लेवल सेट: Difference between revisions

From Vigyanwiki
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Short description|Subset of a function's domain on which its value is equal}}
{{for multi|कम्प्यूटेशनल तकनीक
|स्तर-सेट विधि
|बल क्षेत्रों की समतल सतहें
|समविभव सतह
}}
{{Use American English|date = April 2019}}


{{multiple image
|align=सही
|width=140
|image1=स्तर रैखिक कार्य सेट करता है 2d.svg
|caption1=के निरंतर स्लाइस पर अंक{{math|1=''x''{{sub|2}} = ''f'' (''x''{{sub|1}})}}.
|image2=स्तर रैखिक कार्य सेट करता है 3d.svg
|caption2=के निरंतर स्लाइस पर रेखाएँ {{math|1=''x''{{sub|3}} = ''f'' (''x''{{sub|1}}, ''x''{{sub|2}})}}.
|image3=स्तर रैखिक कार्य सेट करता है 4d.svg
|caption3=के लगातार स्लाइस पर विमान{{math|1=''x''{{sub|4}} = ''f'' (''x''{{sub|1}}, ''x''{{sub|2}}, ''x''{{sub|3}})}}.
|footer={{math|(''n'' − 1)}}-प्रपत्र के कार्यों के लिए आयामी स्तर सेट
{{math|1=''f'' (''x''{{sub|1}}, ''x''{{sub|2}}, …, ''x{{sub|n}}'') = ''a''{{sub|1}}''x''{{sub|1}} + ''a''{{sub|2}}''x''{{sub|2}} + ⋯ + ''a{{sub|n}}x{{sub|n}}''}} where {{math|''a''{{sub|1}}, ''a''{{sub|2}}, …, ''a{{sub|n}}''}} स्थिरांक हैं, में{{math|(''n'' + 1)}}-आयामी यूक्लिडियन अंतरिक्ष, के लिए {{math|1=''n'' = 1, 2, 3}}.}}


{{multiple image
|width=140
|align=सही
|image1=स्तर गैर-रैखिक फ़ंक्शन सेट करता है 2d.svg
|caption1=के निरंतर स्लाइस पर अंक {{math|1=''x''{{sub|2}} = ''f'' (''x''{{sub|1}})}}.
|image2=स्तर गैर-रैखिक फ़ंक्शन सेट करता है 3d.svg
|caption2=के निरंतर स्लाइस पर समोच्च वक्र{{math|1=''x''{{sub|3}} = ''f'' (''x''{{sub|1}}, ''x''{{sub|2}})}}.
|image3=स्तर गैर-रैखिक फ़ंक्शन सेट करता है 4d.svg
|caption3=के निरंतर स्लाइस पर घुमावदार सतहें
{{math|1=''x''{{sub|4}} = ''f'' (''x''{{sub|1}}, ''x''{{sub|2}}, ''x''{{sub|3}})}}.
|footer={{math|(''n'' − 1)}}-गैर-रैखिक कार्यों के आयामी स्तर सेट
{{math|''f'' (''x''{{sub|1}}, ''x''{{sub|2}}, …, ''x{{sub|n}}''}}) in {{math|(''n'' + 1)}}-आयामी यूक्लिडियन अंतरिक्ष, के लिए
{{math|1=''n'' = 1, 2, 3}}.}}
गणित में, वास्तविक-मूल्यवान फलन का स्तर समुच्चय  {{mvar|f}}  का {{mvar|n}} कई वास्तविक चरों का फलन एक समुच्चय है जहाँ फलन दिए गए स्थिरांक मान {{mvar|c}}  पर ले जाता है, अर्थात्:
गणित में, वास्तविक-मूल्यवान फलन का स्तर समुच्चय  {{mvar|f}}  का {{mvar|n}} कई वास्तविक चरों का फलन एक समुच्चय है जहाँ फलन दिए गए स्थिरांक मान {{mvar|c}}  पर ले जाता है, अर्थात्:


: <math> L_c(f) = \left\{ (x_1, \ldots, x_n)  \mid  f(x_1, \ldots, x_n) = c \right\}~, </math>
: <math> L_c(f) = \left\{ (x_1, \ldots, x_n)  \mid  f(x_1, \ldots, x_n) = c \right\}~, </math>
जब स्वतंत्र चरों की संख्या दो होती है, तो समूह को स्तर [[वक्र]] कहा जाता है, जिसे ''[[समोच्च रेखा]]''  या ''आइसोलाइन'' भी कहा जाता है; इसलिए एक स्तर वक्र दो चरों में एक समीकरण के सभी वास्तविक-मूल्यवान समाधानों का समुच्चय है {{math|''x''{{sub|1}}}} तथा {{math|''x''{{sub|2}}}}. जब {{math|1=''n'' = 3}}, एक स्तर समूह को स्तर की सतह (''[[isosurface|आइसोसफेस]]'') कहा जाता है; इसलिए स्तर की सतह तीन चर  ''x''<sub>1</sub>, ''x''<sub>2</sub> और ''x''<sub>3</sub> में समीकरण के सभी वास्तविक-मूल्यवान मूलों का समुच्चय है {{math|''x''{{sub|1}}}}, {{math|''x''{{sub|2}}}} तथा {{math|''x''{{sub|3}}}}. के उच्च मूल्यों के लिए {{mvar|n}}, स्तर समूह एक स्तर [[ऊनविम पृष्ठ]] है, एक समीकरण के सभी वास्तविक-मूल्यवान जड़ों का समूह है| n के उच्च मूल्यों के लिए, स्तर समूह एक स्तर हाइपरसफेस है,{{math|''n'' > 3}} चर में समीकरण की सभी वास्तविक मूल्यवान जड़ों का समूह है|
जब स्वतंत्र चरों की संख्या दो होती है, तो समूह को स्तर [[वक्र]] कहा जाता है, जिसे ''समोच्च रेखा''  या ''आइसोलाइन'' भी कहा जाता है; इसलिए एक स्तर वक्र दो चरों में एक समीकरण के सभी वास्तविक-मूल्यवान समाधानों का समुच्चय है {{math|''x''{{sub|1}}}} तथा {{math|''x''{{sub|2}}}}. जब {{math|1=''n'' = 3}}, एक स्तर समूह को स्तर की सतह (''[[isosurface|आइसोसफेस]]'') कहा जाता है; इसलिए स्तर की सतह तीन चर  ''x''<sub>1</sub>, ''x''<sub>2</sub> और ''x''<sub>3</sub> में समीकरण के सभी वास्तविक-मूल्यवान मूलों का समुच्चय है {{math|''x''{{sub|1}}}}, {{math|''x''{{sub|2}}}} तथा {{math|''x''{{sub|3}}}}. के उच्च मूल्यों के लिए {{mvar|n}}, स्तर समूह एक स्तर [[ऊनविम पृष्ठ]] है, एक समीकरण के सभी वास्तविक-मूल्यवान जड़ों का समूह है| n के उच्च मूल्यों के लिए, स्तर समूह एक स्तर हाइपरसफेस है,{{math|''n'' > 3}} चर में समीकरण की सभी वास्तविक मूल्यवान जड़ों का समूह है|


एक स्तर समूह [[फाइबर (गणित)|फाइबर]]  की एक विशेष स्तिथि है।
एक स्तर समूह [[फाइबर (गणित)|फाइबर]]  की एक विशेष स्तिथि है।
Line 53: Line 22:


== स्तर समूह के प्रति ढाल ==
== स्तर समूह के प्रति ढाल ==
[[Image:level grad.svg|right|thumb|एक फलन f पर विचार करें जिसका ग्राफ पहाड़ी जैसा दिखाई देता है। नीले वक्र स्तर सेट हैं; लाल वक्र ग्रेडिएंट की दिशा का अनुसरण करते हैं। सतर्क यात्री नीले रास्तों का अनुसरण करता है; बोल्ड हाइकर लाल रास्तों का अनुसरण करता है। ध्यान दें कि नीले और लाल रास्ते हमेशा समकोण पर काटते हैं।]]: [[प्रमेय]]: यदि  {{mvar|f}} अवकलनीय कार्य है, तो किसी बिंदु पर  {{mvar|f}}  का [[ढाल]] शून्य होता है, या उस बिंदु पर  {{mvar|f}}  के स्तर समूह के लंबवत होता है।
[[Image:level grad.svg|right|thumb|एक फलन f पर विचार करें जिसका ग्राफ पहाड़ी जैसा दिखाई देता है। नीले वक्र स्तर सेट हैं; लाल वक्र ग्रेडिएंट की दिशा का अनुसरण करते हैं। सतर्क यात्री नीले रास्तों का अनुसरण करता है; बोल्ड हाइकर लाल रास्तों का अनुसरण करता है। ध्यान दें कि नीले और लाल रास्ते हमेशा समकोण पर काटते हैं।]]: [[प्रमेय]]: यदि  {{mvar|f}} अवकलनीय कार्य है, तो किसी बिंदु पर  {{mvar|f}}  का ढाल शून्य होता है, या उस बिंदु पर  {{mvar|f}}  के स्तर समूह के लंबवत होता है।


इसका अर्थ समझने के लिए, कल्पना करें कि दो पर्वतारोही पहाड़ पर एक ही स्थान पर हैं। उनमें से एक बोल्ड है, और वह उस दिशा में जाने का निश्चय करता है जहां ढलान सबसे तेज है। दूसरा अधिक सतर्क है; वह न तो चढ़ना चाहता है और न ही उतरना, ऐसा रास्ता चुनना जो उसे उसी ऊंचाई पर रखे। हमारी सादृश्यता में, उपरोक्त प्रमेय कहता है कि दो पर्वतारोही एक दूसरे के लंबवत दिशाओं में प्रस्थान करेंगे।
इसका अर्थ समझने के लिए, कल्पना करें कि दो पर्वतारोही पहाड़ पर एक ही स्थान पर हैं। उनमें से एक बोल्ड है, और वह उस दिशा में जाने का निश्चय करता है जहां ढलान सबसे तेज है। दूसरा अधिक सतर्क है; वह न तो चढ़ना चाहता है और न ही उतरना, ऐसा रास्ता चुनना जो उसे उसी ऊंचाई पर रखे। हमारी सादृश्यता में, उपरोक्त प्रमेय कहता है कि दो पर्वतारोही एक दूसरे के लंबवत दिशाओं में प्रस्थान करेंगे।


इस प्रमेय का एक परिणाम यह है कि यदि  {{mvar|f}}  अवकलनीय है, तो स्तर समूह एक अतिसतह है  और  {{mvar|f}}. के [[महत्वपूर्ण बिंदु (गणित)|महत्वपूर्ण बिंदु]] के बाहर कई गुना है। एक महत्वपूर्ण बिंदु पर, एक स्तर समूह को बिंदु तक कम किया जा सकता है (उदाहरण के लिए स्थानीय  {{mvar|f}} ) एक स्व-[[प्रतिच्छेदन सिद्धांत|प्रतिच्छेदन बिंदु]]  या पुच्छल जैसी विलक्षणता हो सकती है।
इस प्रमेय का एक परिणाम यह है कि यदि  {{mvar|f}}  अवकलनीय है, तो स्तर समूह एक अतिसतह है  और  {{mvar|f}}. के महत्वपूर्ण बिंदु के बाहर कई गुना है। एक महत्वपूर्ण बिंदु पर, एक स्तर समूह को बिंदु तक कम किया जा सकता है (उदाहरण के लिए स्थानीय  {{mvar|f}} ) एक स्व-[[प्रतिच्छेदन सिद्धांत|प्रतिच्छेदन बिंदु]]  या पुच्छल जैसी विलक्षणता हो सकती है।


== उप स्तर और उत्तम स्तर समूह ==
== उप स्तर और उत्तम स्तर समूह ==
Line 72: Line 41:


: <math> \left\{ (x_1, \dots, x_n) \mid  f(x_1, \dots, x_n) > c \right\} </math>
: <math> \left\{ (x_1, \dots, x_n) \mid  f(x_1, \dots, x_n) > c \right\} </math>
[[गणितीय अनुकूलन]] में उप स्तर समूह महत्वपूर्ण हैं। अत्यधिक मूल्य प्रमेय द्वारा अर्ध-निरंतर कार्यों के लिए विस्तार | वीयरस्ट्रैस प्रमेय के द्वारा, कुछ [[खाली सेट|खाली समूह]] का [[पूरी तरह से घिरा हुआ सेट|पूरी तरह से घिरा हुआ समूह]] | गैर-रिक्त उप स्तर समूह  और फलन के निचले-अर्ध-निरंतरता का अर्थ है कि एक फलन अपने न्यूनतम को प्राप्त करता है। सभी उप स्तर समूह के [[उत्तल सेट|उत्तल समूह]] के कार्यों की विशेषता है। <ref>{{cite journal|last=Kiwiel|first=Krzysztof C.|title=क्वैसिकोनवेक्स मिनिमाइजेशन के लिए सबग्रेडिएंट विधियों का अभिसरण और दक्षता|journal=Mathematical Programming, Series A|publisher=Springer|location=Berlin, Heidelberg|issn=0025-5610|pages=1–25|volume=90|issue=1|doi=10.1007/PL00011414|year=2001|mr=1819784|s2cid=10043417}}</ref>
[[गणितीय अनुकूलन]] में उप स्तर समूह महत्वपूर्ण हैं। अत्यधिक मूल्य प्रमेय द्वारा अर्ध-निरंतर कार्यों के लिए विस्तार | वीयरस्ट्रैस प्रमेय के द्वारा, कुछ [[खाली सेट|खाली समूह]] का पूरी तरह से घिरा हुआ समूह गैर-रिक्त उप स्तर समूह  और फलन के निचले-अर्ध-निरंतरता का अर्थ है कि एक फलन अपने न्यूनतम को प्राप्त करता है। सभी उप स्तर समूह के [[उत्तल सेट|उत्तल समूह]] के कार्यों की विशेषता है। <ref>{{cite journal|last=Kiwiel|first=Krzysztof C.|title=क्वैसिकोनवेक्स मिनिमाइजेशन के लिए सबग्रेडिएंट विधियों का अभिसरण और दक्षता|journal=Mathematical Programming, Series A|publisher=Springer|location=Berlin, Heidelberg|issn=0025-5610|pages=1–25|volume=90|issue=1|doi=10.1007/PL00011414|year=2001|mr=1819784|s2cid=10043417}}</ref>




== यह भी देखें ==
== यह भी देखें ==
* [[एपिग्राफ (गणित)]]
* [[एपिग्राफ (गणित)]]
* [[स्तर-सेट विधि|स्तर-समूह विधि]]
* स्तर-समूह विधि
* [[स्तर सेट (डेटा संरचनाएं)|स्तर समूह (डेटा संरचनाएं)]]
* स्तर समूह (डेटा संरचनाएं)


==संदर्भ==
==संदर्भ==
{{Reflist}}
{{Reflist}}
[[Category:बहुभिन्नरूपी कलन]]


 
[[Category:All Wikipedia articles written in American English]]
[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with short description]]
[[Category:Created On 24/11/2022]]
[[Category:Created On 24/11/2022]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Pages with broken file links]]
[[Category:Short description with empty Wikidata description]]
[[Category:Use American English from April 2019]]
[[Category:बहुभिन्नरूपी कलन]]

Latest revision as of 15:27, 12 October 2023


गणित में, वास्तविक-मूल्यवान फलन का स्तर समुच्चय f का n कई वास्तविक चरों का फलन एक समुच्चय है जहाँ फलन दिए गए स्थिरांक मान c पर ले जाता है, अर्थात्:

जब स्वतंत्र चरों की संख्या दो होती है, तो समूह को स्तर वक्र कहा जाता है, जिसे समोच्च रेखा या आइसोलाइन भी कहा जाता है; इसलिए एक स्तर वक्र दो चरों में एक समीकरण के सभी वास्तविक-मूल्यवान समाधानों का समुच्चय है x1 तथा x2. जब n = 3, एक स्तर समूह को स्तर की सतह (आइसोसफेस) कहा जाता है; इसलिए स्तर की सतह तीन चर x1, x2 और x3 में समीकरण के सभी वास्तविक-मूल्यवान मूलों का समुच्चय है x1, x2 तथा x3. के उच्च मूल्यों के लिए n, स्तर समूह एक स्तर ऊनविम पृष्ठ है, एक समीकरण के सभी वास्तविक-मूल्यवान जड़ों का समूह है| n के उच्च मूल्यों के लिए, स्तर समूह एक स्तर हाइपरसफेस है,n > 3 चर में समीकरण की सभी वास्तविक मूल्यवान जड़ों का समूह है|

एक स्तर समूह फाइबर की एक विशेष स्तिथि है।

वैकल्पिक नाम

एक ट्रेफिल गाँठ के साथ एक समन्वय समारोह के स्तर की सतहों के चौराहे। लाल वक्र दर्शक के सबसे करीब होते हैं, जबकि पीले वक्र सबसे दूर होते हैं।

स्तर समूह कई अनुप्रयोगों में अधिकांशतः भिन्न -भिन्न नामों के अंतर्गत दिखाई देते हैं। उदाहरण के लिए, एक अंतर्निहित वक्र स्तर वक्र है,इसके परस्पर वक्रों को स्वतंत्र रूप से माना जाता है, इस बात पर बल देते हुए कि इस तरह के वक्र को एकअंतर्निहित समीकरण द्वारा परिभाषित किया गया है। समान रूप से, एक स्तर की सतह को कभी-कभी अंतर्निहित सतह या आइसोसफेस कहा जाता है।

आइसोकॉन्टूर नाम का भी उपयोग किया जाता है, जिसका अर्थ है समान ऊंचाई का समोच्च। विभिन्न अनुप्रयोग क्षेत्रों में, आइसोकॉन्टोर को विशिष्ट नाम प्राप्त हुए हैं, जो प्रायः माने गए फलन के मूल्यों की प्रकृति को प्रदर्शित करते हैं, जैसे कि आइसोबार (मौसम विज्ञान), आइसोथर्म (समोच्च रेखा), कंटूर लाइन प्रकार, आइसोक्रोन मानचित्र, समोत्पाद और उदासीनता वक्र।

उदाहरण

2-आयामी यूक्लिडियन दूरी पर विचार करें:

एक स्तर समूह इस फलन के उन बिंदुओं से मिलकर बनता है जो मूल से की दूरी पर स्थित होते हैं , जो एक वृत्त बनाता है। उदाहरण के लिए, , इसलिये . ज्यामितीय रूप से, इसका अर्थ है कि बिंदु मूल बिंदु पर केन्द्रित त्रिज्या 5 के वृत्त पर स्थित है। सामान्यतः , एक मीट्रिक समतल में एक क्षेत्र त्रिज्या के साथ पर केंद्रित है स्तर समूह के रूप में परिभाषित किया जा सकता है .

एक दूसरा उदाहरण दाईं ओर की आकृति में दिखाए गए हिममेलब्लौ के कार्य का प्लॉट है। दिखाया गया प्रत्येक वक्र फलन का एक स्तर वक्र है, और उन्हें लघुगणकीय रूप से स्थान दिया गया है: यदि एक वक्र का प्रतिनिधित्व करता है , वक्र सीधे भीतर दर्शाता है , और वक्र सीधे बाहर का प्रतिनिधित्व करता है .

हिमेलब्लाऊ का कार्य का लॉग-स्पेस लेवल कर्व प्लॉट[1]

स्तर समूह के प्रति ढाल

एक फलन f पर विचार करें जिसका ग्राफ पहाड़ी जैसा दिखाई देता है। नीले वक्र स्तर सेट हैं; लाल वक्र ग्रेडिएंट की दिशा का अनुसरण करते हैं। सतर्क यात्री नीले रास्तों का अनुसरण करता है; बोल्ड हाइकर लाल रास्तों का अनुसरण करता है। ध्यान दें कि नीले और लाल रास्ते हमेशा समकोण पर काटते हैं।

: प्रमेय: यदि f अवकलनीय कार्य है, तो किसी बिंदु पर f का ढाल शून्य होता है, या उस बिंदु पर f के स्तर समूह के लंबवत होता है।

इसका अर्थ समझने के लिए, कल्पना करें कि दो पर्वतारोही पहाड़ पर एक ही स्थान पर हैं। उनमें से एक बोल्ड है, और वह उस दिशा में जाने का निश्चय करता है जहां ढलान सबसे तेज है। दूसरा अधिक सतर्क है; वह न तो चढ़ना चाहता है और न ही उतरना, ऐसा रास्ता चुनना जो उसे उसी ऊंचाई पर रखे। हमारी सादृश्यता में, उपरोक्त प्रमेय कहता है कि दो पर्वतारोही एक दूसरे के लंबवत दिशाओं में प्रस्थान करेंगे।

इस प्रमेय का एक परिणाम यह है कि यदि f अवकलनीय है, तो स्तर समूह एक अतिसतह है और f. के महत्वपूर्ण बिंदु के बाहर कई गुना है। एक महत्वपूर्ण बिंदु पर, एक स्तर समूह को बिंदु तक कम किया जा सकता है (उदाहरण के लिए स्थानीय f ) एक स्व-प्रतिच्छेदन बिंदु या पुच्छल जैसी विलक्षणता हो सकती है।

उप स्तर और उत्तम स्तर समूह

फॉर्म का एक समूह

f का एक उप स्तर समूह (या, वैकल्पिक रूप से, एक निचला स्तर समूह या f का ट्रेंच) कहा जाता है। f का एक कठोर उप स्तर समूह है

उसी प्रकार

f का उत्तम स्तर समूह (या, वैकल्पिक रूप से, f का ऊपरी स्तर समूह ) कहा जाता है। और 'f' का एक कठोर उत्तम स्तर समूह है

गणितीय अनुकूलन में उप स्तर समूह महत्वपूर्ण हैं। अत्यधिक मूल्य प्रमेय द्वारा अर्ध-निरंतर कार्यों के लिए विस्तार | वीयरस्ट्रैस प्रमेय के द्वारा, कुछ खाली समूह का पूरी तरह से घिरा हुआ समूह गैर-रिक्त उप स्तर समूह और फलन के निचले-अर्ध-निरंतरता का अर्थ है कि एक फलन अपने न्यूनतम को प्राप्त करता है। सभी उप स्तर समूह के उत्तल समूह के कार्यों की विशेषता है। [2]


यह भी देखें

संदर्भ

  1. Simionescu, P.A. (2011). "प्रतिबंधित कार्यों और दो चरों की असमानताओं की कल्पना करने के लिए कुछ प्रगति". Journal of Computing and Information Science in Engineering. 11 (1). doi:10.1115/1.3570770.
  2. Kiwiel, Krzysztof C. (2001). "क्वैसिकोनवेक्स मिनिमाइजेशन के लिए सबग्रेडिएंट विधियों का अभिसरण और दक्षता". Mathematical Programming, Series A. Berlin, Heidelberg: Springer. 90 (1): 1–25. doi:10.1007/PL00011414. ISSN 0025-5610. MR 1819784. S2CID 10043417.