रीमैन पृष्ठीय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(7 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|One-dimensional complex manifold}}
{{Short description|One-dimensional complex manifold}}
{{for|the Riemann surface of a subring of a field|Zariski–Riemann space}}
{{for|एक क्षेत्र के एक सबरिंग की रीमैन सतह
[[File:Riemann sqrt.svg|thumb|right|upright=1.4|फ़ंक्शन f(z) = √z के लिए रीमैन सतह। दो क्षैतिज अक्ष z के वास्तविक और काल्पनिक भागों का प्रतिनिधित्व करते हैं, जबकि ऊर्ध्वाधर अक्ष √z के वास्तविक भाग का प्रतिनिधित्व करता है। √z का काल्पनिक भाग बिंदुओं के रंग द्वारा दर्शाया गया है। इस फ़ंक्शन के लिए, यह ऊर्ध्वाधर अक्ष के चारों ओर प्लॉट को 180° घुमाने के बाद की ऊंचाई भी है।]]गणित में, विशेष रूप से [[ जटिल विश्लेषण ]] में, एक रीमैन सतह एक जुड़े हुए एक-आयामी जटिल का [[ विविध |विविध]] (कई गुना)  है I इन सतहों का अध्ययन सबसे पहले किया गया था और इनका नाम [[ बर्नहार्ड रिमेंन ]] के नाम पर रखा गया है। रीमैन सतहों को [[ जटिल विमान ]] के अनुचित रूप से प्रस्तुत  संस्करणों के रूप में माना जा सकता है: स्थानीय रूप से हर बिंदु के पास वे जटिल विमान के पैच की तरह दिखते हैं, लेकिन वैश्विक [[ टोपोलॉजी ]] काफी भिन्न हो सकती है। उदाहरण के लिए, वे एक गोले या [[ टोरस्र्स |टॉर्सर्स]] या एक साथ चिपकी हुई कई चादरों की तरह दिख सकते हैं।
|ज़ारिस्की-रीमैन अंतरिक्ष
}}
[[File:Riemann sqrt.svg|thumb|right|upright=1.4|फ़ंक्शन f(z) = √z के लिए रीमैन पृष्ठीय। दो क्षैतिज अक्ष z के वास्तविक और काल्पनिक भागों का प्रतिनिधित्व करते हैं, जबकि ऊर्ध्वाधर अक्ष √z के वास्तविक भाग का प्रतिनिधित्व करता है। √z का काल्पनिक भाग बिंदुओं के रंग द्वारा दर्शाया गया है। इस फ़ंक्शन के लिए, यह ऊर्ध्वाधर अक्ष के चारों ओर प्लॉट को 180° घुमाने के बाद की ऊंचाई भी है।]]गणित में, विशेष रूप से सम्मिश्र विश्लेषण में, एक '''रीमैन पृष्ठीय''' एक जुड़े हुए एक-आयामी सम्मिश्र का [[ विविध |विविध]] (कई गुना)  है I इन पृष्ठीयों का अध्ययन सबसे पहले किया गया था और इनका नाम बर्नहार्ड रिमेंन के नाम पर रखा गया है। रीमैन पृष्ठीयों को सम्मिश्र समष्टि  के अनुचित रूप से प्रस्तुत  संस्करणों के रूप में माना जा सकता है: समष्टिीय रूप से हर बिंदु के पास वे सम्मिश्र समष्टि के पैच की तरह दिखते हैं, लेकिन वैश्विक [[ टोपोलॉजी ]] काफी भिन्न हो सकती है। उदाहरण के लिए, वे एक गोले या [[ टोरस्र्स |टॉर्सर्स]] या एक साथ चिपकी हुई कई चादरों की तरह दिख सकते हैं।


रीमैन सतहों में मुख्य रुचि यह है कि उनके बीच [[ होलोमोर्फिक फ़ंक्शन | होलोमोर्फिक कार्यों]] को परिभाषित किया जा सकता है। रीमैन सतहों को आजकल इन कार्यों के वैश्विक व्यवहार का अध्ययन करने के लिए [[ प्राकृतिक ]]स्थापना माना जाता है, विशेष रूप से बहु-मूल्यवान कार्य जैसे [[ वर्गमूल ]] और अन्य बीजगणितीय कार्य, या प्राकृतिक लघुगणक।
रीमैन पृष्ठीयों में मुख्य रुचि यह है कि उनके बीच होलोमोर्फिक फलन  को परिभाषित किया जा सकता है। रीमैन पृष्ठीयों को आजकल इन फलन  के वैश्विक व्यवहार का अध्ययन करने के लिए [[ प्राकृतिक ]]स्थापना माना जाता है, विशेष रूप से बहु-मूल्यवान फलन  जैसे [[ वर्गमूल ]] और अन्य बीजगणितीय फलन , या प्राकृतिक लघुगणक।


प्रत्येक रीमैन सतह एक द्वि-आयामी वास्तविक विश्लेषणात्मक का कई गुना (यानी, एक [[ सतह (टोपोलॉजी) ]]) है, लेकिन इसमें अधिक संरचना (विशेष रूप से एक जटिल मैनिफोल्ड) शामिल है जो होलोमोर्फिक कार्यों की स्पष्ट परिभाषा के लिए आवश्यक है। एक द्वि-आयामी को वास्तविक रूप से अनेक  रीमैन सतह (आमतौर पर कई असमान तरीकों से) में बदला जा सकता है यदि यह उन्मुख और मेट्रिज़ेबल स्थान है , तो गोले और टोरस जटिल संरचनाओं को स्वीकार करते हैं, लेकिन मोबियस पट्टी, [[ क्लेन बोतल ]] और [[ वास्तविक प्रक्षेप्य विमान ]] नहीं करते हैं।
प्रत्येक रीमैन पृष्ठीय एक द्वि-आयामी वास्तविक विश्लेषणात्मक का कई गुना (यानी, एक [[ सतह (टोपोलॉजी) | पृष्ठीय (टोपोलॉजी)]] ) है, लेकिन इसमें अधिक संरचना (विशेष रूप से एक सम्मिश्र मैनिफोल्ड) शामिल है जो होलोमोर्फिक फलन  की स्पष्ट परिभाषा के लिए आवश्यक है। एक द्वि-आयामी को वास्तविक रूप से अनेक  रीमैन पृष्ठीय (आमतौर पर कई असमान तरीकों से) में बदला जा सकता है यदि यह उन्मुख और मेट्रिज़ेबल समष्टि है , तो गोले और टोरस सम्मिश्र संरचनाओं को स्वीकार करते हैं, लेकिन मोबियस पट्टी, [[क्लेन बोतल]] और [[ वास्तविक प्रक्षेप्य विमान | वास्तविक प्रक्षेप्य समष्टि]] नहीं करते हैं।


रीमैन सतहों के बारे में ज्यामितीय तथ्य यथासंभव अच्छे हैं, और वे अक्सर अन्य किस्मों के सामान्यीकरण के लिए अंतर्ज्ञान और प्रेरणा प्रदान करते हैं। रीमैन-रोच प्रमेय इस प्रभाव का एक प्रमुख उदाहरण है।
रीमैन पृष्ठीयों के बारे में ज्यामितीय तथ्य यथासंभव अच्छे हैं, और वे अक्सर अन्य किस्मों के सामान्यीकरण के लिए अंतर्ज्ञान और प्रेरणा प्रदान करते हैं। रीमैन-रोच प्रमेय इस प्रभाव का एक प्रमुख उदाहरण है।


== परिभाषाएं ==
== परिभाषाएं ==
{{further|Complex manifold|Conformal geometry}}
{{further|सम्मिश्र कई गुना
रीमैन सतह की कई परिभाषाएँ समान  हैं।
|अनुरूप ज्यामिति
}}


# एक रीमैन सतह X एक [[ जटिल आयाम |जटिल आयाम]] का एक [[ कनेक्टेड स्पेस |कनेक्टेड स्पेस]] (जुड़ा हुआ) का कई गुना है। इसका मतलब है कि X एक जुड़ा हुआ [[ हॉसडॉर्फ स्पेस ]] है जो कि [[ चार्ट (टोपोलॉजी) |चार्ट (टोपोलॉजी)]]  के [[ एटलस (टोपोलॉजी) ]] के उलझे हुए ढेरो की खुली इकाई डिस्क के साथ प्रमाणित है: प्रत्येक बिंदु X के लिए X का [[ पड़ोस (टोपोलॉजी) ]] है उलझे हुए ढेरो की खुली इकाई डिस्क के लिए [[ होमोमोर्फिक ]](समरूप) है I समतल और दो अतिव्यापी चार्टों के बीच संक्रमण मानचित्रों को होलोमोर्फिक होना आवश्यक है।
रीमैन पृष्ठीय की कई परिभाषाएँ समान  हैं।
# एक रीमैन सतह आयाम दो का एक [[ उन्मुख कई गुना | उन्मुख कई गुना]] है-एक दो-तरफा सतह (टोपोलॉजी) [[ अनुरूप संरचना ]] के साथ (वास्तविक) है। फिर से, मैनिफोल्ड का अर्थ है कि स्थानीय रूप से X के किसी भी बिंदु x पर, स्थान वास्तविक तल के उपसमुच्चय के समरूप है। पूरक रीमैन दर्शाता है कि X एक अतिरिक्त संरचना के साथ संपन्न है जो कई गुना पर [[ कोण |कोण]]  माप की अनुमति देता है, अर्थात् प्रत्यक्ष रूप से [[ रीमैनियन मीट्रिक ]] का एक समकक्ष वर्ग है। ऐसे दो मेट्रिक्स को [[ अनुरूप रूप से समकक्ष ]] माना जाता है यदि वे जिस कोण को मापते हैं वह समान होता है। X पर मेट्रिक्स का एक [[ तुल्यता वर्ग ]] चुनना, अनुरूप संरचना का अतिरिक्त आधार है।
 
# एक रीमैन पृष्ठीय X एक [[ जटिल आयाम |सम्मिश्र आयाम]] का एक [[कनेक्टेड स्पेस]] (जुड़ा हुआ) का कई गुना है। इसका मतलब है कि X एक जुड़ा हुआ [[ हॉसडॉर्फ स्पेस]] है जो कि [[चार्ट (टोपोलॉजी)]]  के [[ एटलस (टोपोलॉजी)]] के उलझे हुए ढेरो की खुली इकाई डिस्क के साथ प्रमाणित है: प्रत्येक बिंदु X के लिए X का [[ पड़ोस (टोपोलॉजी)]] है उलझे हुए ढेरो की खुली इकाई डिस्क के लिए [[ होमोमोर्फिक]] (समरूप) है I समतल और दो अतिव्यापी चार्टों के बीच संक्रमण मानचित्रों को होलोमोर्फिक होना आवश्यक है।
# एक रीमैन पृष्ठीय आयाम दो का एक [[ उन्मुख कई गुना]] है-एक दो-तरफा पृष्ठीय (टोपोलॉजी) [[ अनुरूप संरचना]] के साथ (वास्तविक) है। फिर से, मैनिफोल्ड का अर्थ है कि समष्टिीय रूप से X के किसी भी बिंदु x पर, समष्टि वास्तविक तल के उपसमुच्चय के समरूप है। पूरक रीमैन दर्शाता है कि X एक अतिरिक्त संरचना के साथ संपन्न है जो कई गुना पर [[कोण]]  माप की अनुमति देता है, अर्थात् प्रत्यक्ष रूप से [[ रीमैनियन मीट्रिक]] का एक समकक्ष वर्ग है। ऐसे दो मेट्रिक्स को [[ अनुरूप रूप से समकक्ष]] माना जाता है यदि वे जिस कोण को मापते हैं वह समान होता है। X पर मेट्रिक्स का एक [[ तुल्यता वर्ग]] चुनना, अनुरूप संरचना का अतिरिक्त आधार है।
 
एक सम्मिश्र संरचना सम्मिश्र समष्टि पर दिए गए मानक [[ यूक्लिडियन मीट्रिक]] को चुनकर और चार्ट के माध्यम से इसे X तक ले जाकर एक अनुरूप संरचना को जन्म देती है। यह दिखाना कि एक अनुरूप संरचना एक सम्मिश्र संरचना को निर्धारित करती है, अधिक कठिन है।<ref>See {{Harvard citations|author=Jost|year=2006|loc=Ch. 3.11}} for the construction of a corresponding complex structure.</ref>


एक जटिल संरचना जटिल विमान पर दिए गए मानक [[ यूक्लिडियन मीट्रिक ]] को चुनकर और चार्ट के माध्यम से इसे X तक ले जाकर एक अनुरूप संरचना को जन्म देती है। यह दिखाना कि एक अनुरूप संरचना एक जटिल संरचना को निर्धारित करती है, अधिक कठिन है।<ref>See {{Harvard citations|author=Jost|year=2006|loc=Ch. 3.11}} for the construction of a corresponding complex structure.</ref>




Line 44: Line 50:


== आगे की परिभाषाएं और गुण ==
== आगे की परिभाषाएं और गुण ==
जैसा कि जटिल मैनिफोल्ड के बीच किसी भी मानचित्र के साथ होता है, एक फ़ंक्शन f: M → N दो रीमैन सतहों M और N के बीच होलोमोर्फिक कहा जाता है यदि M के एटलस में हर चार्ट g के लिए और N के एटलस में हर चार्ट h के लिए, मैप h ∘ f ∘ g−1 होलोमॉर्फिक है (C से C तक के फलन के रूप में) जहाँ भी यह परिभाषित है। दो होलोमोर्फिक मानचित्रों की संरचना होलोमोर्फिक है। दो रीमैन सतहों M और N को ''[[ बायोमोर्फिज्म ]]''कहा जाता है (या अनुरूप रूप से समकक्ष दृष्टिकोण पर जोर देने के लिए समतुल्य) ' यदि एम से एन तक एक विशेषण होलोमोर्फिक फ़ंक्शन मौजूद है जिसका व्युत्क्रम भी होलोमोर्फिक है (यह पता चला है कि बाद की स्थिति स्वचालित है और कर सकते हैं इसलिए छोड़ दिया जाए)। दो अनुरूप रूप से समकक्ष रीमैन सतहें सभी व्यावहारिक उद्देश्यों के लिए समान हैं।
जैसा कि सम्मिश्र मैनिफोल्ड के बीच किसी भी मानचित्र के साथ होता है, एक फ़ंक्शन f: M → N दो रीमैन पृष्ठीयों M और N के बीच होलोमोर्फिक कहा जाता है यदि M के एटलस में हर चार्ट g के लिए और N के एटलस में हर चार्ट h के लिए, मैप h ∘ f ∘ g−1 होलोमॉर्फिक है (C से C तक के फलन के रूप में) जहाँ भी यह परिभाषित है। दो होलोमोर्फिक मानचित्रों की संरचना होलोमोर्फिक है। दो रीमैन पृष्ठीयों M और N को ''[[ बायोमोर्फिज्म ]]''कहा जाता है (या अनुरूप रूप से समकक्ष दृष्टिकोण पर जोर देने के लिए समतुल्य) ' यदि एम से एन तक एक विशेषण होलोमोर्फिक फ़ंक्शन मौजूद है जिसका व्युत्क्रम भी होलोमोर्फिक है (यह पता चला है कि बाद की स्थिति स्वचालित है और कर सकते हैं इसलिए छोड़ दिया जाए)। दो अनुरूप रूप से समकक्ष रीमैन पृष्ठीयें सभी व्यावहारिक उद्देश्यों के लिए समान हैं।


=== ओरिएंटेबिलिटी ===
=== ओरिएंटेबिलिटी ===
प्रत्येक रीमैन सतह, एक जटिल मैनिफोल्ड होने के नाते, वास्तविक मैनिफोल्ड के रूप में उन्मुख है। ट्रांज़िशन फ़ंक्शन h = f(g−1(z)) के साथ जटिल चार्ट f और g के लिए, h को '''R'''<sup>2</sup> से '''R'''<sup>2</sup> के एक खुले सेट से एक मानचित्र के रूप में माना जा सकता है जिसका जेकोबियन बिंदु z में केवल वास्तविक रेखीय मानचित्र द्वारा दिया गया है सम्मिश्र संख्या h'(z) से गुणा करना। हालांकि, एक सम्मिश्र संख्या α द्वारा गुणन का वास्तविक निर्धारक |''α''|<sup>2</sup> के बराबर है, इसलिए h के जैकोबियन में सकारात्मक निर्धारक है। परिणाम स्वरुप,जटिल एटलस एक उन्मुख एटलस है।
प्रत्येक रीमैन पृष्ठीय, एक सम्मिश्र मैनिफोल्ड होने के नाते, वास्तविक मैनिफोल्ड के रूप में उन्मुख है। ट्रांज़िशन फ़ंक्शन h = f(g−1(z)) के साथ सम्मिश्र चार्ट f और g के लिए, h को '''R'''<sup>2</sup> से '''R'''<sup>2</sup> के एक खुले सेट से एक मानचित्र के रूप में माना जा सकता है जिसका जेकोबियन बिंदु z में केवल वास्तविक रेखीय मानचित्र द्वारा दिया गया है सम्मिश्र संख्या h'(z) से गुणा करना। हालांकि, एक सम्मिश्र संख्या α द्वारा गुणन का वास्तविक निर्धारक |''α''|<sup>2</sup> के बराबर है, इसलिए h के जैकोबियन में सकारात्मक निर्धारक है। परिणाम स्वरुप,सम्मिश्र एटलस एक उन्मुख एटलस है।


=== कार्य ===
=== फलन ===
प्रत्येक गैर-कॉम्पैक्ट रीमैन सतह गैर-निरंतर होलोमोर्फिक कार्यों ('''C''' में मूल्यों के साथ) को स्वीकार करती है। वास्तव में, प्रत्येक गैर-कॉम्पैक्ट रीमैन सतह एक[[ स्टीन मैनिफोल्ड ]] है।
प्रत्येक गैर-कॉम्पैक्ट रीमैन पृष्ठीय गैर-निरंतर होलोमोर्फिक फलन  ('''C''' में मूल्यों के साथ) को स्वीकार करती है। वास्तव में, प्रत्येक गैर-कॉम्पैक्ट रीमैन पृष्ठीय एक[[ स्टीन मैनिफोल्ड ]] है।


इसके विपरीत, एक कॉम्पैक्ट रीमैन सतह X पर '''C''' में मूल्यों के साथ प्रत्येक होलोमोर्फिक फ़ंक्शन [[ अधिकतम सिद्धांत |अधिकतम सिद्धांत]] के कारण स्थिर है। जबकि, हमेशा गैर-निरंतर मेरोमोर्फिक फ़ंक्शन मौजूद होते हैं (रिमेंन क्षेत्र सी ∪ {∞} में मूल्यों के साथ होलोमोर्फिक फ़ंक्शन)। अधिक सटीक रूप से, ''X'' की बीजगणितीय किस्म का कार्य क्षेत्र C(''t'') का एक परिमित [[ क्षेत्र विस्तार ]] है, फ़ंक्शन फ़ील्ड एक चर में है, यानी कोई भी दो [[ मेरोमॉर्फिक फ़ंक्शन ]] बीजगणितीय रूप से निर्भर होते हैं। यह कथन उच्च आयामों का सामान्यीकरण करता है, {{harvtxt|सीगल|1955}}देखें.  रीमैन [[ थीटा समारोह ]] और सतह के एबेल-जैकोबी मानचित्र के संदर्भ में मेरोमोर्फिक कार्यों को काफी स्पष्ट रूप से दिया जा सकता है।
इसके विपरीत, एक कॉम्पैक्ट रीमैन पृष्ठीय X पर '''C''' में मूल्यों के साथ प्रत्येक होलोमोर्फिक फ़ंक्शन [[ अधिकतम सिद्धांत |अधिकतम सिद्धांत]] के कारण स्थिर है। जबकि, हमेशा गैर-निरंतर मेरोमोर्फिक फ़ंक्शन मौजूद होते हैं (रिमेंन क्षेत्र सी ∪ {∞} में मूल्यों के साथ होलोमोर्फिक फ़ंक्शन)। अधिक सटीक रूप से, ''X'' की बीजगणितीय किस्म का फलन  क्षेत्र C(''t'') का एक परिमित [[ क्षेत्र विस्तार ]] है, फ़ंक्शन फ़ील्ड एक चर में है, यानी कोई भी दो [[ मेरोमॉर्फिक फ़ंक्शन ]] बीजगणितीय रूप से निर्भर होते हैं। यह कथन उच्च आयामों का सामान्यीकरण करता है, {{harvtxt|सीगल|1955}}देखें.  रीमैन [[ थीटा समारोह ]] और पृष्ठीय के एबेल-जैकोबी मानचित्र के संदर्भ में मेरोमोर्फिक फलन  को काफी स्पष्ट रूप से दिया जा सकता है।


==विश्लेषणात्मक बनाम बीजीय ==
==विश्लेषणात्मक बनाम बीजीय ==
गैर-निरंतर मेरोमोर्फिक कार्यों का अस्तित्व यह दिखाने के लिए इस्तेमाल किया जा सकता है कि कोई भी कॉम्पैक्ट रीमैन सतह एक प्रक्षेपी विविधता है, अर्थात एक [[ प्रक्षेप्य स्थान ]]के अंदर [[ बहुपद |बहुपद]] समीकरणों द्वारा दिया जा सकता है।  वास्तव में, यह दिखाया जा सकता है कि प्रत्येक कॉम्पैक्ट रीमैन सतह को [[ जटिल प्रक्षेप्य स्थान |जटिल प्रक्षेप्य स्थान]] प्रोजेक्टिव 3-स्पेस में [[ विसर्जन (गणित) ]]किया जा सकता है। यह एक आश्चर्यजनक प्रमेय है: रीमैन सतहों को स्थानीय रूप से पैचिंग चार्ट द्वारा दिया जाता है। यदि एक वैश्विक स्थिति, अर्थात् सघनता, को जोड़ा जाता है, तो सतह आवश्यक रूप से बीजगणितीय होती है। रीमैन सतहों की यह विशेषता किसी को [[ विश्लेषणात्मक ज्यामिति ]] या बीजीय ज्यामिति के माध्यम से उनका अध्ययन करने की अनुमति देती है। उच्च-आयामी वस्तुओं के लिए संबंधित कथन गलत है, यानी कॉम्पैक्ट कॉम्प्लेक्स 2-मैनिफोल्ड हैं जो बीजगणितीय नहीं हैं। दूसरी ओर, प्रत्येक प्रक्षेपी जटिल कई गुना अनिवार्य रूप से [[ बीजगणितीय ज्यामिति ]] है, चाउ के प्रमेय देखें।
गैर-निरंतर मेरोमोर्फिक फलन  का अस्तित्व यह दिखाने के लिए इस्तेमाल किया जा सकता है कि कोई भी कॉम्पैक्ट रीमैन पृष्ठीय एक प्रक्षेपी विविधता है, अर्थात एक [[ प्रक्षेप्य स्थान | प्रक्षेप्य समष्टि]] के अंदर [[ बहुपद |बहुपद]] समीकरणों द्वारा दिया जा सकता है।  वास्तव में, यह दिखाया जा सकता है कि प्रत्येक कॉम्पैक्ट रीमैन पृष्ठीय को सम्मिश्र प्रक्षेप्य समष्टि प्रोजेक्टिव 3-स्पेस में निमज्जन (गणित) किया जा सकता है। यह एक आश्चर्यजनक प्रमेय है: रीमैन पृष्ठीयों को समष्टिीय रूप से पैचिंग चार्ट द्वारा दिया जाता है। यदि एक वैश्विक स्थिति, अर्थात् सघनता, को जोड़ा जाता है, तो पृष्ठीय आवश्यक रूप से बीजगणितीय होती है। रीमैन पृष्ठीयों की यह विशेषता किसी को [[ विश्लेषणात्मक ज्यामिति ]] या बीजीय ज्यामिति के माध्यम से उनका अध्ययन करने की अनुमति देती है। उच्च-आयामी वस्तुओं के लिए संबंधित कथन गलत है, यानी कॉम्पैक्ट कॉम्प्लेक्स 2-मैनिफोल्ड हैं जो बीजगणितीय नहीं हैं। दूसरी ओर, प्रत्येक प्रक्षेपी सम्मिश्र कई गुना अनिवार्य रूप से [[ बीजगणितीय ज्यामिति ]] है, चाउ के प्रमेय देखें।


एक उदाहरण के रूप में, टोरस ''T'' := '''C'''/('''Z''' + ''τ'' '''Z''').पर विचार करे । वीयरस्ट्रैस अण्डाकार कार्य <math>\wp_\tau(z)</math> जाली '''Z + '''''τ'' '''Z''' से संबंधित है, Z ''T'' पर एक मेरोमॉर्फिक फ़ंक्शन है। यह फ़ंक्शन और इसका व्युत्पन्न <math>\wp_\tau'(z)</math> T का फलन क्षेत्र उत्पन्न करता है। एक समीकरण है
एक उदाहरण के रूप में, टोरस ''T'' := '''C'''/('''Z''' + ''τ'' '''Z''').पर विचार करे । वीयरस्ट्रैस अण्डाकार फलन  <math>\wp_\tau(z)</math> जाली '''Z + '''''τ'' '''Z''' से संबंधित है, Z ''T'' पर एक मेरोमॉर्फिक फ़ंक्शन है। यह फ़ंक्शन और इसका व्युत्पन्न <math>\wp_\tau'(z)</math> T का फलन क्षेत्र उत्पन्न करता है। एक समीकरण है


:<math>[\wp'(z)]^2=4[\wp(z)]^3-g_2\wp(z)-g_3,</math>
:<math>[\wp'(z)]^2=4[\wp(z)]^3-g_2\wp(z)-g_3,</math>
जहां गुणांक  ''g''<sub>2</sub> और ''g''<sub>3</sub> पर निर्भर करता है, इस प्रकार एक अण्डाकार वक्र''E''<sub>τ</sub> देता है बीजगणितीय ज्यामिति के अर्थ में इसे उलटना [[ j-invariant ]] j(E) द्वारा पूरा किया जाता है, जिसका उपयोग τ और इसलिए एक टोरस निर्धारित करने के लिए किया जा सकता है।
जहां गुणांक  ''g''<sub>2</sub> और ''g''<sub>3</sub> पर निर्भर करता है, इस प्रकार एक अण्डाकार वक्र''E''<sub>τ</sub> देता है बीजगणितीय ज्यामिति के अर्थ में इसे उलटना [[ j-invariant ]] j(E) द्वारा पूरा किया जाता है, जिसका उपयोग τ और इसलिए एक टोरस निर्धारित करने के लिए किया जा सकता है।


== रीमैन सतहों का वर्गीकरण ==
== रीमैन पृष्ठीयों का वर्गीकरण ==
सभी रीमैन सतहों के सेट को तीन उपसमुच्चय में विभाजित किया जा सकता है: अतिशयोक्तिपूर्ण, परवलयिक और अण्डाकार रीमैन सतहें। ज्यामितीय रूप से, ये नकारात्मक, लुप्त या सकारात्मक निरंतर [[ अनुभागीय वक्रता ]] वाली सतहों के अनुरूप होते हैं। इस प्रकार हर जुड़ी हुई रीमैन सतह <math>X</math> निरंतर वक्रता के साथ एक अद्वितीय [[ पूर्णता (टोपोलॉजी) ]] 2-आयामी वास्तविक [[ रीमैनियन मैनिफोल्ड ]] स्वीकार करता है <math>-1, 0</math> या <math>1</math> जो रीमैनियन मेट्रिक्स के अनुरूप वर्ग से संबंधित है जो इसकी संरचना द्वारा रीमैन सतह के रूप में निर्धारित किया गया है। इसे इज़ोटेर्मल निर्देशांक के अस्तित्व के परिणाम के रूप में देखा जा सकता है।
सभी रीमैन पृष्ठीयों के सेट को तीन उपसमुच्चय में विभाजित किया जा सकता है: अतिशयोक्तिपूर्ण, परवलयिक और अण्डाकार रीमैन पृष्ठीयें। ज्यामितीय रूप से, ये नकारात्मक, लुप्त या सकारात्मक निरंतर [[ अनुभागीय वक्रता ]] वाली पृष्ठीयों के अनुरूप होते हैं। यानी हर जुड़ी हुई रीमैन पृष्ठीय <math>X</math> निरंतर वक्रता के साथ एक अद्वितीय [[ पूर्णता (टोपोलॉजी) ]] 2-आयामी वास्तविक [[ रीमैनियन मैनिफोल्ड ]] स्वीकार करता है <math>-1, 0</math> या <math>1</math> जो रीमैनियन मेट्रिक्स के अनुरूप वर्ग से संबंधित है जो इसकी संरचना द्वारा रीमैन पृष्ठीय के रूप में निर्धारित किया गया है। इसे इज़ोटेर्मल निर्देशांक के अस्तित्व के परिणाम के रूप में देखा जा सकता है।


जटिल विश्लेषणात्मक शब्दों में, पोंकारे-कोएबे [[ एकरूपता प्रमेय ]] ([[ रीमैन मैपिंग प्रमेय ]] का एक सामान्यीकरण) बताता है कि प्रत्येक बस जुड़ा हुआ रीमैन सतह निम्नलिखित में से एक के अनुरूप है:
सम्मिश्र विश्लेषणात्मक शब्दों में, पोंकारे-कोएबे [[ एकरूपता प्रमेय ]] ([[ रीमैन मैपिंग प्रमेय ]] का एक सामान्यीकरण) बताता है कि प्रत्येक बस जुड़ा हुआ रीमैन पृष्ठीय निम्नलिखित में से एक के अनुरूप है:
*रिमेंन क्षेत्र <math>\widehat{\mathbf{C}} :=  \mathbf{C} \cup\{\infty\}</math>, जो जटिल प्रक्षेप्य रेखा के समरूपी है|<math>\mathbf P^1(\mathbf C)</math>;
*रिमेंन क्षेत्र <math>\widehat{\mathbf{C}} :=  \mathbf{C} \cup\{\infty\}</math>, जो सम्मिश्र प्रक्षेप्य रेखा के समरूपी है|<math>\mathbf P^1(\mathbf C)</math>;
*जटिल विमान <math>\mathbf C</math>;
*सम्मिश्र समष्टि <math>\mathbf C</math>;
*[[ खुली डिस्क ]] <math>\mathbf D := \{z \in \mathbf C : |z| < 1\}</math> जो ऊपरी आधे तल के समरूपी है <math>\mathbf H := \{z \in \mathbf C : \mathrm{Im}(z) > 0\}</math>.
*खुली डिस्क <math>\mathbf D := \{z \in \mathbf C : |z| < 1\}</math> जो ऊपरी आधे तल के समरूपी है <math>\mathbf H := \{z \in \mathbf C : \mathrm{Im}(z) > 0\}</math>.
एक रीमैन सतह अण्डाकार, परवलयिक या अतिशयोक्तिपूर्ण है कि क्या इसका सार्वभौमिक आवरण समरूप है <math>\mathbf P^1(\mathbf C)</math>, <math>\mathbf C</math> या <math>\mathbf D</math>. प्रत्येक वर्ग के तत्व अधिक सटीक विवरण स्वीकार करते हैं।
एक रीमैन पृष्ठीय अण्डाकार, परवलयिक या अतिशयोक्तिपूर्ण है कि क्या इसका सार्वभौमिक आवरण समरूप है <math>\mathbf P^1(\mathbf C)</math>, <math>\mathbf C</math> या <math>\mathbf D</math>. प्रत्येक वर्ग के तत्व अधिक सटीक विवरण स्वीकार करते हैं।


=== अण्डाकार रीमैन सतह ===
=== अण्डाकार रीमैन पृष्ठीय ===
रीमैन क्षेत्र <math>\mathbf P^1(\mathbf C)</math> एकमात्र उदाहरण है, क्योंकि कोई [[ समूह (गणित) ]] समूह क्रिया (गणित) नहीं है, जो कि बायोलोमोर्फिक परिवर्तनों द्वारा समूह_एक्शन_ (गणित) # प्रकार_ऑफ_एक्शन और ग्रुप_एक्शन_ (गणित) # प्रकार_ऑफ_एक्शन और इसलिए कोई भी रीमैन सतह जिसका सार्वभौमिक कवर आइसोमॉर्फिक है <math>\mathbf P^1(\mathbf C)</math> इसके लिए स्वयं समरूपी होना चाहिए।
रीमैन क्षेत्र <math>\mathbf P^1(\mathbf C)</math> एकमात्र उदाहरण है, क्योंकि कोई [[ समूह (गणित) ]] समूह क्रिया (गणित) नहीं है, जो कि बायोलोमोर्फिक परिवर्तनों द्वारा समूह_एक्शन_ (गणित) # प्रकार_ऑफ_एक्शन और ग्रुप_एक्शन_ (गणित) # प्रकार_ऑफ_एक्शन और इसलिए कोई भी रीमैन पृष्ठीय जिसका सार्वभौमिक कवर आइसोमॉर्फिक है <math>\mathbf P^1(\mathbf C)</math> इसके लिए स्वयं समरूपी होना चाहिए।


=== परवलयिक रीमैन सतह ===
=== परवलयिक रीमैन पृष्ठीय ===
यदि <math>X</math> एक रीमैन सतह है जिसका सार्वभौमिक आवरण जटिल तल के लिए समरूप है <math>\mathbf C</math> तो यह निम्नलिखित सतहों में से एक के लिए आइसोमॉर्फिक है:
यदि <math>X</math> एक रीमैन पृष्ठीय है जिसका सार्वभौमिक आवरण सम्मिश्र तल के लिए समरूप है <math>\mathbf C</math> तो यह निम्नलिखित पृष्ठीयों में से एक के लिए आइसोमॉर्फिक है:
* <math>\mathbf C</math> अपने आप;
* <math>\mathbf C</math> अपने आप;
* भागफल <math>\mathbf C / \mathbf Z</math>;
* भागफल <math>\mathbf C / \mathbf Z</math>;
* एक भागफल <math>\mathbf C / (\mathbf Z + \mathbf Z\tau)</math> कहाँ पे <math>\tau \in \mathbf C</math> साथ <math>\mathrm{Im}(\tau) > 0</math>.
* एक भागफल <math>\mathbf C / (\mathbf Z + \mathbf Z\tau)</math> कहाँ पे <math>\tau \in \mathbf C</math> साथ <math>\mathrm{Im}(\tau) > 0</math>.
टोपोलॉजिकल रूप से केवल तीन प्रकार होते हैं: प्लेन, सिलेंडर और टोरस। लेकिन जबकि दो पूर्व मामलों में (परवलयिक) रीमैन सतह संरचना अद्वितीय है, पैरामीटर बदलती है <math>\tau</math> तीसरे मामले में गैर-आइसोमोर्फिक रीमैन सतह देता है। पैरामीटर द्वारा विवरण <math>\tau</math> चिह्नित रीमैन सतहों का टेचमुलर स्थान देता है (रिमेंन सतह संरचना के अलावा एक अंकन का टोपोलॉजिकल डेटा जोड़ता है, जिसे टोरस के लिए एक निश्चित होमोमोर्फिज्म के रूप में देखा जा सकता है)। विश्लेषणात्मक [[ मोडुलि स्पेस ]] (अंकन को भूलकर) प्राप्त करने के लिए एक सतह के मानचित्रण वर्ग समूह द्वारा टेकमुलर स्पेस का भागफल लेता है। इस मामले में यह [[ मॉड्यूलर वक्र ]] है।
टोपोलॉजिकल रूप से केवल तीन प्रकार होते हैं: प्लेन, सिलेंडर और टोरस। लेकिन जबकि दो पूर्व मामलों में (परवलयिक) रीमैन पृष्ठीय संरचना अद्वितीय है, पैरामीटर बदलती है <math>\tau</math> तीसरे मामले में गैर-आइसोमोर्फिक रीमैन पृष्ठीय देता है। पैरामीटर द्वारा विवरण <math>\tau</math> चिह्नित रीमैन पृष्ठीयों का टेचमुलर समष्टि देता है (रिमेंन पृष्ठीय संरचना के अलावा एक अंकन का टोपोलॉजिकल डेटा जोड़ता है, जिसे टोरस के लिए एक निश्चित होमोमोर्फिज्म के रूप में देखा जा सकता है)। विश्लेषणात्मक [[ मोडुलि स्पेस ]] (अंकन को भूलकर) प्राप्त करने के लिए एक पृष्ठीय के मानचित्रण वर्ग समूह द्वारा टेकमुलर स्पेस का भागफल लेता है। इस मामले में यह [[ मॉड्यूलर वक्र ]] है।


=== अतिशयोक्तिपूर्ण रीमैन सतह ===
=== अतिशयोक्तिपूर्ण रीमैन पृष्ठीय ===
शेष मामलों में <math>X</math> एक अतिशयोक्तिपूर्ण रीमैन सतह है, जो कि [[ फुच्सियन समूह ]] द्वारा ऊपरी आधे-तल के भागफल के लिए समरूप है (इसे कभी-कभी सतह के लिए [[ फुच्सियन मॉडल ]] कहा जाता है)। टोपोलॉजिकल <math>X</math> टोरस और गोले को बचाने के लिए कोई भी उन्मुख सतह हो सकती है।
शेष मामलों में <math>X</math> एक अतिशयोक्तिपूर्ण रीमैन पृष्ठीय है, जो कि [[ फुच्सियन समूह ]] द्वारा ऊपरी आधे-तल के भागफल के लिए समरूप है (इसे कभी-कभी पृष्ठीय के लिए [[ फुच्सियन मॉडल ]] कहा जाता है)। टोपोलॉजिकल प्रकार <math>X</math> टोरस और गोले को बचाने के लिए कोई भी उन्मुख पृष्ठीय हो सकती है।


विशेष रुचि का विषय तब होता है जब <math>X</math> कॉम्पैक्ट है। फिर इसके टोपोलॉजिकल प्रकार का वर्णन इसके जीनस द्वारा किया जाता है <math>g \ge 2</math>. इसका टेकमुलर स्पेस और मोडुली स्पेस <math>6g - 6</math>-आयामी हैं । परिमित प्रकार की रीमैन सतहों का एक समान वर्गीकरण (जो कि एक बंद सतह के लिए होमियोमॉर्फिक है, अंकों की एक सीमित संख्या घटाकर) दिया जा सकता है। हालांकि सामान्य तौर पर इस तरह के विवरण को स्वीकार करने के लिए अनंत टोपोलॉजिकल प्रकार के रीमैन सतहों का मॉड्यूल स्पेस बहुत बड़ा है।
विशेष रुचि का मामला तब होता है जब <math>X</math> कॉम्पैक्ट है। फिर इसके टोपोलॉजिकल प्रकार का वर्णन इसके जीनस द्वारा किया जाता है <math>g \ge 2</math>. इसका टेकमुलर स्पेस और मोडुली स्पेस हैं <math>6g - 6</math>-आयामी। परिमित प्रकार की रीमैन पृष्ठीयों का एक समान वर्गीकरण (जो कि एक बंद पृष्ठीय के लिए होमियोमॉर्फिक है, अंकों की एक सीमित संख्या घटाकर) दिया जा सकता है। हालांकि सामान्य तौर पर इस तरह के विवरण को स्वीकार करने के लिए अनंत टोपोलॉजिकल प्रकार के रीमैन पृष्ठीयों का मॉड्यूल स्पेस बहुत बड़ा है।


== रीमैन सतहों के बीच मानचित्र ==
== रीमैन पृष्ठीयों के बीच मानचित्र ==
ज्यामितीय वर्गीकरण रीमैन सतहों के बीच के चित्रों में परिलक्षित होता है, जैसा कि लिउविल के प्रमेय (जटिल विश्लेषण) में विस्तृत है। लिउविल की प्रमेय और [[ लिटिल पिकार्ड प्रमेय ]]: हाइपरबोलिक से परवलयिक से अण्डाकार तक के चित्र आसान हैं, लेकिन अण्डाकार से परवलयिक या परवलयिक से हाइपरबोलिक तक के चित्र हैं बहुत विवश (वास्तव में, आम तौर पर स्थिर!) गोले में समतल में डिस्क का समावेश होता है:: <math>\Delta \subset \mathbf{C} \subset \widehat{\mathbf{C}},</math> लेकिन गोले से विमान तक कोई भी होलोमोर्फिक चित्र  स्थिर है, विमान से यूनिट डिस्क में कोई भी होलोमोर्फिक चित्र स्थिर है (लिउविल का प्रमेय), और वास्तव में विमान से विमान में कोई भी होलोमोर्फिक चित्र  शून्य से दो अंक स्थिर है (लिटिल पिकार्ड प्रमेय)!
ज्यामितीय वर्गीकरण रीमैन पृष्ठीयों के बीच के नक्शों में परिभाषित होता है, जैसा कि लिउविल के प्रमेय में परिभाषित है। लिउविल की प्रमेय और [[ लिटिल पिकार्ड प्रमेय ]]: हाइपरबोलिक और परवलयिक से अण्डाकार के नक्शे आसान हैं, लेकिन अण्डाकार से परवलयिक या परवलयिक से हाइपरबोलिक के नक्शे हैं आम तौर पर स्थिर गोले के समष्टि में डिस्क सम्मलित होता है: <math>\Delta \subset \mathbf{C} \subset \widehat{\mathbf{C}},</math> लेकिन गोले से समष्टि तक होलोमोर्फिक नक्शा स्थिर है, समष्टि से यूनिट डिस्क में भी होलोमोर्फिक नक्शा स्थिर है, और वास्तव में समष्टि में होलोमोर्फिक नक्शा शून्य से दो तक अंक स्थिर है!  


=== पंचर गोले ===
=== पंचर गोले ===
रीमैन क्षेत्र के प्रकार पर विचार करके इन कथनों को स्पष्ट किया गया है <math>\widehat{\mathbf{C}}</math> कई पंचर के साथ। बिना पंचर के, यह रीमैन क्षेत्र है, जो अण्डाकार है। एक पंचर के साथ, जिसे अनंत पर रखा जा सकता है, यह जटिल तल है, जो परवलयिक है। दो पंक्चर के साथ, यह पंचर प्लेन या वैकल्पिक रूप से एनलस या सिलेंडर होता है, जो परवलयिक होता है। तीन या अधिक पंचर के साथ, यह अतिशयोक्तिपूर्ण है - [[ पैंट की जोड़ी (गणित) ]] की तुलना करें। घातांक मानचित्र के माध्यम से कोई एक पंचर से दो तक मानचित्र बना सकता है (जो संपूर्ण है और अनंत पर एक आवश्यक विलक्षणता है, इसलिए अनंत पर परिभाषित नहीं है, और शून्य और अनंत को याद करता है), लेकिन सभी मानचित्र शून्य पंचर से एक या अधिक तक, या एक या दो पंचर से तीन या अधिक स्थिर होते हैं।
रीमैन क्षेत्र पर विचार करके<math>\widehat{\mathbf{C}}</math> कई पंचर के साथ इन कथनों को स्पष्ट किया गया है। यह रीमैन क्षेत्र है,जो बिना पंचर के जो अण्डाकार है। यह सम्मिश्र तल है पंचर के साथ,अनंत पर रखा जा सकता है, जो परवलयिक है। दो पंक्चर के साथ, यह पंचर प्लेन या वैकल्पिक रूप से एनलस या सिलेंडर है, जो दो पंक्चर के साथ परवलयिक होता है।[[ पैंट की जोड़ी (गणित) ]] की तुलना करें तीन से अधिक पंचर के साथ, यह अतिशयोक्तिपूर्ण है। घातांक मानचित्र के माध्यम से कोई एक पंचर से दो तक मानचित्र बना सकता है (जो संपूर्ण है और अनंत पर एक आवश्यक विलक्षणता है, इसलिए अनंत पर परिभाषित नहीं है, और शून्य और अनंत को याद करता है), लेकिन सभी मानचित्र शून्य पंचर से एक या अधिक तक, या एक या दो पंचर से तीन या अधिक स्थिर होते हैं।


=== रामिफाइड कवरिंग स्पेस ===
=== रामिफाइड कवरिंग स्पेस ===
इस नस में जारी रखते हुए, कॉम्पैक्ट रीमैन सतहों को निचले जीनस की सतहों पर मैप किया जा सकता है, लेकिन उच्च जीनस के लिए नहीं, निरंतर नक्शे को छोड़कर। ऐसा इसलिए है क्योंकि होलोमोर्फिक और मेरोमोर्फिक मानचित्र स्थानीय रूप से व्यवहार करते हैं <math>z \mapsto z^n,</math> इसलिए गैर-स्थिर नक्शों को कवर करने वाले मानचित्रों को विस्तृत किया जाता है, और कॉम्पैक्ट रीमैन सतहों के लिए ये बीजगणितीय टोपोलॉजी में रीमैन-हर्विट्ज़ सूत्र द्वारा विवश हैं, जो एक अंतरिक्ष की [[ यूलर विशेषता ]] और एक विस्तृत आवरण से संबंधित है।
इस नस में जारी रखते हुए, कॉम्पैक्ट रीमैन पृष्ठीयों को निचले जीनस की पृष्ठीयों पर मैप किया जा सकता है, लेकिन उच्च जीनस के लिए नहीं, निरंतर नक्शे को छोड़कर। ऐसा इसलिए है क्योंकि होलोमोर्फिक और मेरोमोर्फिक मानचित्र समष्टिीय रूप से व्यवहार करते हैं <math>z \mapsto z^n,</math> इसलिए गैर-स्थिर नक्शों को कवर करने वाले मानचित्रों को विस्तृत किया जाता है, और कॉम्पैक्ट रीमैन पृष्ठीयों के लिए ये बीजगणितीय टोपोलॉजी में रीमैन-हर्विट्ज़ सूत्र द्वारा विवश हैं, जो एक अंतरिक्ष की [[ यूलर विशेषता ]] और एक विस्तृत आवरण से संबंधित है।


उदाहरण के लिए, हाइपरबोलिक रीमैन सतहों को गोले के रिक्त स्थान को कवर किया जाता है (उनके पास गैर-स्थिर मेरोमोर्फिक कार्य होते हैं), लेकिन क्षेत्र एक स्थिर के अलावा, उच्च जीनस सतहों को कवर या अन्यथा मैप नहीं करता है।
उदाहरण के लिए, हाइपरबोलिक रीमैन पृष्ठीयों को गोले के रिक्त समष्टि को कवर किया जाता है (उनके पास गैर-स्थिर मेरोमोर्फिक फलन  होते हैं), लेकिन क्षेत्र एक स्थिर के अलावा, उच्च जीनस पृष्ठीयों को कवर या अन्यथा मैप नहीं करता है।


== रीमैन सतहों की आइसोमेट्री ==
== रीमैन पृष्ठीयों की आइसोमेट्री ==
एक समान रीमैन सतह का [[ आइसोमेट्री समूह |आइसोमेट्री समूह]] (समरूप रूप से, अनुरूप ऑटोमोर्फिज्म समूह) इसकी ज्यामिति को दर्शाता है:
एक समान रीमैन पृष्ठीय का [[ आइसोमेट्री समूह ]] (समान रूप से, अनुरूप ऑटोमोर्फिज्म#ऑटोमोर्फिज्म_ग्रुप) इसकी ज्यामिति को दर्शाता है:
* जीनस 0 - गोले का आइसोमेट्री समूह जटिल रेखा के प्रक्षेपी परिवर्तनों का मोबियस समूह है,
* जीनस 0 - गोले का आइसोमेट्री समूह सम्मिश्र रेखा के प्रक्षेपी परिवर्तनों का मोबियस समूह है,
* प्लेन का आइसोमेट्री ग्रुप [[ उपसमूह ]] फिक्सिंग इन्फिनिटी है, और पंचर प्लेन का सबग्रुप है जो इनवेरिएंट को छोड़कर केवल इन्फिनिटी और शून्य वाला सेट है: या तो उन दोनों को ठीक करना, या उन्हें इंटरचेंज करना (1/z)।
* प्लेन का आइसोमेट्री ग्रुप [[ उपसमूह ]] फिक्सिंग इन्फिनिटी है, और पंचर प्लेन का सबग्रुप है जो इनवेरिएंट को छोड़कर केवल इन्फिनिटी और शून्य वाला सेट है: या तो उन दोनों को ठीक करना, या उन्हें इंटरचेंज करना (1/z)।
* पोंकारे हाफ-प्लेन मॉडल का आइसोमेट्री ग्रुप ऊपरी हाफ-प्लेन असली मोबियस ग्रुप है; यह डिस्क के ऑटोमोर्फिज्म समूह के साथ संयुग्मित है।
* पोंकारे हाफ-प्लेन मॉडल का आइसोमेट्री ग्रुप|ऊपरी हाफ-प्लेन असली मोबियस ग्रुप है; यह डिस्क के ऑटोमोर्फिज्म समूह के साथ संयुग्मित है।
* जीनस 1 - एक टोरस का आइसोमेट्री समूह सामान्य अनुवाद में है (एक [[ एबेलियन किस्म ]] के रूप में), हालांकि वर्ग जाली और हेक्सागोनल जाली में 90 ° और 60 ° से रोटेशन से अतिरिक्त समरूपता होती है।
* जीनस 1 - एक टोरस का आइसोमेट्री समूह सामान्य अनुवाद में है (एक [[ एबेलियन किस्म ]] के रूप में), हालांकि वर्ग जाली और हेक्सागोनल जाली में 90 ° और 60 ° से रोटेशन से अतिरिक्त समरूपता होती है।
* जीनस ''g'' ≥ 2 के लिए, आइसोमेट्री समूह परिमित है, और हर्विट्ज़ के ऑटोमोर्फिज्म प्रमेय द्वारा अधिकतम 84(g−1) का क्रम है; वे सतहें जो इस बाध्यता को महसूस करती हैं, 'हर्विट्ज़ सतहें' कहलाती हैं।
* जीनस जी ≥ 2 के लिए, आइसोमेट्री समूह परिमित है, और हर्विट्ज़ के ऑटोमोर्फिज्म प्रमेय द्वारा अधिकतम 84(g−1) का क्रम है; वे पृष्ठीयें जो इस बाध्यता को महसूस करती हैं, 'हर्विट्ज़ पृष्ठीयें' कहलाती हैं।
* यह ज्ञात है कि प्रत्येक परिमित समूह को कुछ रीमैन सतह के आइसोमेट्री के पूर्ण समूह के रूप में महसूस किया जा सकता है।<ref>{{cite book |first=L. |last=Greenberg |chapter=Maximal groups and signatures |title=असंतत समूह और रीमैन सर्फेस: मैरीलैंड विश्वविद्यालय में 1973 के सम्मेलन की कार्यवाही|series=Ann. Math. Studies |volume=79 |year=1974 |pages=207–226 |isbn=0691081387 |chapter-url=https://books.google.com/books?id=oriXEV6VoM0C&pg=PA207 }}</ref>
* यह ज्ञात है कि प्रत्येक परिमित समूह को कुछ रीमैन पृष्ठीय के आइसोमेट्री के पूर्ण समूह के रूप में महसूस किया जा सकता है।<ref>{{cite book |first=L. |last=Greenberg |chapter=Maximal groups and signatures |title=असंतत समूह और रीमैन सर्फेस: मैरीलैंड विश्वविद्यालय में 1973 के सम्मेलन की कार्यवाही|series=Ann. Math. Studies |volume=79 |year=1974 |pages=207–226 |isbn=0691081387 |chapter-url=https://books.google.com/books?id=oriXEV6VoM0C&pg=PA207 }}</ref>
** जीनस 2 के लिए ऑर्डर 48 के साथ [[ बोल्ज़ा सतह ]] द्वारा अधिकतम किया जाता है।
** जीनस 2 के लिए ऑर्डर 48 के साथ [[ बोल्ज़ा सतह | बोल्ज़ा पृष्ठीय]] द्वारा अधिकतम किया जाता है।
** जीनस 3 के लिए ऑर्डर को [[ क्लेन क्वार्टिक ]] द्वारा अधिकतम किया गया है, ऑर्डर 168 के साथ; यह पहली हर्विट्ज़ सतह है, और इसका ऑटोमोर्फिज्म समूह क्रम 168 के अद्वितीय सरल समूह के लिए समरूप है, जो दूसरा सबसे छोटा गैर-एबेलियन सरल समूह है। यह समूह PSL(2,7) और PSL(2,7)|PSL(3,2) दोनों के लिए समरूपी है।
** जीनस 3 के लिए ऑर्डर को [[ क्लेन क्वार्टिक ]] द्वारा अधिकतम किया गया है, ऑर्डर 168 के साथ; यह पहली हर्विट्ज़ पृष्ठीय है, और इसका ऑटोमोर्फिज्म समूह क्रम 168 के अद्वितीय सरल समूह के लिए समरूप है, जो दूसरा सबसे छोटा गैर-एबेलियन सरल समूह है। यह समूह PSL(2,7) और PSL(2,7)|PSL(3,2) दोनों के लिए समरूपी है।
** जीनस 4 के लिए, ब्रिंग की सतह एक अत्यधिक सममित सतह है।
** जीनस 4 के लिए, ब्रिंग्स कर्व | ब्रिंग की पृष्ठीय एक अत्यधिक सममित पृष्ठीय है।
** जीनस 7 के लिए क्रम 504 क्रम के साथ मैकबीथ सतह द्वारा अधिकतम किया गया है; यह दूसरी हर्विट्ज़ सतह है, और इसका ऑटोमोर्फिज्म समूह पीएसएल (2,8) के लिए आइसोमोर्फिक है, जो चौथा सबसे छोटा गैर-अबेलियन सरल समूह है।
** जीनस 7 के लिए ऑर्डर को मैकबीथ पृष्ठीय द्वारा अधिकतम किया जाता है, ऑर्डर 504 के साथ; यह दूसरी हर्विट्ज़ पृष्ठीय है, और इसका ऑटोमोर्फिज्म समूह पीएसएल (2,8) के लिए समरूप है, चौथा सबसे छोटा गैर-एबेलियन सरल समूह।


== फंक्शन-सैद्धांतिक वर्गीकरण ==
== फंक्शन-सैद्धांतिक वर्गीकरण ==
ऊपर की वर्गीकरण योजना सामान्यतः  जियोमीटर द्वारा उपयोग की जाती है। रीमैन सतहों के लिए एक अलग वर्गीकरण है जो सामान्यतः जटिल विश्लेषकों द्वारा उपयोग किया जाता है। यह परवलयिक और अतिशयोक्तिपूर्ण के लिए एक अलग परिभाषा को नियोजित करता है। इस वैकल्पिक वर्गीकरण योजना में, एक रीमैन सतह को परवलयिक कहा जाता है यदि सतह पर कोई गैर-निरंतर नकारात्मक उपहार्मोनिक कार्य नहीं होते हैं अन्यथा इसे अतिपरवलयिक कहा जाता है।<ref>{{Citation | last1=Ahlfors | first1=Lars | author1-link=Lars Ahlfors | last2=Sario | first2=Leo | title=Riemann Surfaces | publisher=[[Princeton University Press]] | location=Princeton, New Jersey | edition=1st | year=1960 |page=204}}</ref><ref>{{Citation | last1=Rodin | first1=Burton | last2=Sario | first2=Leo | title=Principal Functions | publisher=[[D. Von Nostrand Company, Inc.]] | location=Princeton, New Jersey | edition=1st | year=1968 |page = 199| isbn=9781468480382 |url=https://books.google.com/books?id=_ZnlBwAAQBAJ&q=%22Riemann+surface%22}}</ref> हाइपरबोलिक सतहों के इस वर्ग को आगे उपवर्गों में विभाजित किया गया है कि क्या नकारात्मक सबहार्मोनिक कार्यों के अलावा अन्य कार्य स्थान पतित हैं, उदाहरण के लिए, रीमैन सतह जिस पर सभी बंधे हुए होलोमोर्फिक कार्य स्थिर होते हैं, या जिस पर सभी बाध्य हार्मोनिक कार्य स्थिर होते हैं, या जिस पर सभी सकारात्मक हार्मोनिक कार्य स्थिर होते हैं, आदि।
ऊपर की वर्गीकरण योजना आमतौर पर जियोमीटर द्वारा उपयोग की जाती है। रीमैन पृष्ठीयों के लिए एक अलग वर्गीकरण है जो आमतौर पर सम्मिश्र विश्लेषकों द्वारा उपयोग किया जाता है। यह परवलयिक और अतिशयोक्तिपूर्ण के लिए एक अलग परिभाषा को नियोजित करता है। इस वैकल्पिक वर्गीकरण योजना में, एक रीमैन पृष्ठीय को परवलयिक कहा जाता है यदि पृष्ठीय पर कोई गैर-निरंतर नकारात्मक उपहार्मोनिक फलन  नहीं होते हैं और अन्यथा इसे अतिपरवलयिक कहा जाता है।<ref>{{Citation | last1=Ahlfors | first1=Lars | author1-link=Lars Ahlfors | last2=Sario | first2=Leo | title=Riemann Surfaces | publisher=[[Princeton University Press]] | location=Princeton, New Jersey | edition=1st | year=1960 |page=204}}</ref><ref>{{Citation | last1=Rodin | first1=Burton | last2=Sario | first2=Leo | title=Principal Functions | publisher=[[D. Von Nostrand Company, Inc.]] | location=Princeton, New Jersey | edition=1st | year=1968 |page = 199| isbn=9781468480382 |url=https://books.google.com/books?id=_ZnlBwAAQBAJ&q=%22Riemann+surface%22}}</ref> हाइपरबोलिक पृष्ठीयों के इस वर्ग को आगे उपवर्गों में विभाजित किया गया है कि क्या नकारात्मक सबहार्मोनिक फलन  के अलावा अन्य फलन  समष्टि पतित हैं, उदा। रीमैन पृष्ठीय जिस पर सभी बंधे हुए होलोमोर्फिक फलन  स्थिर होते हैं, या जिस पर सभी बाध्य हार्मोनिक फलन  स्थिर होते हैं, या जिस पर सभी सकारात्मक हार्मोनिक फलन  स्थिर होते हैं, आदि।


भ्रम से बचने के लिए, निरंतर वक्रता के मेट्रिक्स के आधार पर वर्गीकरण को ज्यामितीय वर्गीकरण कहते हैं, और फ़ंक्शन-सैद्धांतिक वर्गीकरण के फ़ंक्शन रिक्त स्थान की अध: पतन पर आधारित है। उदाहरण के लिए, रीमैन की सतह जिसमें "0 और 1 को छोड़कर सभी जटिल संख्याएं" शामिल हैं, कार्य-सैद्धांतिक वर्गीकरण में परवलयिक है, लेकिन यह ज्यामितीय वर्गीकरण में अतिशयोक्तिपूर्ण है।
भ्रम से बचने के लिए, निरंतर वक्रता के मैट्रिक्स के आधार पर वर्गीकरण को ज्यामितीय वर्गीकरण कहते हैं, और फ़ंक्शन की गिरावट पर आधारित एक फ़ंक्शन-सैद्धांतिक वर्गीकरण को समष्टि देता है। उदाहरण के लिए, रीमैन पृष्ठीय जिसमें सभी सम्मिश्र संख्याएं शामिल हैं लेकिन 0 और 1 फ़ंक्शन-सैद्धांतिक वर्गीकरण में परवलयिक है लेकिन यह ज्यामितीय वर्गीकरण में अतिशयोक्तिपूर्ण है।


== ऐसा देखें ==
== ऐसा देखें ==
*बच्चों की ड्राइंग
*बच्चों की ड्राइंग
*कहलर मैनिफोल्ड
*कहलर मैनिफोल्ड
*[[ लोरेंत्ज़ सतह ]]
*[[ लोरेंत्ज़ सतह | लोरेंत्ज़ पृष्ठीय]]
* वर्ग समूहों का मानचित्रण
* वर्ग समूहों का मानचित्रण
*[[ सेरे द्वैत ]]
*[[ सेरे द्वैत ]]


=== रीमैन सतहों के संबंध में प्रमेय ===
=== रीमैन पृष्ठीयों के संबंध में प्रमेय ===
*[[ शाखा प्रमेय ]]
*[[ शाखा प्रमेय ]]
*हर्विट्ज़ की ऑटोमोर्फिज्म प्रमेय
*हर्विट्ज़ की ऑटोमोर्फिज्म प्रमेय
*रिमेंन सतहों के लिए पहचान प्रमेय
*रिमेंन पृष्ठीयों के लिए पहचान प्रमेय
*रिमेंन-रोच प्रमेय
*रिमेंन-रोच प्रमेय
*रिमेंन-हर्विट्ज़ फॉर्मूला
*रिमेंन-हर्विट्ज़ फॉर्मूला
Line 147: Line 153:
{{refend}}
{{refend}}


==इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची==
*अंक शास्त्र
*वृत्त
*बीजीय फलन
*समायोज्य
*बहु-मूल्यवान फ़ंक्शन
*संक्रमण नक्शा
*ओपन यूनिट डिस्क
*समारोह (गणित)
*द्विभाजित
*सिद्ध
*जैकोबियन मैट्रिक्स और निर्धारक
*रीमैन क्षेत्र
*एक बीजीय किस्म का कार्य क्षेत्र
*प्रक्षेपी किस्म
*वीयरस्ट्रैस अण्डाकार समारोह
*जनरेटिंग सेट
*समतापी निर्देशांक
*ऊपरी आधा विमान
*यूनिवर्सल कवर
*समूह कार्रवाई (गणित)
*सतह का मानचित्रण वर्ग समूह
*बीजीय टोपोलॉजी
*फैला हुआ कवरिंग स्पेस
*विस्तृत कवरिंग नक्शा
*मैकबेथ सतह
*साधारण समूह
*मानचित्रण वर्ग समूह
*रीमैन सतहों के लिए पहचान प्रमेय
==बाहरी संबंध==
==बाहरी संबंध==
* {{Springer|title=Riemann surface|id=p/r082040}}
* {{Springer|title=Riemann surface|id=p/r082040}}
* {{cite web |last1=McMullen |first1=C. |title=Complex Analysis on Riemann Surfaces Math 213b |url=https://people.math.harvard.edu/~ctm/home/text/class/harvard/213b/19/html/home/course/course.pdf |website=Harvard Math |publisher=Harvard University}}
* {{cite web |last1=McMullen |first1=C. |title=Complex Analysis on Riemann Surfaces Math 213b |url=https://people.math.harvard.edu/~ctm/home/text/class/harvard/213b/19/html/home/course/course.pdf |website=Harvard Math |publisher=Harvard University}}
{{Algebraic curves navbox}}
{{Bernhard Riemann}}
{{Authority control}}
{{Authority control}}


{{DEFAULTSORT:Riemann Surface}}[[Category: रीमैन सतहें| ]]
{{DEFAULTSORT:Riemann Surface}}
[[Category:बर्नहार्ड रीमैन]]
 


[[Category: Machine Translated Page]]
[[Category:AC with 0 elements|Riemann Surface]]
[[Category:Created On 10/11/2022]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Riemann Surface]]
[[Category:Articles with short description|Riemann Surface]]
[[Category:CS1 français-language sources (fr)|Riemann Surface]]
[[Category:CS1 maint|Riemann Surface]]
[[Category:CS1 Ελληνικά-language sources (el)|Riemann Surface]]
[[Category:Citation Style 1 templates|W]]
[[Category:Collapse templates|Riemann Surface]]
[[Category:Created On 10/11/2022|Riemann Surface]]
[[Category:Machine Translated Page|Riemann Surface]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Riemann Surface]]
[[Category:Pages with script errors|Riemann Surface]]
[[Category:Short description with empty Wikidata description|Riemann Surface]]
[[Category:Sidebars with styles needing conversion|Riemann Surface]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates based on the Citation/CS1 Lua module|Riemann Surface]]
[[Category:Templates generating COinS|Cite web]]
[[Category:Templates generating microformats|Riemann Surface]]
[[Category:Templates that are not mobile friendly|Riemann Surface]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData|Riemann Surface]]
[[Category:Wikipedia fully protected templates|Cite web]]
[[Category:Wikipedia metatemplates|Riemann Surface]]
[[Category:बर्नहार्ड रीमैन|Riemann Surface]]
[[Category:रीमैन सतहें| ]]

Latest revision as of 13:06, 12 October 2023

फ़ंक्शन f(z) = √z के लिए रीमैन पृष्ठीय। दो क्षैतिज अक्ष z के वास्तविक और काल्पनिक भागों का प्रतिनिधित्व करते हैं, जबकि ऊर्ध्वाधर अक्ष √z के वास्तविक भाग का प्रतिनिधित्व करता है। √z का काल्पनिक भाग बिंदुओं के रंग द्वारा दर्शाया गया है। इस फ़ंक्शन के लिए, यह ऊर्ध्वाधर अक्ष के चारों ओर प्लॉट को 180° घुमाने के बाद की ऊंचाई भी है।

गणित में, विशेष रूप से सम्मिश्र विश्लेषण में, एक रीमैन पृष्ठीय एक जुड़े हुए एक-आयामी सम्मिश्र का विविध (कई गुना) है I इन पृष्ठीयों का अध्ययन सबसे पहले किया गया था और इनका नाम बर्नहार्ड रिमेंन के नाम पर रखा गया है। रीमैन पृष्ठीयों को सम्मिश्र समष्टि के अनुचित रूप से प्रस्तुत संस्करणों के रूप में माना जा सकता है: समष्टिीय रूप से हर बिंदु के पास वे सम्मिश्र समष्टि के पैच की तरह दिखते हैं, लेकिन वैश्विक टोपोलॉजी काफी भिन्न हो सकती है। उदाहरण के लिए, वे एक गोले या टॉर्सर्स या एक साथ चिपकी हुई कई चादरों की तरह दिख सकते हैं।

रीमैन पृष्ठीयों में मुख्य रुचि यह है कि उनके बीच होलोमोर्फिक फलन को परिभाषित किया जा सकता है। रीमैन पृष्ठीयों को आजकल इन फलन के वैश्विक व्यवहार का अध्ययन करने के लिए प्राकृतिक स्थापना माना जाता है, विशेष रूप से बहु-मूल्यवान फलन जैसे वर्गमूल और अन्य बीजगणितीय फलन , या प्राकृतिक लघुगणक।

प्रत्येक रीमैन पृष्ठीय एक द्वि-आयामी वास्तविक विश्लेषणात्मक का कई गुना (यानी, एक पृष्ठीय (टोपोलॉजी) ) है, लेकिन इसमें अधिक संरचना (विशेष रूप से एक सम्मिश्र मैनिफोल्ड) शामिल है जो होलोमोर्फिक फलन की स्पष्ट परिभाषा के लिए आवश्यक है। एक द्वि-आयामी को वास्तविक रूप से अनेक रीमैन पृष्ठीय (आमतौर पर कई असमान तरीकों से) में बदला जा सकता है यदि यह उन्मुख और मेट्रिज़ेबल समष्टि है , तो गोले और टोरस सम्मिश्र संरचनाओं को स्वीकार करते हैं, लेकिन मोबियस पट्टी, क्लेन बोतल और वास्तविक प्रक्षेप्य समष्टि नहीं करते हैं।

रीमैन पृष्ठीयों के बारे में ज्यामितीय तथ्य यथासंभव अच्छे हैं, और वे अक्सर अन्य किस्मों के सामान्यीकरण के लिए अंतर्ज्ञान और प्रेरणा प्रदान करते हैं। रीमैन-रोच प्रमेय इस प्रभाव का एक प्रमुख उदाहरण है।

परिभाषाएं

रीमैन पृष्ठीय की कई परिभाषाएँ समान हैं।

  1. एक रीमैन पृष्ठीय X एक सम्मिश्र आयाम का एक कनेक्टेड स्पेस (जुड़ा हुआ) का कई गुना है। इसका मतलब है कि X एक जुड़ा हुआ हॉसडॉर्फ स्पेस है जो कि चार्ट (टोपोलॉजी) के एटलस (टोपोलॉजी) के उलझे हुए ढेरो की खुली इकाई डिस्क के साथ प्रमाणित है: प्रत्येक बिंदु X के लिए X का पड़ोस (टोपोलॉजी) है उलझे हुए ढेरो की खुली इकाई डिस्क के लिए होमोमोर्फिक (समरूप) है I समतल और दो अतिव्यापी चार्टों के बीच संक्रमण मानचित्रों को होलोमोर्फिक होना आवश्यक है।
  2. एक रीमैन पृष्ठीय आयाम दो का एक उन्मुख कई गुना है-एक दो-तरफा पृष्ठीय (टोपोलॉजी) अनुरूप संरचना के साथ (वास्तविक) है। फिर से, मैनिफोल्ड का अर्थ है कि समष्टिीय रूप से X के किसी भी बिंदु x पर, समष्टि वास्तविक तल के उपसमुच्चय के समरूप है। पूरक रीमैन दर्शाता है कि X एक अतिरिक्त संरचना के साथ संपन्न है जो कई गुना पर कोण माप की अनुमति देता है, अर्थात् प्रत्यक्ष रूप से रीमैनियन मीट्रिक का एक समकक्ष वर्ग है। ऐसे दो मेट्रिक्स को अनुरूप रूप से समकक्ष माना जाता है यदि वे जिस कोण को मापते हैं वह समान होता है। X पर मेट्रिक्स का एक तुल्यता वर्ग चुनना, अनुरूप संरचना का अतिरिक्त आधार है।

एक सम्मिश्र संरचना सम्मिश्र समष्टि पर दिए गए मानक यूक्लिडियन मीट्रिक को चुनकर और चार्ट के माध्यम से इसे X तक ले जाकर एक अनुरूप संरचना को जन्म देती है। यह दिखाना कि एक अनुरूप संरचना एक सम्मिश्र संरचना को निर्धारित करती है, अधिक कठिन है।[1]


उदाहरण

रीमैन क्षेत्र।
एक टोरस।
  • जटिल तल सी सबसे बुनियादी रीमैन सतह है। चित्र f(z) = z (पहचान मानचित्र) C के लिए एक चार्ट को परिभाषित करता है, और {f} C के लिए एक एटलस है। चित्र g(z) = z* (संयुग्म मानचित्र) C पर एक चार्ट भी परिभाषित करता है और {g} C के लिए एक एटलस है। चार्ट f और g संगत नहीं हैं, इसलिए यह सी को दो अलग-अलग रीमैन सतह संरचनाओं के साथ संपन्न करता है। वास्तव में, एक रीमैन सतह X और उसके एटलस A दिए जाने पर, संयुग्मी एटलस B = {f* : f ∈ A} कभी भी A के साथ संगत नहीं है, और X को एक अलग, असंगत रीमैन संरचना के साथ प्रदान करता है।
  • इसी तरह, जटिल विमान के प्रत्येक गैर-खाली खुले उपसमुच्चय को प्राकृतिक तरीके से रीमैन सतह के रूप में देखा जा सकता है। अधिक आम तौर पर, रीमैन सतह का प्रत्येक गैर-खाली खुला उपसमुच्चय एक रीमैन सतह होता है।
  • मान लीजिए कि S = C ∪ {∞} और f(z) = z जहाँ z, S \ {∞} में है और g(z) = 1 / z जहाँ z, S \ {0} में है और 1/∞ को परिभाषित किया गया है 0 हो। फिर f और g चार्ट हैं, वे संगत हैं, और { f, g } S के लिए एक एटलस है, जो S को रीमैन सतह बनाता है। इस विशेष सतह को रीमैन क्षेत्र कहा जाता है क्योंकि इसकी व्याख्या गोले के चारों ओर जटिल तल को लपेटने के रूप में की जा सकती है। जटिल विमान के विपरीत, यह कॉम्पैक्ट है।
  • कॉम्पैक्ट रीमैन सतहों के सिद्धांत को प्रोजेक्टिव बीजगणितीय वक्र के बराबर दिखाया जा सकता है जो जटिल संख्याओं और गैर-एकवचन पर परिभाषित होते हैं। उदाहरण के लिए, टोरस C/(Z + τ Z), जहां τ एक जटिल गैर-वास्तविक संख्या है, जाली Z + τ Z से जुड़े वीयरस्ट्रैस अंडाकार गतिविधि के माध्यम से, एक समीकरण द्वारा दिए गए अण्डाकार वक्र से मेल खाती है

    y2 = x3 + a x + b. टोरी जीनस वन की एकमात्र रीमैन सतहें हैं, उच्च जेनेरा की सतहें हाइपरेलिप्टिक सतहों द्वारा प्रदान की जाती हैं y2 = P(x),

    जहाँ P घात 2g + 1 का एक सम्मिश्र बहुपद है।
  • सभी कॉम्पैक्ट रीमैन सतहें बीजगणितीय वक्र क्योंकि उन्हें कुछ कुछ {\displaystyle \mathbb {CP} ^{n}}{\mathbb {CP}}^{n} में एम्बेड किया जा सकता है। यह कोडैरा एम्बेडिंग प्रमेय से आता है और तथ्य यह है कि किसी भी जटिल वक्र पर एक सकारात्मक रेखा बंडल मौजूद होता है।
  • विश्लेषणात्मक निरंतरता द्वारा गैर-कॉम्पैक्ट रीमैन सतहों के महत्वपूर्ण उदाहरण प्रदान किए जाते हैं।


आगे की परिभाषाएं और गुण

जैसा कि सम्मिश्र मैनिफोल्ड के बीच किसी भी मानचित्र के साथ होता है, एक फ़ंक्शन f: M → N दो रीमैन पृष्ठीयों M और N के बीच होलोमोर्फिक कहा जाता है यदि M के एटलस में हर चार्ट g के लिए और N के एटलस में हर चार्ट h के लिए, मैप h ∘ f ∘ g−1 होलोमॉर्फिक है (C से C तक के फलन के रूप में) जहाँ भी यह परिभाषित है। दो होलोमोर्फिक मानचित्रों की संरचना होलोमोर्फिक है। दो रीमैन पृष्ठीयों M और N को बायोमोर्फिज्म कहा जाता है (या अनुरूप रूप से समकक्ष दृष्टिकोण पर जोर देने के लिए समतुल्य) ' यदि एम से एन तक एक विशेषण होलोमोर्फिक फ़ंक्शन मौजूद है जिसका व्युत्क्रम भी होलोमोर्फिक है (यह पता चला है कि बाद की स्थिति स्वचालित है और कर सकते हैं इसलिए छोड़ दिया जाए)। दो अनुरूप रूप से समकक्ष रीमैन पृष्ठीयें सभी व्यावहारिक उद्देश्यों के लिए समान हैं।

ओरिएंटेबिलिटी

प्रत्येक रीमैन पृष्ठीय, एक सम्मिश्र मैनिफोल्ड होने के नाते, वास्तविक मैनिफोल्ड के रूप में उन्मुख है। ट्रांज़िशन फ़ंक्शन h = f(g−1(z)) के साथ सम्मिश्र चार्ट f और g के लिए, h को R2 से R2 के एक खुले सेट से एक मानचित्र के रूप में माना जा सकता है जिसका जेकोबियन बिंदु z में केवल वास्तविक रेखीय मानचित्र द्वारा दिया गया है सम्मिश्र संख्या h'(z) से गुणा करना। हालांकि, एक सम्मिश्र संख्या α द्वारा गुणन का वास्तविक निर्धारक |α|2 के बराबर है, इसलिए h के जैकोबियन में सकारात्मक निर्धारक है। परिणाम स्वरुप,सम्मिश्र एटलस एक उन्मुख एटलस है।

फलन

प्रत्येक गैर-कॉम्पैक्ट रीमैन पृष्ठीय गैर-निरंतर होलोमोर्फिक फलन (C में मूल्यों के साथ) को स्वीकार करती है। वास्तव में, प्रत्येक गैर-कॉम्पैक्ट रीमैन पृष्ठीय एकस्टीन मैनिफोल्ड है।

इसके विपरीत, एक कॉम्पैक्ट रीमैन पृष्ठीय X पर C में मूल्यों के साथ प्रत्येक होलोमोर्फिक फ़ंक्शन अधिकतम सिद्धांत के कारण स्थिर है। जबकि, हमेशा गैर-निरंतर मेरोमोर्फिक फ़ंक्शन मौजूद होते हैं (रिमेंन क्षेत्र सी ∪ {∞} में मूल्यों के साथ होलोमोर्फिक फ़ंक्शन)। अधिक सटीक रूप से, X की बीजगणितीय किस्म का फलन क्षेत्र C(t) का एक परिमित क्षेत्र विस्तार है, फ़ंक्शन फ़ील्ड एक चर में है, यानी कोई भी दो मेरोमॉर्फिक फ़ंक्शन बीजगणितीय रूप से निर्भर होते हैं। यह कथन उच्च आयामों का सामान्यीकरण करता है, सीगल (1955)देखें. रीमैन थीटा समारोह और पृष्ठीय के एबेल-जैकोबी मानचित्र के संदर्भ में मेरोमोर्फिक फलन को काफी स्पष्ट रूप से दिया जा सकता है।

विश्लेषणात्मक बनाम बीजीय

गैर-निरंतर मेरोमोर्फिक फलन का अस्तित्व यह दिखाने के लिए इस्तेमाल किया जा सकता है कि कोई भी कॉम्पैक्ट रीमैन पृष्ठीय एक प्रक्षेपी विविधता है, अर्थात एक प्रक्षेप्य समष्टि के अंदर बहुपद समीकरणों द्वारा दिया जा सकता है। वास्तव में, यह दिखाया जा सकता है कि प्रत्येक कॉम्पैक्ट रीमैन पृष्ठीय को सम्मिश्र प्रक्षेप्य समष्टि प्रोजेक्टिव 3-स्पेस में निमज्जन (गणित) किया जा सकता है। यह एक आश्चर्यजनक प्रमेय है: रीमैन पृष्ठीयों को समष्टिीय रूप से पैचिंग चार्ट द्वारा दिया जाता है। यदि एक वैश्विक स्थिति, अर्थात् सघनता, को जोड़ा जाता है, तो पृष्ठीय आवश्यक रूप से बीजगणितीय होती है। रीमैन पृष्ठीयों की यह विशेषता किसी को विश्लेषणात्मक ज्यामिति या बीजीय ज्यामिति के माध्यम से उनका अध्ययन करने की अनुमति देती है। उच्च-आयामी वस्तुओं के लिए संबंधित कथन गलत है, यानी कॉम्पैक्ट कॉम्प्लेक्स 2-मैनिफोल्ड हैं जो बीजगणितीय नहीं हैं। दूसरी ओर, प्रत्येक प्रक्षेपी सम्मिश्र कई गुना अनिवार्य रूप से बीजगणितीय ज्यामिति है, चाउ के प्रमेय देखें।

एक उदाहरण के रूप में, टोरस T := C/(Z + τ Z).पर विचार करे । वीयरस्ट्रैस अण्डाकार फलन जाली Z + τ Z से संबंधित है, Z T पर एक मेरोमॉर्फिक फ़ंक्शन है। यह फ़ंक्शन और इसका व्युत्पन्न T का फलन क्षेत्र उत्पन्न करता है। एक समीकरण है

जहां गुणांक g2 और g3 पर निर्भर करता है, इस प्रकार एक अण्डाकार वक्रEτ देता है बीजगणितीय ज्यामिति के अर्थ में इसे उलटना j-invariant j(E) द्वारा पूरा किया जाता है, जिसका उपयोग τ और इसलिए एक टोरस निर्धारित करने के लिए किया जा सकता है।

रीमैन पृष्ठीयों का वर्गीकरण

सभी रीमैन पृष्ठीयों के सेट को तीन उपसमुच्चय में विभाजित किया जा सकता है: अतिशयोक्तिपूर्ण, परवलयिक और अण्डाकार रीमैन पृष्ठीयें। ज्यामितीय रूप से, ये नकारात्मक, लुप्त या सकारात्मक निरंतर अनुभागीय वक्रता वाली पृष्ठीयों के अनुरूप होते हैं। यानी हर जुड़ी हुई रीमैन पृष्ठीय निरंतर वक्रता के साथ एक अद्वितीय पूर्णता (टोपोलॉजी) 2-आयामी वास्तविक रीमैनियन मैनिफोल्ड स्वीकार करता है या जो रीमैनियन मेट्रिक्स के अनुरूप वर्ग से संबंधित है जो इसकी संरचना द्वारा रीमैन पृष्ठीय के रूप में निर्धारित किया गया है। इसे इज़ोटेर्मल निर्देशांक के अस्तित्व के परिणाम के रूप में देखा जा सकता है।

सम्मिश्र विश्लेषणात्मक शब्दों में, पोंकारे-कोएबे एकरूपता प्रमेय (रीमैन मैपिंग प्रमेय का एक सामान्यीकरण) बताता है कि प्रत्येक बस जुड़ा हुआ रीमैन पृष्ठीय निम्नलिखित में से एक के अनुरूप है:

  • रिमेंन क्षेत्र , जो सम्मिश्र प्रक्षेप्य रेखा के समरूपी है|;
  • सम्मिश्र समष्टि ;
  • खुली डिस्क जो ऊपरी आधे तल के समरूपी है .

एक रीमैन पृष्ठीय अण्डाकार, परवलयिक या अतिशयोक्तिपूर्ण है कि क्या इसका सार्वभौमिक आवरण समरूप है , या . प्रत्येक वर्ग के तत्व अधिक सटीक विवरण स्वीकार करते हैं।

अण्डाकार रीमैन पृष्ठीय

रीमैन क्षेत्र एकमात्र उदाहरण है, क्योंकि कोई समूह (गणित) समूह क्रिया (गणित) नहीं है, जो कि बायोलोमोर्फिक परिवर्तनों द्वारा समूह_एक्शन_ (गणित) # प्रकार_ऑफ_एक्शन और ग्रुप_एक्शन_ (गणित) # प्रकार_ऑफ_एक्शन और इसलिए कोई भी रीमैन पृष्ठीय जिसका सार्वभौमिक कवर आइसोमॉर्फिक है इसके लिए स्वयं समरूपी होना चाहिए।

परवलयिक रीमैन पृष्ठीय

यदि एक रीमैन पृष्ठीय है जिसका सार्वभौमिक आवरण सम्मिश्र तल के लिए समरूप है तो यह निम्नलिखित पृष्ठीयों में से एक के लिए आइसोमॉर्फिक है:

  • अपने आप;
  • भागफल ;
  • एक भागफल कहाँ पे साथ .

टोपोलॉजिकल रूप से केवल तीन प्रकार होते हैं: प्लेन, सिलेंडर और टोरस। लेकिन जबकि दो पूर्व मामलों में (परवलयिक) रीमैन पृष्ठीय संरचना अद्वितीय है, पैरामीटर बदलती है तीसरे मामले में गैर-आइसोमोर्फिक रीमैन पृष्ठीय देता है। पैरामीटर द्वारा विवरण चिह्नित रीमैन पृष्ठीयों का टेचमुलर समष्टि देता है (रिमेंन पृष्ठीय संरचना के अलावा एक अंकन का टोपोलॉजिकल डेटा जोड़ता है, जिसे टोरस के लिए एक निश्चित होमोमोर्फिज्म के रूप में देखा जा सकता है)। विश्लेषणात्मक मोडुलि स्पेस (अंकन को भूलकर) प्राप्त करने के लिए एक पृष्ठीय के मानचित्रण वर्ग समूह द्वारा टेकमुलर स्पेस का भागफल लेता है। इस मामले में यह मॉड्यूलर वक्र है।

अतिशयोक्तिपूर्ण रीमैन पृष्ठीय

शेष मामलों में एक अतिशयोक्तिपूर्ण रीमैन पृष्ठीय है, जो कि फुच्सियन समूह द्वारा ऊपरी आधे-तल के भागफल के लिए समरूप है (इसे कभी-कभी पृष्ठीय के लिए फुच्सियन मॉडल कहा जाता है)। टोपोलॉजिकल प्रकार टोरस और गोले को बचाने के लिए कोई भी उन्मुख पृष्ठीय हो सकती है।

विशेष रुचि का मामला तब होता है जब कॉम्पैक्ट है। फिर इसके टोपोलॉजिकल प्रकार का वर्णन इसके जीनस द्वारा किया जाता है . इसका टेकमुलर स्पेस और मोडुली स्पेस हैं -आयामी। परिमित प्रकार की रीमैन पृष्ठीयों का एक समान वर्गीकरण (जो कि एक बंद पृष्ठीय के लिए होमियोमॉर्फिक है, अंकों की एक सीमित संख्या घटाकर) दिया जा सकता है। हालांकि सामान्य तौर पर इस तरह के विवरण को स्वीकार करने के लिए अनंत टोपोलॉजिकल प्रकार के रीमैन पृष्ठीयों का मॉड्यूल स्पेस बहुत बड़ा है।

रीमैन पृष्ठीयों के बीच मानचित्र

ज्यामितीय वर्गीकरण रीमैन पृष्ठीयों के बीच के नक्शों में परिभाषित होता है, जैसा कि लिउविल के प्रमेय में परिभाषित है। लिउविल की प्रमेय और लिटिल पिकार्ड प्रमेय : हाइपरबोलिक और परवलयिक से अण्डाकार के नक्शे आसान हैं, लेकिन अण्डाकार से परवलयिक या परवलयिक से हाइपरबोलिक के नक्शे हैं आम तौर पर स्थिर गोले के समष्टि में डिस्क सम्मलित होता है: लेकिन गोले से समष्टि तक होलोमोर्फिक नक्शा स्थिर है, समष्टि से यूनिट डिस्क में भी होलोमोर्फिक नक्शा स्थिर है, और वास्तव में समष्टि में होलोमोर्फिक नक्शा शून्य से दो तक अंक स्थिर है!

पंचर गोले

रीमैन क्षेत्र पर विचार करके कई पंचर के साथ इन कथनों को स्पष्ट किया गया है। यह रीमैन क्षेत्र है,जो बिना पंचर के जो अण्डाकार है। यह सम्मिश्र तल है पंचर के साथ,अनंत पर रखा जा सकता है, जो परवलयिक है। दो पंक्चर के साथ, यह पंचर प्लेन या वैकल्पिक रूप से एनलस या सिलेंडर है, जो दो पंक्चर के साथ परवलयिक होता है।पैंट की जोड़ी (गणित) की तुलना करें तीन से अधिक पंचर के साथ, यह अतिशयोक्तिपूर्ण है। घातांक मानचित्र के माध्यम से कोई एक पंचर से दो तक मानचित्र बना सकता है (जो संपूर्ण है और अनंत पर एक आवश्यक विलक्षणता है, इसलिए अनंत पर परिभाषित नहीं है, और शून्य और अनंत को याद करता है), लेकिन सभी मानचित्र शून्य पंचर से एक या अधिक तक, या एक या दो पंचर से तीन या अधिक स्थिर होते हैं।

रामिफाइड कवरिंग स्पेस

इस नस में जारी रखते हुए, कॉम्पैक्ट रीमैन पृष्ठीयों को निचले जीनस की पृष्ठीयों पर मैप किया जा सकता है, लेकिन उच्च जीनस के लिए नहीं, निरंतर नक्शे को छोड़कर। ऐसा इसलिए है क्योंकि होलोमोर्फिक और मेरोमोर्फिक मानचित्र समष्टिीय रूप से व्यवहार करते हैं इसलिए गैर-स्थिर नक्शों को कवर करने वाले मानचित्रों को विस्तृत किया जाता है, और कॉम्पैक्ट रीमैन पृष्ठीयों के लिए ये बीजगणितीय टोपोलॉजी में रीमैन-हर्विट्ज़ सूत्र द्वारा विवश हैं, जो एक अंतरिक्ष की यूलर विशेषता और एक विस्तृत आवरण से संबंधित है।

उदाहरण के लिए, हाइपरबोलिक रीमैन पृष्ठीयों को गोले के रिक्त समष्टि को कवर किया जाता है (उनके पास गैर-स्थिर मेरोमोर्फिक फलन होते हैं), लेकिन क्षेत्र एक स्थिर के अलावा, उच्च जीनस पृष्ठीयों को कवर या अन्यथा मैप नहीं करता है।

रीमैन पृष्ठीयों की आइसोमेट्री

एक समान रीमैन पृष्ठीय का आइसोमेट्री समूह (समान रूप से, अनुरूप ऑटोमोर्फिज्म#ऑटोमोर्फिज्म_ग्रुप) इसकी ज्यामिति को दर्शाता है:

  • जीनस 0 - गोले का आइसोमेट्री समूह सम्मिश्र रेखा के प्रक्षेपी परिवर्तनों का मोबियस समूह है,
  • प्लेन का आइसोमेट्री ग्रुप उपसमूह फिक्सिंग इन्फिनिटी है, और पंचर प्लेन का सबग्रुप है जो इनवेरिएंट को छोड़कर केवल इन्फिनिटी और शून्य वाला सेट है: या तो उन दोनों को ठीक करना, या उन्हें इंटरचेंज करना (1/z)।
  • पोंकारे हाफ-प्लेन मॉडल का आइसोमेट्री ग्रुप|ऊपरी हाफ-प्लेन असली मोबियस ग्रुप है; यह डिस्क के ऑटोमोर्फिज्म समूह के साथ संयुग्मित है।
  • जीनस 1 - एक टोरस का आइसोमेट्री समूह सामान्य अनुवाद में है (एक एबेलियन किस्म के रूप में), हालांकि वर्ग जाली और हेक्सागोनल जाली में 90 ° और 60 ° से रोटेशन से अतिरिक्त समरूपता होती है।
  • जीनस जी ≥ 2 के लिए, आइसोमेट्री समूह परिमित है, और हर्विट्ज़ के ऑटोमोर्फिज्म प्रमेय द्वारा अधिकतम 84(g−1) का क्रम है; वे पृष्ठीयें जो इस बाध्यता को महसूस करती हैं, 'हर्विट्ज़ पृष्ठीयें' कहलाती हैं।
  • यह ज्ञात है कि प्रत्येक परिमित समूह को कुछ रीमैन पृष्ठीय के आइसोमेट्री के पूर्ण समूह के रूप में महसूस किया जा सकता है।[2]
    • जीनस 2 के लिए ऑर्डर 48 के साथ बोल्ज़ा पृष्ठीय द्वारा अधिकतम किया जाता है।
    • जीनस 3 के लिए ऑर्डर को क्लेन क्वार्टिक द्वारा अधिकतम किया गया है, ऑर्डर 168 के साथ; यह पहली हर्विट्ज़ पृष्ठीय है, और इसका ऑटोमोर्फिज्म समूह क्रम 168 के अद्वितीय सरल समूह के लिए समरूप है, जो दूसरा सबसे छोटा गैर-एबेलियन सरल समूह है। यह समूह PSL(2,7) और PSL(2,7)|PSL(3,2) दोनों के लिए समरूपी है।
    • जीनस 4 के लिए, ब्रिंग्स कर्व | ब्रिंग की पृष्ठीय एक अत्यधिक सममित पृष्ठीय है।
    • जीनस 7 के लिए ऑर्डर को मैकबीथ पृष्ठीय द्वारा अधिकतम किया जाता है, ऑर्डर 504 के साथ; यह दूसरी हर्विट्ज़ पृष्ठीय है, और इसका ऑटोमोर्फिज्म समूह पीएसएल (2,8) के लिए समरूप है, चौथा सबसे छोटा गैर-एबेलियन सरल समूह।

फंक्शन-सैद्धांतिक वर्गीकरण

ऊपर की वर्गीकरण योजना आमतौर पर जियोमीटर द्वारा उपयोग की जाती है। रीमैन पृष्ठीयों के लिए एक अलग वर्गीकरण है जो आमतौर पर सम्मिश्र विश्लेषकों द्वारा उपयोग किया जाता है। यह परवलयिक और अतिशयोक्तिपूर्ण के लिए एक अलग परिभाषा को नियोजित करता है। इस वैकल्पिक वर्गीकरण योजना में, एक रीमैन पृष्ठीय को परवलयिक कहा जाता है यदि पृष्ठीय पर कोई गैर-निरंतर नकारात्मक उपहार्मोनिक फलन नहीं होते हैं और अन्यथा इसे अतिपरवलयिक कहा जाता है।[3][4] हाइपरबोलिक पृष्ठीयों के इस वर्ग को आगे उपवर्गों में विभाजित किया गया है कि क्या नकारात्मक सबहार्मोनिक फलन के अलावा अन्य फलन समष्टि पतित हैं, उदा। रीमैन पृष्ठीय जिस पर सभी बंधे हुए होलोमोर्फिक फलन स्थिर होते हैं, या जिस पर सभी बाध्य हार्मोनिक फलन स्थिर होते हैं, या जिस पर सभी सकारात्मक हार्मोनिक फलन स्थिर होते हैं, आदि।

भ्रम से बचने के लिए, निरंतर वक्रता के मैट्रिक्स के आधार पर वर्गीकरण को ज्यामितीय वर्गीकरण कहते हैं, और फ़ंक्शन की गिरावट पर आधारित एक फ़ंक्शन-सैद्धांतिक वर्गीकरण को समष्टि देता है। उदाहरण के लिए, रीमैन पृष्ठीय जिसमें सभी सम्मिश्र संख्याएं शामिल हैं लेकिन 0 और 1 फ़ंक्शन-सैद्धांतिक वर्गीकरण में परवलयिक है लेकिन यह ज्यामितीय वर्गीकरण में अतिशयोक्तिपूर्ण है।

ऐसा देखें

रीमैन पृष्ठीयों के संबंध में प्रमेय

  • शाखा प्रमेय
  • हर्विट्ज़ की ऑटोमोर्फिज्म प्रमेय
  • रिमेंन पृष्ठीयों के लिए पहचान प्रमेय
  • रिमेंन-रोच प्रमेय
  • रिमेंन-हर्विट्ज़ फॉर्मूला

टिप्पणियाँ

  1. See (Jost 2006, Ch. 3.11) for the construction of a corresponding complex structure.
  2. Greenberg, L. (1974). "Maximal groups and signatures". असंतत समूह और रीमैन सर्फेस: मैरीलैंड विश्वविद्यालय में 1973 के सम्मेलन की कार्यवाही. Ann. Math. Studies. Vol. 79. pp. 207–226. ISBN 0691081387.
  3. Ahlfors, Lars; Sario, Leo (1960), Riemann Surfaces (1st ed.), Princeton, New Jersey: Princeton University Press, p. 204
  4. Rodin, Burton; Sario, Leo (1968), Principal Functions (1st ed.), Princeton, New Jersey: D. Von Nostrand Company, Inc., p. 199, ISBN 9781468480382


संदर्भ

बाहरी संबंध