=157–160}}</ref>
निम्न-आयामी टोपोलॉजी और सम्मिश्र विश्लेषण में जॉर्डन वक्र प्रमेय के महत्व के कारण, इसे 20 वीं शताब्दी के पहले छमाही के प्रमुख गणितज्ञों बहुत ध्यान दिया। प्रमेय और इसके सामान्यीकरण के विभिन्न प्रमाणों का निर्माण जे. डब्ल्यू. अलेक्जेंडर, लुई एंटोनी, [[ लुडविग बीबरबाक |लुडविग बीबरबाक]], [[ लुइट्ज़न ब्रौवर |लुइट्ज़न ब्रौवर]], [[ अरनौद डेनजॉय]], [[ फ्रेडरिक हार्टोग्स]], बेला केरेकजार्टो, [[ अल्फ्रेड प्रिंग्सहेम]], और [[ आर्थर मोरित्ज़ शोएनफ्लाइज़ ]] द्वारा किया गया था।


*प्राथमिक प्रमाण प्रस्तुत किए गए {{harvtxt|Filippov|1950}} तथा {{harvtxt|Tverberg|1980}}.
जॉर्डन वक्र प्रमेय के नए प्राथमिक प्रमाण, के साथ ही पहले के प्रमाणों के सरलीकरण को जारी रखा गया है।
* [[ गैर-मानक विश्लेषण ]] का उपयोग करके एक प्रमाण {{harvtxt|Narens|1971}}.
* रचनात्मक गणित का उपयोग करके एक प्रमाण  {{harvs | txt|last1=Berg | first1=Gordon O. | last2=Julian | first2=W. | last3=Mines | first3=R. | last4=Richman | first4=Fred | title=The constructive Jordan curve theorem | mr=0410701 | year=1975 | journal=[[Rocky Mountain Journal of Mathematics]] | issn=0035-7596 | volume=5 | pages=225–236}}.
* ब्रौवर नियत बिंदु प्रमेय का उपयोग करके एक प्रमाण {{harvtxt|Maehara|1984}}.
* सम[[ तलीय ग्राफ ]] का उपयोग करते हुए एक प्रमाण<sub>3,3</sub> द्वारा दिया गया था {{harvtxt| Thomassen| 1992}}.


कठिनाई की जड़ में समझाया गया है {{harvtxt|Tverberg|1980}} निम्नलिखित नुसार। यह साबित करना अपेक्षाकृत सरल है कि जॉर्डन वक्र प्रमेय प्रत्येक जॉर्डन बहुभुज (लेम्मा 1) के लिए है, और प्रत्येक जॉर्डन वक्र को जॉर्डन बहुभुज (लेम्मा 2) द्वारा मनमाने ढंग से अच्छी तरह से अनुमानित किया जा सकता है। एक जॉर्डन बहुभुज एक [[ बहुभुज श्रृंखला ]] है, एक बंधे हुए खुले सेट की सीमा, इसे खुला बहुभुज कहते हैं, और इसका बंद (टोपोलॉजी), बंद बहुभुज। व्यास पर विचार करें <math>\delta</math> बंद बहुभुज में निहित सबसे बड़ी डिस्क की। जाहिर है, <math>\delta</math> सकारात्मक है। जॉर्डन बहुभुज के अनुक्रम का उपयोग करना (जो दिए गए जॉर्डन वक्र में अभिसरण करता है) हमारे पास एक अनुक्रम है <math>\delta_1, \delta_2, \dots</math> संभावित रूप से एक सकारात्मक संख्या में परिवर्तित हो रहा है, व्यास <math>\delta</math> जॉर्डन वक्र से घिरे [[ बंद क्षेत्र ]] में निहित सबसे बड़ी डिस्क की। हालाँकि, हमें यह साबित करना होगा कि अनुक्रम <math>\delta_1, \delta_2, \dots</math> केवल दिए गए जॉर्डन वक्र का उपयोग करते हुए, शून्य में अभिसरण नहीं होता है, न कि संभवतः वक्र से घिरा क्षेत्र। यह टवरबर्ग के लेम्मा 3 का बिंदु है। मोटे तौर पर, बंद बहुभुज हर जगह शून्य से पतले नहीं होने चाहिए। इसके अलावा, उन्हें कहीं भी शून्य से पतला नहीं होना चाहिए, जो कि टवरबर्ग के लेम्मा 4 का बिंदु है।
*प्राथमिक प्रमाण {{harvtxt|फिलिप्पोव|1950}} तथा {{harvtxt|टावरबर्ग|1980}} प्रस्तुत किए गए.
* गैर-मानक विश्लेषण का उपयोग करके  {{harvtxt|नारेंस |1971}} एक प्रमाण दिया गया.
* रचनात्मक गणित का उपयोग करके एक प्रमाण गॉर्डन ओ. बर्ग, डब्ल्यू. जूलियन, और आर. माइन्स एट अल (1975).
* ब्रौवर नियत बिंदु प्रमेय का उपयोग करके एक प्रमाण {{harvtxt|मेहरा|1984}}.
* सम[[ तलीय ग्राफ ]] का उपयोग करते हुए एक प्रमाण ''K''<sub>3,3</sub> द्वारा {{harvtxt|थॉमसन| 1992}} दिया गया था.


जॉर्डन वक्र प्रमेय का पहला [[ औपचारिक प्रमाण ]] किसके द्वारा बनाया गया था {{harvtxt|Hales|2007a}} जनवरी 2005 में [[ एचओएल लाइट ]] सिस्टम में, और इसमें लगभग 60,000 लाइनें थीं। एक और कठोर 6,500-लाइन औपचारिक प्रमाण 2005 में गणितज्ञों की एक अंतरराष्ट्रीय टीम द्वारा [[ मिज़ार प्रणाली ]] का उपयोग करके तैयार किया गया था। मिज़ार और एचओएल लाइट प्रूफ दोनों पहले से सिद्ध प्रमेयों के पुस्तकालयों पर निर्भर करते हैं, इसलिए ये दोनों आकार तुलनीय नहीं हैं। {{harvs|txt | last1=Sakamoto | first1=Nobuyuki | last2=Yokoyama | first2=Keita | title=The Jordan curve theorem and the Schönflies theorem in weak second-order arithmetic | doi=10.1007/s00153-007-0050-6 | mr=2321588 | year=2007 | journal=Archive for Mathematical Logic | issn=0933-5846 | volume=46 | issue=5 | pages=465–480}} ने दिखाया कि रिवर्स गणित में जॉर्डन वक्र प्रमेय सिस्टम पर कमजोर कोनिग के लेम्मा के बराबर है रिवर्स गणित#आधार प्रणाली RCA0|<math>\mathsf{RCA}_0</math>.
कठिनाई की जड़ में  {{harvtxt|टावरबर्ग|1980}} नियम के अनुसार समझाया गया है I यह प्रमाण करना अपेक्षाकृत सरल है कि जॉर्डन वक्र प्रमेय प्रत्येक जॉर्डन बहुभुज (लेम्मा 1) के लिए है, और प्रत्येक जॉर्डन वक्र को जॉर्डन बहुभुज (लेम्मा 2) द्वारा मनमाने ढंग से अच्छी तरह से अनुमानित किया जा सकता है। एक जॉर्डन बहुभुज एक [[ बहुभुज श्रृंखला ]] है, और इसे एक बंधे हुए खुले सेट की सीमा का खुला बहुभुज कहते हैं,और इसका समापन, बंद बहुभुज है । बंद बहुभुज में निहित सबसे बड़ी डिस्क के व्यास  <math>\delta</math>  पर विचार करें । ज्ञात है, <math>\delta</math> धनात्मक है। जॉर्डन बहुभुज के अनुक्रम का उपयोग करना I हमारे पास एक अनुक्रम है <math>\delta_1, \delta_2, \dots</math> संभावित रूप से एक धनात्मक संख्या में परिवर्तित हो रहा है, सबसे बड़ी डिस्क की  व्यास <math>\delta</math> जॉर्डन वक्र से घिरे [[ बंद क्षेत्र ]] में निहित है । जबकि, हमें यह प्रमाणरित  करना होगा कि अनुक्रम <math>\delta_1, \delta_2, \dots</math> केवल दिए गए जॉर्डन वक्र का उपयोग करते हुए, शून्य में अभिसरण नहीं होता है, न कि संभवतः वक्र से घिरा क्षेत्र। यह टवरबर्ग के लेम्मा 3 का बिंदु है। मोटे तौर पर, बंद बहुभुज हर जगह शून्य से पतले नहीं होने चाहिए। इसके अतिरिक्त, उन्हें कहीं भी शून्य से पतला नहीं होना चाहिए, जो कि टवरबर्ग के लेम्मा 4 का बिंदु है।
 
जॉर्डन वक्र प्रमेय का पहला [[ औपचारिक प्रमाण ]] {{harvtxt|हेल्स|2007a}} द्वारा  बनाया गया था जनवरी 2005 में [[ एचओएल लाइट ]] प्रणाली में, और इसमें लगभग 60,000 लाइनें थीं। एक और कठोर 6,500-लाइन औपचारिक प्रमाण 2005 में गणितज्ञों की एक अंतरराष्ट्रीय टीम द्वारा [[ मिज़ार प्रणाली ]] का उपयोग करके तैयार किया गया था। मिज़ार और एचओएल लाइट प्रूफ दोनों पहले से सिद्ध प्रमेयों के पुस्तकालयों पर निर्भर करते हैं, इसलिए ये दोनों आकार तुलनीय नहीं हैं। {{harvs|txt | last1=सकामोटो | first1=नोबुयुकी | last2=योकोयामा | first2=कीता | title=The Jordan curve theorem and the Schönflies theorem in weak second-order arithmetic | doi=10.1007/s00153-007-0050-6 | mr=2321588 | year=2007 | journal=Archive for Mathematical Logic | issn=0933-5846 | volume=46 | issue=5 | pages=465–480}} ने दिखाया कि उल्टा गणित में जॉर्डन वक्र प्रमेय कमजोर कोनिग के लेम्मा के बराबर है और गणित प्रणाली में आधारित है <math>\mathsf{RCA}_0</math>.


== आवेदन ==
== आवेदन ==
[[File:Jordan Curve Theorem for Polygons - Proof.svg|thumb| यदि प्रारंभिक बिंदु ({{math|{{color|red|''p<sub>a</sub>''}}}}) एक [[ किरण (ज्यामिति) ]] (लाल रंग में) एक साधारण बहुभुज (क्षेत्र .) के बाहर स्थित है {{math|{{color|red|A}}}}), किरण और बहुभुज के प्रतिच्छेदन की संख्या [[ सम संख्या ]] है।<br /> यदि प्रारंभिक बिंदु ({{math|{{color|green|''p<sub>b</sub>''}}}}) एक किरण बहुभुज (क्षेत्र .) के अंदर स्थित होती है {{math|{{color|blue|B}}}}), चौराहों की संख्या विषम संख्या है|विषम।]]
[[File:Jordan Curve Theorem for Polygons - Proof.svg|thumb| यदि प्रारंभिक बिंदु ({{math|{{color|red|''p<sub>a</sub>''}}}}) एक [[ किरण (ज्यामिति) ]] (लाल रंग में) एक साधारण बहुभुज (क्षेत्र .) के बाहर स्थित है {{math|{{color|red|A}}}}), किरण और बहुभुज के प्रतिच्छेदन की संख्या [[ सम संख्या ]] है।<br /> यदि प्रारंभिक बिंदु ({{math|{{color|green|''p<sub>b</sub>''}}}}) एक किरण बहुभुज (क्षेत्र .) के अंदर स्थित होती है {{math|{{color|blue|B}}}}), चौराहों की संख्या विषम संख्या है|विषम।]]
{{main|Point in polygon#Ray casting algorithm}}
{{main|बहुभुज में बिंदु #रे कास्टिंग एल्गोरिथ्म}}
[[ कम्प्यूटेशनल ज्यामिति ]] में, जॉर्डन वक्र प्रमेय का उपयोग परीक्षण के लिए किया जा सकता है कि कोई बिंदु एक [[ साधारण बहुभुज ]] के अंदर या बाहर है या नहीं।<ref>{{harvs|txt|last=Courant|first=Richard|year=1978}}</ref><ref>{{Cite book|url=https://www.maths.ed.ac.uk/~v1ranick/jordan/cr.pdf|title=1. जॉर्डन वक्र प्रमेय|date=1978|publisher=University of Edinburgh|location=Edinburg|page=267|chapter=V. Topology}}</ref><ref>{{Cite web|title=PNPOLY - बहुभुज परीक्षण में बिंदु समावेशन - WR फ्रैंकलिन (WRF)|url=https://wrf.ecse.rpi.edu//Research/Short_Notes/pnpoly.html|access-date=2021-07-18|website=wrf.ecse.rpi.edu}}</ref>
[[ कम्प्यूटेशनल ज्यामिति ]] में, जॉर्डन वक्र प्रमेय का उपयोग परीक्षण के लिए किया जा सकता है कि बिंदु एक [[ साधारण बहुभुज ]] के अंदर या बाहर है या नहीं।<ref>{{harvs|txt|last=Courant|first=Richard|year=1978}}</ref><ref>{{Cite book|url=https://www.maths.ed.ac.uk/~v1ranick/jordan/cr.pdf|title=1. जॉर्डन वक्र प्रमेय|date=1978|publisher=University of Edinburgh|location=Edinburg|page=267|chapter=V. Topology}}</ref><ref>{{Cite web|title=PNPOLY - बहुभुज परीक्षण में बिंदु समावेशन - WR फ्रैंकलिन (WRF)|url=https://wrf.ecse.rpi.edu//Research/Short_Notes/pnpoly.html|access-date=2021-07-18|website=wrf.ecse.rpi.edu}}</ref>
दिए गए बिंदु से, एक किरण (ज्यामिति) का पता लगाएं जो बहुभुज के किसी भी शीर्ष से नहीं गुजरती है (सभी किरणें लेकिन एक सीमित संख्या सुविधाजनक होती है)। फिर, संख्या की गणना करें {{mvar|n}} बहुभुज के किनारे के साथ किरण के चौराहे की। जॉर्डन वक्र प्रमेय प्रमाण का तात्पर्य है कि बिंदु बहुभुज के अंदर है यदि और केवल यदि {{mvar|n}} [[ समता (गणित) ]] है।
किसी दिए गए बिंदु से, एक किरण का पता लगाएं जो बहुभुज के किसी शीर्ष से नहीं गुजरती है I फिर, बहुभुज के किनारे के साथ किरणों  की संख्या n की गिनती करें। जॉर्डन वक्र प्रमेय प्रमाण का अर्थ है कि बिंदु यदि बहुभुज के अंदर है तब {{mvar|n}} [[ समता (गणित) | विषम]] है।


== यह भी देखें ==
== यह भी देखें ==
* Denjoy-Riesz प्रमेय, विमान में बिंदुओं के कुछ सेटों का विवरण जो जॉर्डन वक्रों के उपसमुच्चय हो सकते हैं
* डेन्जोय-रिज़्ज़  प्रमेय, समतल में बिंदुओं के कुछ समुच्चयों का विवरण जो जॉर्डन वक्रों के उपसमुच्चय हो सकते हैंI
* वाड़ा की झीलें
* वाड़ा की झीलें
* अर्ध-फुचियन समूह, एक गणितीय समूह जो जॉर्डन वक्र को संरक्षित करता है
* अर्ध-फुचियन समूह, एक गणितीय समूह जो जॉर्डन वक्र को संरक्षित करता हैI


== टिप्पणियाँ ==
== टिप्पणियाँ ==
Line 126: Line 128:
* [http://www.math.auckland.ac.nz/class750/section5.pdf A simple proof of Jordan curve theorem] (PDF) by David B. Gauld
* [http://www.math.auckland.ac.nz/class750/section5.pdf A simple proof of Jordan curve theorem] (PDF) by David B. Gauld
* {{cite arXiv |eprint=1404.0556 |last1=Brown |first1=R. |last2=Antolino-Camarena |first2=O. |title=Corrigendum to "Groupoids, the Phragmen-Brouwer Property, and the Jordan Curve Theorem", J. Homotopy and Related Structures 1 (2006) 175-183 |year=2014|class=math.AT }}
* {{cite arXiv |eprint=1404.0556 |last1=Brown |first1=R. |last2=Antolino-Camarena |first2=O. |title=Corrigendum to "Groupoids, the Phragmen-Brouwer Property, and the Jordan Curve Theorem", J. Homotopy and Related Structures 1 (2006) 175-183 |year=2014|class=math.AT }}
[[Category: टोपोलॉजी में प्रमेय]]
[[Category: वक्र के बारे में प्रमेय]]


[[Category: Machine Translated Page]]
[[Category:All articles with unsourced statements]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with short description]]
[[Category:Articles with unsourced statements from March 2019]]
[[Category:CS1 English-language sources (en)]]
[[Category:CS1 errors]]
[[Category:CS1 français-language sources (fr)]]
[[Category:CS1 location test]]
[[Category:CS1 maint]]
[[Category:CS1 Ελληνικά-language sources (el)]]
[[Category:CS1 русский-language sources (ru)]]
[[Category:Citation Style 1 templates|W]]
[[Category:Collapse templates]]
[[Category:Created On 10/11/2022]]
[[Category:Created On 10/11/2022]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates based on the Citation/CS1 Lua module]]
[[Category:Templates generating COinS|Cite web]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia fully protected templates|Cite web]]
[[Category:Wikipedia metatemplates]]
[[Category:टोपोलॉजी में प्रमेय]]
[[Category:वक्र के बारे में प्रमेय]]

Latest revision as of 12:24, 12 October 2023

जॉर्डन वक्र प्रमेय का चित्रण। एक जॉर्डन वक्र समतल क्षेत्र को "अंदर" और "बाहरी" क्षेत्र में विभाजित करता हैI

टोपोलॉजी में, जॉर्डन वक्र प्रमेयका अर्थ है कि सभी जॉर्डन वक्र समतल के आंतरिक क्षेत्र और बाहरी सीमा को विभाजित करता है जिसमें उपस्थित पास और दूर के बाहरी बिंदु होते हैं। एक क्षेत्र का बिंदु और दूसरे क्षेत्र के बिंदु से जोड़ने वाले पथ के वक्र को खंडित करता है। जबकि प्रमेय के कथन से स्पष्ट दिख रहा है कि प्राथमिक माध्यमों के द्वारा सिद्ध करने के लिए सरलता की आवश्यकता होती है। जबकि जेसीटी लोकप्रिय टोपोलॉजिकल प्रमेयों में से एक है,लेकिन गणितज्ञों में कई ऐसे है जिन्होंने कभी इसका प्रमाण नहीं पढ़ा है I टवरबर्ग का कहना है कि बीजगणितीय टोपोलॉजी का पारदर्शी प्रमाण गणितीय मशीनरी पर निर्भर करता हैं, और उच्च-आयामी खाली स्थान को सामान्यीकृत करते हैI

इसका पहला प्रमाण गणितज्ञ केमिली जॉर्डन ने पाया था, इसलिए जॉर्डन वक्र प्रमेय को गणितज्ञ केमिली जॉर्डन के नाम से भी जाना जाता है। गणितज्ञों द्वारा सोचा गया था कि इस प्रमाण में बहुत सी कमियां होगी और पहला कठोर प्रमाण ओसवाल्ड वेब्लेन ने किया गया था। लेकिन, इस धारणा को थॉमस कॉलिस्टर हेल्स और अन्य लोगो ने बदल दिया है।

परिभाषाएं और जॉर्डन प्रमेय का अर्थ

एक जॉर्डन वक्र 'R2 ' में साधारण बंद वक्र के एक वृत्त के समतल में एक निरंतर एकैकी फलन है,φ: S1R2 .

समतल [a, b] में जॉर्डन चाप एक बंद और बंधे हुए अंतराल के इंजेक्शन निरंतर मानचित्र की छवि है।

यह एक समतल वक्र है जो आवश्यक रूप से ना विभेदक वक्र है और ना ही बीजीय वक्र है। जॉर्डन वक्र मानचित्र की छवि है φ: [0,1] →'R'2 जैसे कि φ(0) = φ(1) और φ से [0,1) का रुकावट इंजेक्शन है। दो स्थितियां हैं पहली स्थिति में सी एक लूप है, दूसरी स्थिति में सी आत्म-रुकावट बिंदु नहीं है।

इन परिभाषाओं के अनुसार, जॉर्डन वक्र प्रमेय को कहा जा सकता है:-

प्रमेय - मान लीजिए C विमान R2 में एक जॉर्डन वक्र है। फिर इसके पूरक, R2 \ C, में ठीक दो जुड़े हुए घटक होते हैं। इनमें से एक घटक परिबद्ध (आंतरिक) है और दूसरा असंबद्ध (बाहरी) है, और वक्र C प्रत्येक घटक की सीमा है।

इसके विपरीत, जॉर्डन चाप समतल क्षेत्र से जुड़ा हुआ है I

प्रमाण और सामान्यीकरण

जॉर्डन वक्र प्रमेय को एच. लेबेस्ग्यू और एल.ई.जे. ने उच्च आयामों के लिए सामान्यीकृत किया था। जिसके परिणामस्वरूप 1911 में ब्रौवर के द्वारा जॉर्डन-ब्राउवर प्रमेय को अलग किया गया।

प्रमेय - मान लीजिए कि X (n+1)-आयामी यूक्लिडियन अंतरिक्ष Rn+1 (n > 0) में एक n-विमीय स्थलाकृतिक क्षेत्र है, यानी n-गोले Sn की Rn+1 में प्रतिच्छेदी निरंतर मानचित्रण की छवि। फिर Rn+1 में X के पूरक Y में वास्तव में दो जुड़े घटक हैं। इन घटकों में से एक बाउंड (आंतरिक) है और दूसरा अनबाउंड (बाहरी) है। समुच्चय X उनकी सामान्य सीमा है।

प्रमाण होमोलॉजी सिद्धांत का उपयोग करता है। यह पहली बार स्थापित किया गया है कि, X, k-क्षेत्र के लिए होमोमोर्फिक है, तो Y = Rn+1 \ X के घटे हुए अभिन्न होमोलॉजी समूह इस प्रकार हैं:

यह मेयर-विएटोरिस अनुक्रम का उपयोग करके के(k) में प्रेरण द्वारा सिद्ध होता है। जब n = k, Y के उपरांत ज़ीरोथ होमोलॉजी का रैंक 1 होता है, जिसका अर्थ है कि Y में 2 घटक जुड़े हैं और थोड़े काम के साथ यह दिखता है कि उनकी सामान्य सीमा एक्स(X) है। सामान्यीकरण जेम्स वाडेल अलेक्जेंडर II जे द्वारा पाया गया। डब्ल्यू एलेक्जेंडर, जिन्होंने 'RN + 1' कॉम्पैक्ट स्पेस सबसेट एक्स के कम होमोलोजी और इसके पूरक के कम कोहोलॉजी के बीच सिकंदर द्वैत की स्थापना की। यदि एक्स(X) बिना सीमा के 'R n+1' (या 'S'n+1) का n-आयामी सघन जोड़ सबमैनफोल्ड है तो इसके पूरक में 2 घटक जुड़े हैं।

जॉर्डन वक्र प्रमेय एक सशक्ती है, जिसे जॉर्डन-शॉनफ्लाइज प्रमेय कहा जाता है, जॉर्डन वक्र प्रमेय के लेबेस्ग्यू और ब्रोवर के सामान्यीकरण के विपरीत, यह कथन उच्च आयामों में गलत हो जाता है जबकि R3 यूनिट में बॉल का बाहरी हिस्सा जुड़ा हुआ है, क्योंकि यूनिट वृत्त पर वापस जाता है, अलेक्जेंडर हॉर्न्ड वृत्त R3 गोले के लिए होमियोमॉर्फिक का सबसेट है,अंतरिक्ष में इतना मुड़ा हुआ है कि R3 का अबाधित घटक जुड़ा नहीं है, और इसलिए बॉल के बाहरी भाग के लिए होमियोमॉर्फिक नहीं है।

असतत संस्करण

जॉर्डन वक्र प्रमेय को ब्रौवर नियत-बिंदु प्रमेय द्वारा और ब्रौवर निश्चित बिंदु प्रमेय को हेक्स प्रमेय द्वारा सिद्ध किया जा सकता हैI तार्किक निहितार्थ प्राप्त करने के लिए हेक्स गेम में एक विजेता का होना आवश्यक है, हेक्स प्रमेय का अर्थ ब्रौवर निश्चित बिंदु प्रमेय से है, जिसका अर्थ जॉर्डन वक्र प्रमेय है।[1] यह स्पष्ट है कि जॉर्डन वक्र प्रमेय से सशक्त हेक्स प्रमेय का तात्पर्य है, कि हेक्स खेल एक विजेता के साथ समाप्त होता है, दोनों पक्षों के हारने या जीतने की कोई संभावना नहीं होती है, इस प्रकार जॉर्डन वक्र प्रमेय सशक्त हेक्स प्रमेय के बराबर है, और विशुद्ध रूप से गणित प्रमेय है।

बाउवर निश्चित बिंदु प्रमेयों के बीच दो टुकड़े होने के कारण समतुल्य है I[2]और गणित को उल्टा, कंप्यूटर-औपचारिक गणित में, जॉर्डन वक्र प्रमेय को सशक्त हेक्स प्रमेय के समान परिवर्तित करके सिद्ध किया जाता है, फिर असतत संस्करण को सिद्ध किया जाता हैI [3]

छवि प्रसंस्करण के लिए आवेदन

छवि प्रसंस्करण में, चित्र के अनुसार वर्ग क्षेत्र में बाइनरी नंबर जीरो(0) और एक(1) है, एक सघन का उपसमुच्चय बराबर होता है . टोपोलॉजिकल इनवेरिएंट ऑन , जैसे कि घटकों की संख्या को अच्छी तरह से परिभाषित करने में असफलता हो सकती है I यदि उचित रूप से परिभाषित ग्राफ़ संरचना नहीं हैI

पर दो स्पष्ट ग्राफ संरचनाएं हैं-

8-पड़ोसी और 4-पड़ोसी वर्ग ग्रिड।
  • चार-पड़ोसी वर्ग, जिसके सभी शीर्ष के साथ जुड़े है .
  • आठ -पड़ोसी वर्ग, जिसके सभी शीर्ष के साथ जुड़े है आईएफएफ , तथा .

दोनों ग्राफ संरचनाएं सशक्त हेक्स प्रमेय को संतुष्ट करने में असफल रहती हैं। चार-पड़ोसी वर्ग में एक विजेता स्थिति को अनुमति देता है, और 8-पड़ोसी वर्ग में दो-विजेता स्थिति को अनुमति देता है। जिसके फलस्वरूप किसी भी ग्राफ़ संरचना के अंतर्गत जॉर्डन वक्र प्रमेय सामान्यीकृत नहीं होते हैंI

यदि छ:-पड़ोसी वर्ग संरचना पर लगाया जाता है, तो यह हेक्सागोनल जाल बन जाएगा I और इसी प्रकार यह सशक्त हेक्स प्रमेय को संतुष्ट करता है, और फिर जॉर्डन वक्र प्रमेय सामान्य हो जाता है। बाइनरी छवि में जुड़े घटकों की गिनती करते समय, साधारणतया छ:- पड़ोसी वर्ग जाल का उपयोग किया जाता है।[4]

स्टीनहॉस शतरंज की बिसात प्रमेय

स्टाइनहॉस शतरंजबोर्ड प्रमेय से पता चलता है कि चार-पड़ोसी वर्ग और आठ-पड़ोसी वर्ग जॉर्डन वक्र प्रमेय का अर्थ है, और छ:-पड़ोसी वर्ग उनके बीच एक सटीक प्रक्षेप करता है।[5][6] मान लीजिए कि a शतरंज की बिसात पर कुछ चौकों पर चाल चलते हैं,जिससे एक राजा अपनी चाल चलने पर पैर रखे बिना नीचे की तरफ से ऊपर ना जा सके, तो एक बदमाश अपनी चाल चलने पर बाईं ओर से दाईं ओर जा सकेI  

इतिहास और आगे के प्रमाण

जॉर्डन वक्र प्रमेय में स्पष्ट प्रतीत होता है, इस प्रमेय को सिद्ध करना कठिन है। बर्नार्ड बोलजानो ऐसे व्यक्ति थे जिनके अनुमान लगाने से ज्ञात होता था कि यह एक स्व-स्पष्ट कथन नहीं था, इसलिए प्रमाण की आवश्यकता थी।[citation needed]

बहुभुज के लिए इस परिणाम को स्थापित करना आसान है, लेकिन सभी प्रकार के बुरे व्यवहार वाले वक्रों के लिए इसे सामान्य बनाने में समस्या आई, जिसमें कहीं भी अलग-अलग वक्र सम्मिलित नहीं हैं, जैसे कोच हिमपात और अन्य भग्न वक्र, या यहां तक ​​​​कि ऑसगूड वक्र द्वारा निर्मित ओस्गुड (1903).

इस प्रमेय का पहला प्रमाण केमिली जॉर्डन ने वास्तविक विश्लेषण पर अपने व्याख्यान में दिया था, और उनकी पुस्तक कोर्स डी'एनालिसिस डे ल'इकोले पॉलिटेक्निक में प्रकाशित हुआ था।[7] इस बारे में कुछ विवाद है कि क्या जॉर्डन का प्रमाण पूर्ण था I इस पर अधिकांश टिप्पणीकारों का अर्थ है कि पहला पूर्ण प्रमाण बाद में ओसवाल्ड वेब्लेन द्वारा दिया गया था, जिन्होंने जॉर्डन के प्रमाण के बारे में निम्नलिखित कहा था:

उनका प्रमाण, जबकि, कई गणितज्ञों के लिए असंतोषजनक है। यह एक साधारण बहुभुज की विशेष घटना के बिना प्रमाण के प्रमेय को मानता है, और उस बिंदु के कारण, कम से कम यह स्वीकार करना चाहिए कि सभी विवरण नहीं दिए गए हैं।[8]

थॉमस सी. हेल्स ने लिखा:

लगभग हर आधुनिक उद्धरण जो मुझे मिला है, इस बात को मानते है कि पहला सही प्रमाण वेब्लेन के कारण हैI जॉर्डन के प्रमाण की भारी आलोचना को देखते हुए, जब मैं उसके प्रमाण को पढ़ने के लिए बैठा तो मुझे आश्चर्य हुआ कि उसके बारे में कुछ भी आपत्तिजनक नहीं है। तब से, मैंने कई लेखकों से संपर्क किया है जिन्होंने जॉर्डन की आलोचना की है, और सभी घटना को लेखक ने स्वीकार किया है कि उसे जॉर्डन के प्रमाण में किसी त्रुटि का प्रत्यक्ष ज्ञान नहीं है।[9]

हेल्स ने यह भी बताया कि साधारण बहुभुजों की विशेष घटना न केवल एक आसान अभ्यास है, बल्कि माइकल रीकेन को यह कहते हुए उद्धृत किया है वास्तव में जॉर्डन द्वारा वैसे भी उपयोग नहीं किया गया था,

जॉर्डन का प्रमाण अनिवार्य रूप से सही हैI जॉर्डन का प्रमाण संतोषजनक उपाय से विवरण प्रस्तुत नहीं करता है। लेकिन विचार सही है, और कुछ घर्षण के साथ प्रमाण त्रुटिहीन होगा।[10]

इससे पहले, जॉर्डन का प्रमाण और चार्ल्स जीन डे ला वेली पॉसिन द्वारा एक और प्रारंभिक प्रमाण का पहले ही गंभीर रूप से विश्लेषण किया गया था और स्कोनफ्लाइज (1924) द्वारा पूरा किया गया था।[11] निम्न-आयामी टोपोलॉजी और सम्मिश्र विश्लेषण में जॉर्डन वक्र प्रमेय के महत्व के कारण, इसे 20 वीं शताब्दी के पहले छमाही के प्रमुख गणितज्ञों बहुत ध्यान दिया। प्रमेय और इसके सामान्यीकरण के विभिन्न प्रमाणों का निर्माण जे. डब्ल्यू. अलेक्जेंडर, लुई एंटोनी, लुडविग बीबरबाक, लुइट्ज़न ब्रौवर, अरनौद डेनजॉय, फ्रेडरिक हार्टोग्स, बेला केरेकजार्टो, अल्फ्रेड प्रिंग्सहेम, और आर्थर मोरित्ज़ शोएनफ्लाइज़ द्वारा किया गया था।

जॉर्डन वक्र प्रमेय के नए प्राथमिक प्रमाण, के साथ ही पहले के प्रमाणों के सरलीकरण को जारी रखा गया है।

  • प्राथमिक प्रमाण फिलिप्पोव (1950) तथा टावरबर्ग (1980) प्रस्तुत किए गए.
  • गैर-मानक विश्लेषण का उपयोग करके नारेंस (1971) एक प्रमाण दिया गया.
  • रचनात्मक गणित का उपयोग करके एक प्रमाण गॉर्डन ओ. बर्ग, डब्ल्यू. जूलियन, और आर. माइन्स एट अल (1975).
  • ब्रौवर नियत बिंदु प्रमेय का उपयोग करके एक प्रमाण मेहरा (1984).
  • समतलीय ग्राफ का उपयोग करते हुए एक प्रमाण K3,3 द्वारा थॉमसन (1992) दिया गया था.

कठिनाई की जड़ में टावरबर्ग (1980) नियम के अनुसार समझाया गया है I यह प्रमाण करना अपेक्षाकृत सरल है कि जॉर्डन वक्र प्रमेय प्रत्येक जॉर्डन बहुभुज (लेम्मा 1) के लिए है, और प्रत्येक जॉर्डन वक्र को जॉर्डन बहुभुज (लेम्मा 2) द्वारा मनमाने ढंग से अच्छी तरह से अनुमानित किया जा सकता है। एक जॉर्डन बहुभुज एक बहुभुज श्रृंखला है, और इसे एक बंधे हुए खुले सेट की सीमा का खुला बहुभुज कहते हैं,और इसका समापन, बंद बहुभुज है । बंद बहुभुज में निहित सबसे बड़ी डिस्क के व्यास पर विचार करें । ज्ञात है, धनात्मक है। जॉर्डन बहुभुज के अनुक्रम का उपयोग करना I हमारे पास एक अनुक्रम है संभावित रूप से एक धनात्मक संख्या में परिवर्तित हो रहा है, सबसे बड़ी डिस्क की व्यास जॉर्डन वक्र से घिरे बंद क्षेत्र में निहित है । जबकि, हमें यह प्रमाणरित करना होगा कि अनुक्रम केवल दिए गए जॉर्डन वक्र का उपयोग करते हुए, शून्य में अभिसरण नहीं होता है, न कि संभवतः वक्र से घिरा क्षेत्र। यह टवरबर्ग के लेम्मा 3 का बिंदु है। मोटे तौर पर, बंद बहुभुज हर जगह शून्य से पतले नहीं होने चाहिए। इसके अतिरिक्त, उन्हें कहीं भी शून्य से पतला नहीं होना चाहिए, जो कि टवरबर्ग के लेम्मा 4 का बिंदु है।

जॉर्डन वक्र प्रमेय का पहला औपचारिक प्रमाण हेल्स (2007a) द्वारा बनाया गया था जनवरी 2005 में एचओएल लाइट प्रणाली में, और इसमें लगभग 60,000 लाइनें थीं। एक और कठोर 6,500-लाइन औपचारिक प्रमाण 2005 में गणितज्ञों की एक अंतरराष्ट्रीय टीम द्वारा मिज़ार प्रणाली का उपयोग करके तैयार किया गया था। मिज़ार और एचओएल लाइट प्रूफ दोनों पहले से सिद्ध प्रमेयों के पुस्तकालयों पर निर्भर करते हैं, इसलिए ये दोनों आकार तुलनीय नहीं हैं। नोबुयुकी सकामोटो and कीता योकोयामा (2007) ने दिखाया कि उल्टा गणित में जॉर्डन वक्र प्रमेय कमजोर कोनिग के लेम्मा के बराबर है और गणित प्रणाली में आधारित है .

आवेदन

विषम।

कम्प्यूटेशनल ज्यामिति में, जॉर्डन वक्र प्रमेय का उपयोग परीक्षण के लिए किया जा सकता है कि बिंदु एक साधारण बहुभुज के अंदर या बाहर है या नहीं।[12][13][14] किसी दिए गए बिंदु से, एक किरण का पता लगाएं जो बहुभुज के किसी शीर्ष से नहीं गुजरती है I फिर, बहुभुज के किनारे के साथ किरणों की संख्या n की गिनती करें। जॉर्डन वक्र प्रमेय प्रमाण का अर्थ है कि बिंदु यदि बहुभुज के अंदर है तब n विषम है।

यह भी देखें

  • डेन्जोय-रिज़्ज़ प्रमेय, समतल में बिंदुओं के कुछ समुच्चयों का विवरण जो जॉर्डन वक्रों के उपसमुच्चय हो सकते हैंI
  • वाड़ा की झीलें
  • अर्ध-फुचियन समूह, एक गणितीय समूह जो जॉर्डन वक्र को संरक्षित करता हैI

टिप्पणियाँ

  1. Gale, David (December 1979). "हेक्स का खेल और ब्रौवर फिक्स्ड-पॉइंट प्रमेय". The American Mathematical Monthly. 86 (10): 818. doi:10.2307/2320146. ISSN 0002-9890.
  2. Nguyen, Phuong; Cook, Stephen A. (2007). "असतत जॉर्डन वक्र प्रमेय साबित करने की जटिलता". 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007). IEEE. doi:10.1109/lics.2007.48.
  3. Hales, Thomas C. (December 2007). "जॉर्डन वक्र प्रमेय, औपचारिक और अनौपचारिक रूप से". The American Mathematical Monthly. 114 (10): 882–894. doi:10.1080/00029890.2007.11920481. ISSN 0002-9890.
  4. Nayar, Shree (Mar 1, 2021). "कंप्यूटर विजन के पहले सिद्धांत: सेगमेंटेशन बाइनरी इमेज | बाइनरी इमेज".
  5. Šlapal, J (April 2004). "जॉर्डन वक्र प्रमेय का एक डिजिटल एनालॉग". Discrete Applied Mathematics. 139 (1–3): 231–251. doi:10.1016/j.dam.2002.11.003. ISSN 0166-218X.
  6. Surówka, Wojciech (1993). "जॉर्डन वक्र प्रमेय का एक असतत रूप" (in English). ISSN 0860-2107. {{cite journal}}: Cite journal requires |journal= (help)
  7. Camille Jordan (1887)
  8. Oswald Veblen (1905)
  9. Hales (2007b)
  10. Hales (2007b)
  11. A. Schoenflies (1924). "सी. जॉर्डन और चै. जे. डे ला वल्ली पुसीना के प्रमाणों पर टिप्पणी". Jahresber. Deutsch. Math.-Verein. 33: 157–160.
  12. Richard Courant (1978)
  13. "V. Topology". 1. जॉर्डन वक्र प्रमेय (PDF). Edinburg: University of Edinburgh. 1978. p. 267.
  14. "PNPOLY - बहुभुज परीक्षण में बिंदु समावेशन - WR फ्रैंकलिन (WRF)". wrf.ecse.rpi.edu. Retrieved 2021-07-18.


संदर्भ


बाहरी संबंध