फलन प्रतिनिधित्व: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(9 intermediate revisions by 5 users not shown)
Line 1: Line 1:
फंक्शन प्रतिनिधित्व (एफआरईपी<ref>Shape Modeling and Computer Graphics with Real Functions, [http://www.hyperfun.org/F-rep.html FRep Home Page]</ref> या एफ-रेप) का उपयोग [[ठोस मॉडलिंग]], वॉल्यूम मॉडलिंग और [[ कंप्यूटर चित्रलेख ]] में किया जाता है। FRep को ज्यामितीय मॉडलिंग में फंक्शन प्रतिनिधित्व में प्रस्तुत  किया गया था: अवधारणाएँ, कार्यान्वयन और अनुप्रयोग <ref>A. Pasko, V. Adzhiev, A. Sourin, V. Savchenko, "Function representation in geometric modeling: concepts, implementation and applications", The Visual Computer, vol.11, no.8, 1995, pp.429-446.</ref> बहुआयामी ज्यामितीय वस्तुओं (आकृतियों) के समान प्रतिनिधित्व के रूप में। बहुआयामी अंतरिक्ष में बिंदु के रूप में वस्तु को निरंतर वास्तविक-मूल्यवान फ़ंक्शन द्वारा परिभाषित किया गया है <math>f(X)</math> बिंदु निर्देशांक <math>X[x_1,x_2, ..., x_n]</math> जिसका मूल्यांकन दिए गए बिंदु पर पेड़ के नोड्स में पत्तियों और संचालन के साथ वृक्ष संरचना को पार करने की प्रक्रिया द्वारा किया जाता है। के साथ अंक <math>f(x_1,x_2, ..., x_n) \ge 0</math> वस्तु से संबंधित है, और अंक के साथ <math>f(x_1,x_2, ..., x_n) < 0</math> वस्तु के बाहर हैं। के साथ सेट किया गया बिंदु <math>f(x_1,x_2, ..., x_n)=0</math> [[isosurface]] कहा जाता है।
'''फलन प्रतिनिधित्व''' <ref>Shape Modeling and Computer Graphics with Real Functions, [http://www.hyperfun.org/F-rep.html FRep Home Page]</ref>का उपयोग [[ठोस मॉडलिंग]], आयतन मॉडलिंग और [[ कंप्यूटर चित्रलेख |कंप्यूटर ग्राफिक्स]] में किया जाता है। एफआरईपी को ज्यामितीय मॉडलिंग में फलन प्रतिनिधित्व: अवधारणाएँ, कार्यान्वयन और अनुप्रयोग <ref>A. Pasko, V. Adzhiev, A. Sourin, V. Savchenko, "Function representation in geometric modeling: concepts, implementation and applications", The Visual Computer, vol.11, no.8, 1995, pp.429-446.</ref> बहुआयामी ज्यामितीय वस्तुओं (आकृतियों) के प्रतिनिधित्व के रूप में प्रदर्शित किया गया है। बहुआयामी अंतरिक्ष में बिंदु के रूप में वस्तु को निरंतर वास्तविक-मूल्यवान फ़ंक्शन <math>f(X)</math> बिंदु निर्देशांक <math>X[x_1,x_2, ..., x_n]</math> द्वारा परिभाषित किया गया है। जिसका मूल्यांकन दिए गए बिंदु पर प्रक्रिया द्वारा किया जाता है, जिसमें सर्वप्रथम पत्तियों में ट्री की संरचना को ज्ञात किया जाता है और नोड्स में संचालन किया जाता है। ट्री के साथ अंक है-
 
<math>f(x_1,x_2, ..., x_n) \ge 0</math> वस्तु से संबंधित है, और बिंदु के साथ होती है।
 
<math>f(x_1,x_2, ..., x_n) < 0</math> वस्तु के बाहर सेट किया गया बिंदु हैं।
 
<math>f(x_1,x_2, ..., x_n)=0</math> [[isosurface|आईएसओ सतह]] कहा जाता है।


== ज्यामितीय डोमेन ==
== ज्यामितीय डोमेन ==
3D अंतरिक्ष में FRep के ज्यामितीय डोमेन में फ़ंक्शन के शून्य मान द्वारा परिभाषित [[गैर-कई गुना मॉडल]] और निम्न-आयामी संस्थाओं (सतहों, वक्रों, बिंदुओं) के साथ ठोस सम्मलित हैं। प्रिमिटिव को समीकरण या  ब्लैक बॉक्स प्रक्रिया द्वारा परिभाषित किया जा सकता है, जो बिंदु निर्देशांक को फ़ंक्शन मान में परिवर्तित करता है। बीजगणितीय सतहों, कंकाल-आधारित [[निहित सतह]]ों, और कनवल्शन सतहों, साथ ही प्रक्रियात्मक वस्तुओं (जैसे ठोस शोर), और स्वर वस्तुओं से घिरे हुए ठोस पदार्थों को आदिम (निर्माण वृक्ष की पत्तियां) के रूप में उपयोग किया जा सकता है। वोक्सल ऑब्जेक्ट (असतत क्षेत्र) के मामले में, इसे निरंतर वास्तविक कार्य में परिवर्तित किया जाना चाहिए, उदाहरण के लिए, ट्रिलिनियर या उच्च-क्रम प्रक्षेप को लागू करके।
3डी अंतरिक्ष में एफआरईपी के ज्यामितीय डोमेन में फ़ंक्शन के शून्य मान द्वारा परिभाषित [[गैर-कई गुना मॉडल]] और निम्न-आयामी संस्थाओं (सतहों, वक्रों, बिंदुओं) के साथ सम्मलित हैं। सर्वप्रथम समीकरण को "ब्लैक बॉक्स" प्रक्रिया द्वारा परिभाषित किया जा सकता है, जो बिंदु निर्देशांक को फ़ंक्शन मान में परिवर्तित करता है। बीज गणितीय सतहों, स्केलेटन-आधारित [[निहित सतह|निहित सतहों]], और कनवल्शन सतहों, साथ ही प्रक्रियात्मक वस्तुओं (जैसे ठोस), और स्वर वस्तुओं से घिरे हुए ठोस पदार्थों को सर्वप्रथम (निर्माण वृक्ष की पत्तियां) के रूप में उपयोग किया जा सकता है। वोक्सल सर्वप्रथम (असतत क्षेत्र) की हानि में, इसे निरंतर वास्तविक कार्य में परिवर्तित किया जाना चाहिए, उदाहरण के लिए, ट्रिलिनियर या उच्च-क्रम प्रक्षेप को प्रारम्भ किया जाता है।
 
सेट-सैद्धांतिक, सम्मिश्रण, ऑफसेटिंग, प्रक्षेपण, गैर-रैखिक विकृति, परिवर्तन, व्यापक, हाइपरटेक्स्चरिंग और अन्य कई संचालन इस प्रतिनिधित्व के लिए इस प्रकार से तैयार किए गए हैं कि वे आउटपुट के रूप में निरंतर वास्तविक-मूल्यवान कार्य करते हैं, इस प्रकार प्रतिनिधित्व की बंद संपत्ति की गारंटी होती है। [[आर समारोह|आर फलन]] मूल रूप से वी.एल.में प्रस्तुत किए गए थे। रवाचेव के कुछ ज्यामितीय वस्तुओं के विश्लेषणात्मक विवरण पर,<ref>V.L. Rvachev, "On the analytical description of some geometric objects", Reports of Ukrainian Academy of Sciences, vol. 153, no. 4, 1963, pp. 765-767 (in Russian).</ref> प्रदान करते हैं।


सेट-सैद्धांतिक, सम्मिश्रण, ऑफसेटिंग, प्रक्षेपण, गैर-रैखिक विकृति, कायापलट, व्यापक, हाइपरटेक्स्चरिंग और अन्य जैसे कई संचालन इस प्रतिनिधित्व के लिए इस तरह से तैयार किए गए हैं कि वे आउटपुट के रूप में निरंतर वास्तविक-मूल्यवान कार्य करते हैं, इस प्रकार प्रतिनिधित्व की बंद संपत्ति की गारंटी। [[आर समारोह|आर फंक्शन]] मूल रूप से वी.एल. में प्रस्तुत  किए गए थे। रवाचेव के कुछ ज्यामितीय वस्तुओं के विश्लेषणात्मक विवरण पर,<ref>V.L. Rvachev, "On the analytical description of some geometric objects", Reports of Ukrainian Academy of Sciences, vol. 153, no. 4, 1963, pp. 765-767 (in Russian).</ref> उपलब्ध करवाना <math>C^k</math> सेट-सैद्धांतिक संचालन को परिभाषित करने वाले कार्यों के लिए [[चिकना कार्य]] (न्यूनतम/अधिकतम कार्य विशेष मामला है)। इस संपत्ति के कारण, किसी समर्थित ऑपरेशन के परिणाम को बाद के ऑपरेशन के लिए इनपुट के रूप में माना जा सकता है; इस प्रकार कार्यात्मक अभिव्यक्ति से इस तरह बहुत जटिल मॉडल बनाए जा सकते हैं। FRep मॉडलिंग विशेष उद्देश्य वाली भाषा [[HyperFun]] द्वारा समर्थित है।
<math>C^k</math> सेट-सैद्धांतिक संचालन को परिभाषित करने वाले कार्यों के लिए [[चिकना कार्य|निरंतरता]] (न्यूनतम/अधिकतम कार्य विशेष स्थिति है)। इस संपत्ति के कारण, किसी समर्थित ऑपरेशन के परिणाम के पश्चात इनपुट के रूप में माना जा सकता है; इस प्रकार कार्यात्मक अभिव्यक्ति से इस प्रकार अधिक जटिल मॉडल बनाए जा सकते हैं। एफआरईपी मॉडलिंग विशेष उद्देश्य वाली लैंग्वेज [[HyperFun|हाइपरफन]] द्वारा समर्थित है।


== आकृति मॉडल ==
== आकृति मॉडल ==
FRep विभिन्न आकार के मॉडल को जोड़ता है और सामान्य करता है जैसे
एफआरईपी विभिन्न आकार के मॉडल को जोड़ता है और सामान्य करता है जैसे-
* बीजगणितीय सतहें
* बीजगणितीय सरफेस
* कंकाल आधारित अंतर्निहित सतहें
* स्केलेटन आधारित इम्प्लिसिट सरफेस
* सेट-सैद्धांतिक ठोस या सीएसजी ([[रचनात्मक ठोस ज्यामिति]])
* सेट-सैद्धांतिक ठोस या सीएसजी ([[रचनात्मक ठोस ज्यामिति]])
* झाडू
* स्वीप्स
* वॉल्यूमेट्रिक ऑब्जेक्ट्स
* वॉल्यूमेट्रिक ऑब्जेक्ट्स
* पैरामीट्रिक मॉडल
* पैरामीट्रिक मॉडल
* प्रक्रियात्मक मॉडल
* प्रक्रियात्मक मॉडल


अधिक सामान्य रचनात्मक हाइपरवॉल्यूम<ref>A. Pasko, V. Adzhiev, B. Schmitt, C. Schlick, "Constructive hypervolume modelling", Graphical Models, 63(6), 2001, pp. 413-442.</ref> विशेषताओं के साथ बहुआयामी बिंदु सेट मॉडलिंग के लिए अनुमति देता है (3डी केस में वॉल्यूम मॉडल)। बिंदु सेट ज्यामिति और विशेषताओं का स्वतंत्र प्रतिनिधित्व होता है लेकिन समान रूप से व्यवहार किया जाता है। मनमाना आयाम के ज्यामितीय स्थान में सेट वास्तविक वस्तु का FRep आधारित ज्यामितीय मॉडल है। विशेषता जो वास्तविक-मूल्यवान फ़ंक्शन (आवश्यक  नहीं कि निरंतर) द्वारा भी प्रस्तुत की जाती है, मनमाना प्रकृति (सामग्री, फोटोमेट्रिक, भौतिक, चिकित्सा, आदि) की वस्तु संपत्ति का गणितीय मॉडल है। विषम वस्तुओं के सेलुलर-कार्यात्मक मॉडलिंग में प्रस्तावित अंतर्निहित परिसर की अवधारणा<ref>V. Adzhiev, E. Kartasheva, T. Kunii, A. Pasko, B. Schmitt, "Cellular-functional modeling of heterogeneous objects", Proc. 7th ACM Symposium on Solid Modeling and Applications, Saarbrücken, Germany, ACM Press, 2002, pp. 192-203. 3-540-65620-0</ref> विषम वस्तु के ल सेलुलर-कार्यात्मक मॉडल में बहुभुज, पैरामीट्रिक और FRep घटकों को जोड़कर विभिन्न आयामों के ज्यामितीय तत्वों को सम्मलित करने के लिए ढांचा प्रदान करता है।
अधिक सामान्य रचनात्मक अति मात्रा<ref>A. Pasko, V. Adzhiev, B. Schmitt, C. Schlick, "Constructive hypervolume modelling", Graphical Models, 63(6), 2001, pp. 413-442.</ref> विशेषताओं के साथ बहुआयामी बिंदु सेट मॉडलिंग के लिए अनुमति देता है। बिंदु सेट ज्यामिति और विशेषताओं का स्वतंत्र प्रतिनिधित्व होता है। स्वेच्छानुसार आयाम के ज्यामितीय स्थान में सेट वास्तविक वस्तु का एफआरईपी आधारित ज्यामितीय मॉडल है। विशेषता जो वास्तविक-मूल्यवान फ़ंक्शन द्वारा भी प्रस्तुत की जाती है, स्वेच्छानुसार प्रकृति (सामग्री, फोटोमेट्रिक, भौतिक, चिकित्सा, आदि) की वस्तु संपत्ति का गणितीय मॉडल है। "विषम वस्तुओं के सेल्युलर-फंक्शनल मॉडलिंग" में प्रस्तावित "इम्प्लिसिट परिसर" की अवधारणा<ref>V. Adzhiev, E. Kartasheva, T. Kunii, A. Pasko, B. Schmitt, "Cellular-functional modeling of heterogeneous objects", Proc. 7th ACM Symposium on Solid Modeling and Applications, Saarbrücken, Germany, ACM Press, 2002, pp. 192-203. 3-540-65620-0</ref> एकल सेलुलर-कार्यात्मक मॉडल में बहुभुज, पैरामीट्रिक और एफआरईपी घटकों को जोड़कर विभिन्न आयामों के ज्यामितीय तत्वों को सम्मलित करने के लिए रूपरेखा प्रदान करती है।


== यह भी देखें ==
== यह भी देखें ==
Line 22: Line 30:
* [[सीमा प्रतिनिधित्व]]
* [[सीमा प्रतिनिधित्व]]
* रचनात्मक ठोस ज्यामिति
* रचनात्मक ठोस ज्यामिति
* ठोस मॉडलिंग
* सॉलिड मॉडलिंग
* आइसोसफेस
* आइसोसफेस
* [[हस्ताक्षरित दूरी समारोह|हस्ताक्षरित दूरी फंक्शन]]
* [[हस्ताक्षरित दूरी समारोह|साइंड डिस्टेंस फलन]]
* हाइपरफन
* हाइपरफन
* [[डिजिटल भौतिककरण]]
* [[डिजिटल भौतिककरण]]
Line 37: Line 45:
* http://libfive.com/
* http://libfive.com/
* http://www.implicitcad.org/
* http://www.implicitcad.org/
[[Category: ज्यामितीय एल्गोरिदम]] [[Category: कंप्यूटर चित्रलेख]] [[Category: 3 डी कंप्यूटर ग्राफिक्स]]


[[Category: Machine Translated Page]]
[[Category:3 डी कंप्यूटर ग्राफिक्स]]
[[Category:Created On 01/03/2023]]
[[Category:Created On 01/03/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:कंप्यूटर चित्रलेख]]
[[Category:ज्यामितीय एल्गोरिदम]]

Latest revision as of 16:26, 12 October 2023

फलन प्रतिनिधित्व [1]का उपयोग ठोस मॉडलिंग, आयतन मॉडलिंग और कंप्यूटर ग्राफिक्स में किया जाता है। एफआरईपी को ज्यामितीय मॉडलिंग में फलन प्रतिनिधित्व: अवधारणाएँ, कार्यान्वयन और अनुप्रयोग [2] बहुआयामी ज्यामितीय वस्तुओं (आकृतियों) के प्रतिनिधित्व के रूप में प्रदर्शित किया गया है। बहुआयामी अंतरिक्ष में बिंदु के रूप में वस्तु को निरंतर वास्तविक-मूल्यवान फ़ंक्शन बिंदु निर्देशांक द्वारा परिभाषित किया गया है। जिसका मूल्यांकन दिए गए बिंदु पर प्रक्रिया द्वारा किया जाता है, जिसमें सर्वप्रथम पत्तियों में ट्री की संरचना को ज्ञात किया जाता है और नोड्स में संचालन किया जाता है। ट्री के साथ अंक है-

वस्तु से संबंधित है, और बिंदु के साथ होती है।

वस्तु के बाहर सेट किया गया बिंदु हैं।

आईएसओ सतह कहा जाता है।

ज्यामितीय डोमेन

3डी अंतरिक्ष में एफआरईपी के ज्यामितीय डोमेन में फ़ंक्शन के शून्य मान द्वारा परिभाषित गैर-कई गुना मॉडल और निम्न-आयामी संस्थाओं (सतहों, वक्रों, बिंदुओं) के साथ सम्मलित हैं। सर्वप्रथम समीकरण को "ब्लैक बॉक्स" प्रक्रिया द्वारा परिभाषित किया जा सकता है, जो बिंदु निर्देशांक को फ़ंक्शन मान में परिवर्तित करता है। बीज गणितीय सतहों, स्केलेटन-आधारित निहित सतहों, और कनवल्शन सतहों, साथ ही प्रक्रियात्मक वस्तुओं (जैसे ठोस), और स्वर वस्तुओं से घिरे हुए ठोस पदार्थों को सर्वप्रथम (निर्माण वृक्ष की पत्तियां) के रूप में उपयोग किया जा सकता है। वोक्सल सर्वप्रथम (असतत क्षेत्र) की हानि में, इसे निरंतर वास्तविक कार्य में परिवर्तित किया जाना चाहिए, उदाहरण के लिए, ट्रिलिनियर या उच्च-क्रम प्रक्षेप को प्रारम्भ किया जाता है।

सेट-सैद्धांतिक, सम्मिश्रण, ऑफसेटिंग, प्रक्षेपण, गैर-रैखिक विकृति, परिवर्तन, व्यापक, हाइपरटेक्स्चरिंग और अन्य कई संचालन इस प्रतिनिधित्व के लिए इस प्रकार से तैयार किए गए हैं कि वे आउटपुट के रूप में निरंतर वास्तविक-मूल्यवान कार्य करते हैं, इस प्रकार प्रतिनिधित्व की बंद संपत्ति की गारंटी होती है। आर फलन मूल रूप से वी.एल.में प्रस्तुत किए गए थे। रवाचेव के कुछ ज्यामितीय वस्तुओं के विश्लेषणात्मक विवरण पर,[3] प्रदान करते हैं।

सेट-सैद्धांतिक संचालन को परिभाषित करने वाले कार्यों के लिए निरंतरता (न्यूनतम/अधिकतम कार्य विशेष स्थिति है)। इस संपत्ति के कारण, किसी समर्थित ऑपरेशन के परिणाम के पश्चात इनपुट के रूप में माना जा सकता है; इस प्रकार कार्यात्मक अभिव्यक्ति से इस प्रकार अधिक जटिल मॉडल बनाए जा सकते हैं। एफआरईपी मॉडलिंग विशेष उद्देश्य वाली लैंग्वेज हाइपरफन द्वारा समर्थित है।

आकृति मॉडल

एफआरईपी विभिन्न आकार के मॉडल को जोड़ता है और सामान्य करता है जैसे-

  • बीजगणितीय सरफेस
  • स्केलेटन आधारित इम्प्लिसिट सरफेस
  • सेट-सैद्धांतिक ठोस या सीएसजी (रचनात्मक ठोस ज्यामिति)
  • स्वीप्स
  • वॉल्यूमेट्रिक ऑब्जेक्ट्स
  • पैरामीट्रिक मॉडल
  • प्रक्रियात्मक मॉडल

अधिक सामान्य रचनात्मक अति मात्रा[4] विशेषताओं के साथ बहुआयामी बिंदु सेट मॉडलिंग के लिए अनुमति देता है। बिंदु सेट ज्यामिति और विशेषताओं का स्वतंत्र प्रतिनिधित्व होता है। स्वेच्छानुसार आयाम के ज्यामितीय स्थान में सेट वास्तविक वस्तु का एफआरईपी आधारित ज्यामितीय मॉडल है। विशेषता जो वास्तविक-मूल्यवान फ़ंक्शन द्वारा भी प्रस्तुत की जाती है, स्वेच्छानुसार प्रकृति (सामग्री, फोटोमेट्रिक, भौतिक, चिकित्सा, आदि) की वस्तु संपत्ति का गणितीय मॉडल है। "विषम वस्तुओं के सेल्युलर-फंक्शनल मॉडलिंग" में प्रस्तावित "इम्प्लिसिट परिसर" की अवधारणा[5] एकल सेलुलर-कार्यात्मक मॉडल में बहुभुज, पैरामीट्रिक और एफआरईपी घटकों को जोड़कर विभिन्न आयामों के ज्यामितीय तत्वों को सम्मलित करने के लिए रूपरेखा प्रदान करती है।

यह भी देखें

संदर्भ

  1. Shape Modeling and Computer Graphics with Real Functions, FRep Home Page
  2. A. Pasko, V. Adzhiev, A. Sourin, V. Savchenko, "Function representation in geometric modeling: concepts, implementation and applications", The Visual Computer, vol.11, no.8, 1995, pp.429-446.
  3. V.L. Rvachev, "On the analytical description of some geometric objects", Reports of Ukrainian Academy of Sciences, vol. 153, no. 4, 1963, pp. 765-767 (in Russian).
  4. A. Pasko, V. Adzhiev, B. Schmitt, C. Schlick, "Constructive hypervolume modelling", Graphical Models, 63(6), 2001, pp. 413-442.
  5. V. Adzhiev, E. Kartasheva, T. Kunii, A. Pasko, B. Schmitt, "Cellular-functional modeling of heterogeneous objects", Proc. 7th ACM Symposium on Solid Modeling and Applications, Saarbrücken, Germany, ACM Press, 2002, pp. 192-203. 3-540-65620-0


बाहरी संबंध