समुद्री ऊर्जा: Difference between revisions

From Vigyanwiki
No edit summary
 
(13 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{short description|Energy stored in the waters of oceans}}
{{Sustainable energy|expanded=नवीकरणीय ऊर्जा}}
{{Sustainable energy|expanded=नवीकरणीय ऊर्जा}}
समुद्री ऊर्जा या समुद्री शक्ति (जिसे कभी-कभी[[ सागर | महासागरीय]] ऊर्जा, महासागरीय शक्ति, या समुद्री और जलीय ऊर्जा के रूप में भी जाना जाता है) [[ समुद्र की लहर |समुद्र की लहरों]], [[ज्वार]], [[लवणता]] और [[ महासागर तापीय ऊर्जा | समुद्र]] के [[तापमान]] के [[अंतर]] से होने वाली ऊर्जा को संदर्भित करती है। दुनिया के महासागरों में पानी की गति,[[ गतिज ऊर्जा | गतिज ऊर्जा]], या गति में ऊर्जा का एक विशाल भंडार बनाती है। इस ऊर्जा में से कुछ का उपयोग  बिजली घरों, परिवहन और उद्योगों को [[बिजली पैदा]] करने के लिए किया जा सकता है।
समुद्री ऊर्जा या समुद्री शक्ति (जिसे कभी-कभी[[ सागर | महासागरीय]] ऊर्जा, महासागरीय शक्ति, या समुद्री और जलीय ऊर्जा के रूप में भी जाना जाता है) [[ समुद्र की लहर |समुद्र की लहरों]], [[ज्वार]], [[लवणता]] और [[ महासागर तापीय ऊर्जा | समुद्र]] के [[तापमान]] के [[अंतर]] से होने वाली ऊर्जा को संदर्भित करती है। दुनिया के महासागरों में पानी की गति[[ गतिज ऊर्जा | गतिज ऊर्जा]], या गति में ऊर्जा का एक विशाल भंडार बनाती है। इस ऊर्जा में से कुछ का उपयोग  बिजली घरों, परिवहन और उद्योगों में [[बिजली पैदा]] करने के लिए किया जा सकता है।


समुद्री ऊर्जा शब्द में[[ तरंग शक्ति ]]अर्थात सतही तरंगों से ऊर्जा, और [[ज्वारीय शक्ति|ज्वारीय ऊर्जा]] अर्थात गतिमान जल के बड़े पिंडों की गतिज ऊर्जा से प्राप्त ऊर्जा दोनों ऊर्जाए सम्मिलित हैं। [[ अपतटीय पवन ऊर्जा |अपतटीय पवन ऊर्जा]] समुद्री ऊर्जा का एक रूप नहीं है, क्योंकि पवन ऊर्जा [[पवन]] से प्राप्त होती है, भले ही [[पवन टर्बाइनों]] को पानी के ऊपर रखा गया हो।
समुद्री ऊर्जा शब्द में [[ तरंग शक्ति |तरंग शक्ति]] अर्थात सतही तरंगों से शक्ति, और [[ज्वारीय शक्ति]] अर्थात गतिमान जल के बड़े पिंडों की गतिज ऊर्जा से प्राप्त ऊर्जा दोनों ऊर्जाए सम्मिलित हैं। [[ अपतटीय पवन ऊर्जा |अपतटीय पवन ऊर्जा]] समुद्री ऊर्जा का एक रूप नहीं है, क्योंकि पवन ऊर्जा [[पवन]] से प्राप्त होती है, भले ही [[पवन टर्बाइनों]] को पानी के ऊपर रखा गया हो।


'''महासागरों में ऊर्जा की जबरदस्त मात्रा होती है और यदि अधिकांश केंद्रित आबादी नहीं तो बहुत से लोगों के करीब हैं'''। महासागरीय ऊर्जा में दुनिया भर में पर्याप्त मात्रा में नई [[ नवीकरणीय ऊर्जा ]]प्रदान करने की क्षमता है।<ref>Carbon Trust, ''Future Marine Energy. Results of the Marine Energy Challenge: Cost competitiveness and growth of wave and tidal stream energy'', January 2006</ref>
'''महासागरों में ऊर्जा की जबरदस्त मात्रा होती है और यदि अधिकांश केंद्रित आबादी नहीं तो बहुत से लोगों के करीब हैं'''। महासागरीय ऊर्जा में दुनिया भर में पर्याप्त मात्रा में नई [[ नवीकरणीय ऊर्जा ]]प्रदान करने की क्षमता है।<ref>Carbon Trust, ''Future Marine Energy. Results of the Marine Energy Challenge: Cost competitiveness and growth of wave and tidal stream energy'', January 2006</ref>
== वैश्विक क्षमता ==
== वैश्विक क्षमता ==


समुद्र के तापमान, लवणमात्रा, ज्वार की गति, धाराओं, लहरों और महातरंगो में परिवर्तन से उत्पन्न प्रति वर्ष 20,000-80,000 [[टेरावाट-घं]][[टे]] (टीडब्लूएच/वाय) बिजली विकसित करने की क्षमता है।<ref>{{cite web |url=https://www.iea.org/techinitiatives/renewableenergy/ocean/ |title=Ocean—potential |work=International Energy Agency (IEA) |access-date=2016-08-08 |archive-url=https://web.archive.org/web/20150522054948/http://www.iea.org/techinitiatives/renewableenergy/ocean/ |archive-date=2015-05-22}}</ref>
समुद्र के तापमान, नमक सामग्री, ज्वार की गति, धाराओं, लहरों और महातरंगो में परिवर्तन से उत्पन्न प्रति वर्ष 20,000-80,000 [[टेरावाट-घं]][[टे]] (टीडब्लूएच/वाय) बिजली विकसित करने की क्षमता है।<ref>{{cite web |url=https://www.iea.org/techinitiatives/renewableenergy/ocean/ |title=Ocean—potential |work=International Energy Agency (IEA) |access-date=2016-08-08 |archive-url=https://web.archive.org/web/20150522054948/http://www.iea.org/techinitiatives/renewableenergy/ocean/ |archive-date=2015-05-22}}</ref>


{| class="wikitable" style="text-align: right; "
{| class="wikitable" style="text-align: right; "
Line 46: Line 44:
{{main|समुद्री धारा शक्ति}}
{{main|समुद्री धारा शक्ति}}


तापमान, हवा, लवणता,[[ बेथीमेट्री ]]और पृथ्वी के घूमने के संयोजन से मजबूत समुद्री धाराएँ उत्पन्न होती हैं। सूर्य प्राथमिक प्रेरक शक्ति के रूप में कार्य करता है, जिससे हवाओ और तापमान में अंतर होता है। क्योंकि दिशा में बिना किसी बदलाव के धारा गति और धारा के स्थान में केवल छोटे उतार-चढ़ाव होते हैं, इसलिए टर्बाइन जैसे ऊर्जा निष्कर्षण उपकरणों को तैनात करने के लिए समुद्री धाराएँ उपयुक्त स्थान हो सकती हैं।
तापमान, हवा, लवणता,[[ बेथीमेट्री ]]और पृथ्वी के घूमने के संयोजन से मजबूत समुद्री धाराएँ उत्पन्न होती हैं। सूर्य प्राथमिक प्रेरक शक्ति के रूप में कार्य करता है, जिससे हवाओ और तापमान में अंतर होता है। क्योंकि धारा गति और धारा के स्थान में दिशा में कोई परिवर्तन नहीं होने के कारण केवल छोटे उतार-चढ़ाव होते हैं, इसलिए टर्बाइन जैसे ऊर्जा निष्कर्षण उपकरणों को तैनात करने के लिए समुद्री धाराएँ उपयुक्त स्थान हो सकती हैं।


दुनिया भर के कई क्षेत्रों में [[ जलवायु |जलवायु]] का निर्धारण करने में महासागरीय धाराएँ महत्वपूर्ण भूमिका निभाती हैं। जबकि समुद्र की धारा ऊर्जा को हटाने के प्रभावों के बारे में बहुत कम जानकारी है, इसलिए [[फ़ारफ़ील्ड पर्यावरण]] पर धारा ऊर्जा को हटाने के प्रभाव एक महत्वपूर्ण पर्यावरणीय चिंता का विषय हो सकते हैं। ब्लेड स्ट्राइक, समुद्री जीवों के उलझने और ध्वनिक प्रभावों के साथ विशिष्ट टरबाइन मुद्दे अभी भी मौजूद हैं, हालाँकि, प्रवासन उद्देश्यों के लिए समुद्री धाराओं का उपयोग करने वाले समुद्री जीवों की अधिक विविध आबादी की उपस्थिति के कारण इन्हें बढ़ाया जा सकता है। स्थान और अधिक अपतटीय हो सकते हैं और इसलिए लंबे समय तक विद्युत केबलों की आवश्यकता होती है जो विद्युत चुम्बकीय उत्पादन के साथ समुद्री पर्यावरण को प्रभावित कर सकते हैं।<ref>{{cite web|title=टेथिस|url=http://tethys.pnnl.gov/technology-type/ocean-current|access-date=21 April 2014|archive-date=22 June 2017|archive-url=https://web.archive.org/web/20170622013201/https://tethys.pnnl.gov/technology-type/ocean-current|url-status=live}}</ref>
दुनिया भर के कई क्षेत्रों में [[ जलवायु |जलवायु]] का निर्धारण करने में महासागरीय धाराएँ महत्वपूर्ण भूमिका निभाती हैं। जबकि समुद्र की धारा ऊर्जा को हटाने के प्रभावों के बारे में बहुत कम जानकारी है, इसलिए [[फ़ारफ़ील्ड पर्यावरण]] पर धारा ऊर्जा को हटाने के प्रभाव एक महत्वपूर्ण पर्यावरणीय चिंता का विषय हो सकते हैं। ब्लेड स्ट्राइक, समुद्री जीवों के उलझने और ध्वनिक प्रभावों के साथ विशिष्ट टरबाइन मुद्दे अभी भी मौजूद हैं, हालाँकि, प्रवासन उद्देश्यों के लिए समुद्री धाराओं का उपयोग करने वाले समुद्री जीवों की अधिक विविध आबादी की उपस्थिति के कारण इन्हें बढ़ाया जा सकता है। स्थान आगे अपतटीय हो सकते हैं और इसलिए लंबे बिजली के तारों की आवश्यकता होती है जो विद्युत चुम्बकीय उत्पादन के साथ समुद्री पर्यावरण को प्रभावित कर सकते हैं।<ref>{{cite web|title=टेथिस|url=http://tethys.pnnl.gov/technology-type/ocean-current|access-date=21 April 2014|archive-date=22 June 2017|archive-url=https://web.archive.org/web/20170622013201/https://tethys.pnnl.gov/technology-type/ocean-current|url-status=live}}</ref>
=== आसमाटिक शक्ति ===
=== आसमाटिक शक्ति ===
{{main|आसमाटिक शक्ति}}
{{main|आसमाटिक शक्ति}}
नदियों के मुहाने पर जहां ताजा पानी खारे पानी के साथ मिल जाता है, वहां दबाव-मंद विपरीत ऑस्मोसिस प्रक्रिया और संबंधित रूपांतरण तकनीकों का उपयोग करके लवणता प्रवणता से जुड़ी ऊर्जा का दोहन किया जा सकता है। एक अन्य प्रणाली समुद्री जल में डूबी एक टरबाइन के माध्यम से मीठे पानी के अपवेलिंग पर आधारित है, और एक विद्युत रासायनिक प्रतिक्रिया भी विकास में है।
नदियों के मुहाने पर जहां ताजा पानी खारे पानी के साथ मिल जाता है, वहां दबाव-मंद विपरीत ऑस्मोसिस प्रक्रिया और संबंधित रूपांतरण तकनीकों का उपयोग करके लवणता प्रवणता से जुड़ी ऊर्जा का दोहन किया जा सकता है। एक अन्य प्रणाली समुद्री जल में डूबी एक टरबाइन के माध्यम से मीठे पानी के उत्स्रवण पर आधारित है, और एक विद्युत रासायनिक प्रतिक्रिया भी विकास में है।


1975 से 1985 तक महत्वपूर्ण शोध हुए और पीआरओ और आरईडी संयंत्रों की अर्थव्यवस्था के संबंध में विभिन्न परिणाम दिए। यह ध्यान रखना महत्वपूर्ण है कि जापान, इज़राइल और संयुक्त राज्य अमेरिका जैसे अन्य देशों में लवणता बिजली उत्पादन में छोटे पैमाने पर जांच की जाती है। यूरोप में अनुसंधान नॉर्वे और नीदरलैंड में केंद्रित है, जहाँ दोनों जगहों पर छोटे पायलटों का परीक्षण किया जाता है। लवणता प्रवणता ऊर्जा वह ऊर्जा है जो मीठे पानी और खारे पानी के बीच नमक की सघनता के अंतर से उपलब्ध होती है। इस ऊर्जा स्रोत को समझना आसान नहीं है, क्योंकि यह गर्मी, झरने, हवा, लहरों, या विकिरण के रूप में प्रकृति में प्रत्यक्ष रूप से नहीं हो रहा है।<ref>{{Cite web |url=http://www.oceanenergy-europe.eu/index.php/policies/technologies/13-technology/46-salinity-gradient |title=Ocean Energy Europe - Salinity Gradient |access-date=20 February 2014 |archive-url=https://web.archive.org/web/20150924054627/http://www.oceanenergy-europe.eu/index.php/policies/technologies/13-technology/46-salinity-gradient |archive-date=24 September 2015 |url-status=dead }}</ref>
1975 से 1985 तक महत्वपूर्ण शोध हुए और पीआरओ और आरईडी संयंत्रों की अर्थव्यवस्था के संबंध में विभिन्न परिणाम दिए। यह ध्यान रखना महत्वपूर्ण है कि जापान, इज़राइल और संयुक्त राज्य अमेरिका जैसे अन्य देशों में लवणता बिजली उत्पादन में छोटे पैमाने पर जांच की जाती है। यूरोप में अनुसंधान नॉर्वे और नीदरलैंड में केंद्रित है, जहाँ दोनों जगहों पर छोटे पायलटों का परीक्षण किया जाता है। लवणता प्रवणता ऊर्जा वह ऊर्जा है जो मीठे पानी और खारे पानी के बीच नमक की सघनता के अंतर से उपलब्ध होती है। इस ऊर्जा स्रोत को समझना आसान नहीं है, क्योंकि यह गर्मी, झरने, हवा, लहरों, या विकिरण के रूप में प्रकृति में प्रत्यक्ष रूप से नहीं हो रहा है।<ref>{{Cite web |url=http://www.oceanenergy-europe.eu/index.php/policies/technologies/13-technology/46-salinity-gradient |title=Ocean Energy Europe - Salinity Gradient |access-date=20 February 2014 |archive-url=https://web.archive.org/web/20150924054627/http://www.oceanenergy-europe.eu/index.php/policies/technologies/13-technology/46-salinity-gradient |archive-date=24 September 2015 |url-status=dead }}</ref>
Line 57: Line 55:
{{main|महासागर तापीय ऊर्जा रूपांतरण}}
{{main|महासागर तापीय ऊर्जा रूपांतरण}}


पानी आमतौर पर सीधे सूर्य के प्रकाश द्वारा गर्म की गई सतह से अधिक गहराई तक तापमान में भिन्न होता है जहां सूर्य का प्रकाश प्रवेश नहीं कर सकता है। यह अंतर [[उष्णकटिबंधीय]] जल में सबसे बड़ा है, जिससे यह तकनीक जल स्थानों में सबसे अधिक लागू होती है। टर्बाइन को चलाने के लिए द्रव को अक्सर वाष्पीकृत किया जाता है जो बिजली पैदा कर सकता है या अलवणीकृत पानी का उत्पादन कर सकता है। प्रणालियाँ या तो खुली-चक्र, बंद-चक्र या  संकरित हो सकती हैं।<ref>{{cite web|title=टेथिस|url=http://tethys.pnnl.gov/technology-type/OTEC|access-date=26 September 2014|archive-date=21 June 2017|archive-url=https://web.archive.org/web/20170621174337/https://tethys.pnnl.gov/technology-type/otec|url-status=live}}</ref>
पानी आमतौर पर सीधे सूर्य के प्रकाश द्वारा गर्म की गई सतह से अधिक गहराई तक तापमान में भिन्न होता है जहां सूर्य का प्रकाश प्रवेश नहीं कर सकता है। यह अंतर [[उष्णकटिबंधीय]] जल में सबसे बड़ा है, जिससे यह तकनीक जल स्थानों में सबसे अधिक लागू होती है। टर्बाइन को चलाने के लिए द्रव को प्रायः वाष्पीकृत किया जाता है जो बिजली पैदा कर सकता है या अलवणीकृत पानी का उत्पादन कर सकता है। प्रणालियाँ या तो खुली-चक्र, बंद-चक्र या  संकरित हो सकती हैं।<ref>{{cite web|title=टेथिस|url=http://tethys.pnnl.gov/technology-type/OTEC|access-date=26 September 2014|archive-date=21 June 2017|archive-url=https://web.archive.org/web/20170621174337/https://tethys.pnnl.gov/technology-type/otec|url-status=live}}</ref>
=== ज्वारीय शक्ति ===
=== ज्वारीय शक्ति ===
{{main|ज्वारीय शक्‍ति}}
{{main|ज्वारीय शक्‍ति}}
Line 66: Line 64:
{{main|तरंग शक्ति}}
{{main|तरंग शक्ति}}


तरंग शक्ति सूर्य से सौर ऊर्जा तापमान में अंतर पैदा करती है जिसके परिणामस्वरूप हवा चलती है। हवा और पानी की सतह के बीच पारस्परिक क्रिया तरंगों का निर्माण करती है, जो तब बड़ी होती हैं जब उनके निर्माण के लिए अधिक दूरी होती है। हवा की वैश्विक दिशा के कारण पश्चिमी तट पर दोनों गोलार्द्धों में 30° और 60° अक्षांश के बीच तरंग ऊर्जा क्षमता सबसे बड़ी है। एक प्रौद्योगिकी प्रकार के रूप में तरंग ऊर्जा का मूल्यांकन करते समय, चार सबसे सामान्य दृष्टिकोणों के बीच अंतर करना महत्वपूर्ण है, [[बिंदु अवशोषक तरेरी]], [[सतह क्षीणक]], [[दोलनशील पानी के स्तंभ]], और [[ ओवरटॉपिंग डिवाइस |उच्चातिक्रमी उपकरण]]।<ref>{{cite web|title=टेथिस|url=http://tethys.pnnl.gov/technology-type/wave|access-date=21 April 2014|archive-date=20 May 2014|archive-url=https://web.archive.org/web/20140520003234/http://tethys.pnnl.gov/technology-type/wave|url-status=live}}</ref>
सूर्य से सौर ऊर्जा तापमान में अंतर पैदा करती है जिसके परिणामस्वरूप हवा चलती है। हवा और पानी की सतह के बीच पारस्परिक क्रिया तरंगों का निर्माण करती है, जो तब बड़ी होती हैं जब उनके निर्माण के लिए अधिक दूरी होती है। हवा की वैश्विक दिशा के कारण पश्चिमी तट पर दोनों गोलार्द्धों में 30° और 60° अक्षांश के बीच तरंग ऊर्जा क्षमता सबसे बड़ी है। एक प्रौद्योगिकी प्रकार के रूप में तरंग ऊर्जा का मूल्यांकन करते समय, चार सबसे सामान्य दृष्टिकोणों के बीच अंतर करना महत्वपूर्ण है, [[बिंदु अवशोषक तरेरी]], [[सतह क्षीणक]], [[दोलनशील पानी के स्तंभ]], और [[ ओवरटॉपिंग डिवाइस |उच्चातिक्रमी उपकरण]]।<ref>{{cite web|title=टेथिस|url=http://tethys.pnnl.gov/technology-type/wave|access-date=21 April 2014|archive-date=20 May 2014|archive-url=https://web.archive.org/web/20140520003234/http://tethys.pnnl.gov/technology-type/wave|url-status=live}}</ref>


लहर ऊर्जा क्षेत्र उद्योग के विकास में एक महत्वपूर्ण मील के पत्थर तक पहुंच रहा है, जिसमें वाणिज्यिक व्यवहार्यता की दिशा में सकारात्मक कदम उठाए जा रहे हैं। अधिक उन्नत उपकरण विकासक अब एकल इकाई प्रदर्शन उपकरणों से आगे बढ़ रहे हैं और सरणी विकास और बहु-मेगावाट परियोजनाओं के लिए आगे बढ़ रहे हैं।<ref>{{Cite web |url=http://www.oceanenergy-europe.eu/ |title=Ocean Energy Europe - the trade association for ocean renewables - Home |access-date=20 February 2014 |archive-date=11 February 2014 |archive-url=https://web.archive.org/web/20140211045334/http://www.oceanenergy-europe.eu/ |url-status=live }}</ref> प्रमुख उपयोगिता कंपनियों का समर्थन अब विकास प्रक्रिया के भीतर साझेदारी के माध्यम से, आगे के निवेश को प्रकट करने और कुछ मामलों में, अंतर्राष्ट्रीय सहयोग के माध्यम से प्रकट हो रहा है।
लहर ऊर्जा क्षेत्र उद्योग के विकास में एक महत्वपूर्ण मील के पत्थर तक पहुंच रहा है, जिसमें वाणिज्यिक व्यवहार्यता की दिशा में सकारात्मक कदम उठाए जा रहे हैं। अधिक उन्नत उपकरण विकासक अब एकल इकाई प्रदर्शन उपकरणों से आगे बढ़ रहे हैं और सरणी विकास और बहु-मेगावाट परियोजनाओं के लिए आगे बढ़ रहे हैं।<ref>{{Cite web |url=http://www.oceanenergy-europe.eu/ |title=Ocean Energy Europe - the trade association for ocean renewables - Home |access-date=20 February 2014 |archive-date=11 February 2014 |archive-url=https://web.archive.org/web/20140211045334/http://www.oceanenergy-europe.eu/ |url-status=live }}</ref> प्रमुख उपयोगिता कंपनियों का समर्थन अब विकास प्रक्रिया के भीतर साझेदारी के माध्यम से, आगे के निवेश को प्रकट करने और कुछ मामलों में, अंतर्राष्ट्रीय सहयोग के माध्यम से प्रकट हो रहा है।
Line 74: Line 72:
== समुद्री ऊर्जा विकास ==
== समुद्री ऊर्जा विकास ==


यूके लहर और ज्वारीय (समुद्री) बिजली उत्पादन में अग्रणी है। ब्रिटेन में समुद्री ऊर्जा उद्योग के विकास को शुरू करने के लिए 2003 में दुनिया की पहली समुद्री ऊर्जा परीक्षण सुविधा स्थापित की गई थी। ओर्कने, स्कॉटलैंड में स्थित, [http://www.emec.org.uk/ यूरोपियन समुद्री ऊर्जा केंद्र (ईएमईसी)] ने दुनिया में किसी भी अन्य एकल साइट की तुलना में अधिक लहर और ज्वारीय ऊर्जा उपकरणों की तैनाती का समर्थन किया है। केंद्र की स्थापना स्कॉटिश सरकार, हाइलैंड्स एंड आइलैंड्स उद्योग, कार्बन ट्रस्ट, यूके सरकार, स्कॉटिश उद्योग, यूरोपीय संघ और ऑर्कनी आइलैंड्स समिति से लगभग £36 मिलियन के वित्त पोषण के साथ की गई थी, और यह एकमात्र मान्यता प्राप्त लहर और ज्वारीय परीक्षण केंद्र है जहाँ दुनिया में समुद्री नवीकरणीय ऊर्जा, राष्ट्रीय ग्रिड में बिजली का उत्पादन करते समय कुछ कठोर मौसम स्थितियों में एक साथ कई पूर्ण पैमाने के उपकरणों का परीक्षण करने के लिए उपयुक्त है।
यूके लहर और ज्वारीय (समुद्री) बिजली उत्पादन में अग्रणी है। ब्रिटेन में समुद्री ऊर्जा उद्योग के विकास को शुरू करने के लिए 2003 में दुनिया की पहली समुद्री ऊर्जा परीक्षण सुविधा स्थापित की गई थी। ओर्कने, स्कॉटलैंड में स्थित, [http://www.emec.org.uk/ यूरोपियन समुद्री ऊर्जा केंद्र (ईएमईसी)] ने दुनिया में किसी भी अन्य एकल साइट की तुलना में अधिक लहर और ज्वारीय ऊर्जा उपकरणों की तैनाती का समर्थन किया है। केंद्र की स्थापना स्कॉटिश सरकार, हाइलैंड्स और आइलैंड्स उद्योग, कार्बन ट्रस्ट, यूके सरकार, स्कॉटिश उद्योग, यूरोपीय संघ और ऑर्कनी आइलैंड्स समिति से लगभग £36 मिलियन के वित्त पोषण के साथ की गई थी, और यह एकमात्र मान्यता प्राप्त लहर और ज्वारीय परीक्षण केंद्र है जहाँ दुनिया में समुद्री नवीकरणीय ऊर्जा, राष्ट्रीय ग्रिड में बिजली का उत्पादन करते समय कुछ कठोर मौसम स्थितियों में एक साथ कई पूर्ण पैमाने के उपकरणों का परीक्षण करने के लिए उपयुक्त है।


जिन ग्राहकों ने केंद्र में परीक्षण किया है उनमें एक्वामरीन पावर, एडब्ल्यू ऊर्जा, पेलामिस तरंग शक्ति, सीट्रिकिटी, स्कॉटिशशक्ति नवीकरणीय ऊर्जा और तरंग दृष्टि पर '''वेल्लो''', और अल्स्टॉम (पूर्व में ज्वारीय उत्पादन लिमिटेड), एंड्रिट्ज़ हाइड्रो हैमरफेस्ट, कावासाकी भारी उद्योग, मैगलेन्स, न्यूट्रीसिटी, '''ओपन हाइड्रो''', स्कोटरीन्युएबल्स ज्वारीय शक्ति और ज्वारीय स्थल पर '''वोइथ''', ये सभी सम्मिलित है।
जिन ग्राहकों ने केंद्र में परीक्षण किया है उनमें जलीय शक्ति, एडब्ल्यू ऊर्जा, पेलामी की तरंग शक्ति, सीट्रिकिटी, स्कॉटिश शक्ति नवीकरणीय ऊर्जा और तरंग दृष्टि पर वेलो, और अल्स्टॉम (पूर्व में ज्वारीय उत्पादन लिमिटेड), एंड्रिट्ज़ हाइड्रो हैमरफेस्ट, कावासाकी भारी उद्योग, मैगलेन्स, न्यूट्रीसिटी, खुला जल, स्कोटरीन्युएबल्स ज्वारीय शक्ति और ज्वारीय स्थल पर वोइथ, ये सभी सम्मिलित है।


€11मिलियन फोरसिया (रणनीतिक यूरोपीय कार्रवाई के माध्यम से वित्त पोषण महासागरीय नवीकरणीय ऊर्जा) परियोजना का नेतृत्व करते हुए, जो यूरोप की विश्व-अग्रणी महासागरीय ऊर्जा परीक्षण सुविधाओं तक पहुँचने के लिए महासागरीय ऊर्जा प्रौद्योगिकी विकासकर्ताओं को वित्तीय सहायता प्रदान करता है, वह ईएमईसी साइट पर परीक्षण के लिए कई तरंग और ज्वारीय ग्राहकों का अपनी पाइपलाइन में स्वागत करेगा।
€11मिलियन फोरसिया (रणनीतिक यूरोपीय कार्रवाई के माध्यम से वित्त पोषण महासागरीय नवीकरणीय ऊर्जा) परियोजना का नेतृत्व करते हुए, जो यूरोप की विश्व-अग्रणी महासागरीय ऊर्जा परीक्षण सुविधाओं तक पहुँचने के लिए महासागरीय ऊर्जा प्रौद्योगिकी विकासकर्ताओं को वित्तीय सहायता प्रदान करता है, वह ईएमईसी साइट पर परीक्षण के लिए कई तरंग और ज्वारीय ग्राहकों का अपनी पाइपलाइन में स्वागत करेगा।
Line 83: Line 81:
== पर्यावरणीय प्रभाव ==
== पर्यावरणीय प्रभाव ==


समुद्री ऊर्जा विकास से जुड़ी सामान्य पर्यावरणीय चिंताओं में सम्मिलित हैं,
समुद्री ऊर्जा विकास से जुड़ी सामान्य पर्यावरण संबंधी चिंताएं सम्मिलित हैं,


* ज्वारीय टर्बाइन ब्लेड से[[ समुद्री स्तनधारियों ]]और [[मछलियों]] के टकराने का खतरा<ref>{{cite web|url=http://tethys.pnnl.gov/stressor/dynamic-device|title=Dynamic Device - Tethys|website=tethys.pnnl.gov|access-date=5 April 2018|archive-date=27 September 2018|archive-url=https://web.archive.org/web/20180927100904/https://tethys.pnnl.gov/stressor/dynamic-device|url-status=live}}</ref>
* ज्वारीय टर्बाइन ब्लेड से[[ समुद्री स्तनधारियों ]]और [[मछलियों]] के टकराने का खतरा<ref>{{cite web|url=http://tethys.pnnl.gov/stressor/dynamic-device|title=Dynamic Device - Tethys|website=tethys.pnnl.gov|access-date=5 April 2018|archive-date=27 September 2018|archive-url=https://web.archive.org/web/20180927100904/https://tethys.pnnl.gov/stressor/dynamic-device|url-status=live}}</ref>
* समुद्री ऊर्जा उपकरणों के संचालन से उत्सर्जित [[ विद्युत चुम्बकीय |विद्युत चुम्बकीय]] [[क्षेत्र]] ([[ईएमएफ]]) और पानी के नीचे के शोर के प्रभाव<ref>{{cite web|url=http://tethys.pnnl.gov/stressor/emf|title=EMF - Tethys|website=tethys.pnnl.gov|access-date=5 April 2018|archive-date=27 September 2018|archive-url=https://web.archive.org/web/20180927100950/https://tethys.pnnl.gov/stressor/emf|url-status=live}}</ref>
* समुद्री ऊर्जा उपकरणों के संचालन से उत्सर्जित [[ विद्युत चुम्बकीय |विद्युत चुम्बकीय]] [[क्षेत्र]] ([[ईएमएफ]]) और पानी के नीचे के शोर का प्रभाव<ref>{{cite web|url=http://tethys.pnnl.gov/stressor/emf|title=EMF - Tethys|website=tethys.pnnl.gov|access-date=5 April 2018|archive-date=27 September 2018|archive-url=https://web.archive.org/web/20180927100950/https://tethys.pnnl.gov/stressor/emf|url-status=live}}</ref>
* समुद्री ऊर्जा परियोजनाओं की भौतिक उपस्थिति और आकर्षण या परिहार के साथ समुद्री स्तनधारियों, मछलियों और [[समुद्री पक्षियों]] के व्यवहार को बदलने की उनकी क्षमता
* समुद्री ऊर्जा परियोजनाओं की भौतिक उपस्थिति और आकर्षण या परिहार के साथ समुद्री स्तनधारियों, मछलियों और [[समुद्री पक्षियों]] के व्यवहार को बदलने की उनकी क्षमता
* निकट क्षेत्र और दूरस्थ क्षेत्र समुद्री पर्यावरण और[[ तलछट परिवहन ]]और[[ पानी की गुणवत्ता | पानी की गुणवत्ता]] जैसी प्रक्रियाओं पर संभावित प्रभाव<ref>{{cite web|title=टेथिस|url=http://tethys.pnnl.gov/|access-date=21 April 2014|archive-date=25 June 2018|archive-url=https://web.archive.org/web/20180625185601/https://tethys.pnnl.gov/|url-status=live}}</ref>
* निकट क्षेत्र और दूरस्थ क्षेत्र समुद्री पर्यावरण और[[ तलछट परिवहन ]]और[[ पानी की गुणवत्ता | पानी की गुणवत्ता]] जैसी प्रक्रियाओं पर संभावित प्रभाव<ref>{{cite web|title=टेथिस|url=http://tethys.pnnl.gov/|access-date=21 April 2014|archive-date=25 June 2018|archive-url=https://web.archive.org/web/20180625185601/https://tethys.pnnl.gov/|url-status=live}}</ref>
Line 93: Line 91:
* [[ ऊर्जा संचयन ]]
* [[ ऊर्जा संचयन ]]
* [[पनबिजली]]
* [[पनबिजली]]
* [[समुद्री धारा शक्ति]]
* [[समुद्री धारा शक्ति|समुद्री '''धारा''' शक्ति]]
* [[नवीकरणीय|नवीकरणीय ऊर्जा]]  
* [[नवीकरणीय|नवीकरणीय ऊर्जा]]  
* [[अक्षय ऊर्जा व्यावसायीकरण|नवीकरणीय ऊर्जा व्यावसायीकरण]]
* [[अक्षय ऊर्जा व्यावसायीकरण|नवीकरणीय ऊर्जा व्यावसायीकरण]]
Line 115: Line 113:
* [http://tethys.pnnl.gov Tethys - Environmental Effects of Wind and Marine Renewable Energy]
* [http://tethys.pnnl.gov Tethys - Environmental Effects of Wind and Marine Renewable Energy]


{{footer energy}}
[[Category:Articles with hatnote templates targeting a nonexistent page|Marine Energy]]
{{Ocean energy|state=expanded}}
[[Category:Collapse templates|Marine Energy]]
{{Electricity generation|state=collapsed}}
[[Category:Created On 20/01/2023|Marine Energy]]
{{Physical oceanography|expanded=none}}
[[Category:Lua-based templates]]
 
[[Category:Machine Translated Page|Marine Energy]]
{{DEFAULTSORT:Marine Energy}}[[Category: समुद्री ऊर्जा | समुद्री ऊर्जा ]] [[Category: जल शक्ति]] [[Category: महासागरीय शब्दावली]]  
[[Category:Navigational boxes| ]]
 
[[Category:Navigational boxes without horizontal lists|Marine Energy]]
 
[[Category:Pages with empty portal template|Marine Energy]]
 
[[Category:Pages with script errors|Marine Energy]]
[[Category: Machine Translated Page]]
[[Category:Portal-inline template with redlinked portals|Marine Energy]]
[[Category:Created On 20/01/2023]]
[[Category:Portal templates with redlinked portals|Marine Energy]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]

Latest revision as of 14:57, 16 October 2023

समुद्री ऊर्जा या समुद्री शक्ति (जिसे कभी-कभी महासागरीय ऊर्जा, महासागरीय शक्ति, या समुद्री और जलीय ऊर्जा के रूप में भी जाना जाता है) समुद्र की लहरों, ज्वार, लवणता और समुद्र के तापमान के अंतर से होने वाली ऊर्जा को संदर्भित करती है। दुनिया के महासागरों में पानी की गति गतिज ऊर्जा, या गति में ऊर्जा का एक विशाल भंडार बनाती है। इस ऊर्जा में से कुछ का उपयोग बिजली घरों, परिवहन और उद्योगों में बिजली पैदा करने के लिए किया जा सकता है।

समुद्री ऊर्जा शब्द में तरंग शक्ति अर्थात सतही तरंगों से शक्ति, और ज्वारीय शक्ति अर्थात गतिमान जल के बड़े पिंडों की गतिज ऊर्जा से प्राप्त ऊर्जा दोनों ऊर्जाए सम्मिलित हैं। अपतटीय पवन ऊर्जा समुद्री ऊर्जा का एक रूप नहीं है, क्योंकि पवन ऊर्जा पवन से प्राप्त होती है, भले ही पवन टर्बाइनों को पानी के ऊपर रखा गया हो।

महासागरों में ऊर्जा की जबरदस्त मात्रा होती है और यदि अधिकांश केंद्रित आबादी नहीं तो बहुत से लोगों के करीब हैं। महासागरीय ऊर्जा में दुनिया भर में पर्याप्त मात्रा में नई नवीकरणीय ऊर्जा प्रदान करने की क्षमता है।[1]

वैश्विक क्षमता

समुद्र के तापमान, नमक सामग्री, ज्वार की गति, धाराओं, लहरों और महातरंगो में परिवर्तन से उत्पन्न प्रति वर्ष 20,000-80,000 टेरावाट-घंटे (टीडब्लूएच/वाय) बिजली विकसित करने की क्षमता है।[2]

वैश्विक क्षमता
विधि वार्षिक

पीढ़ी

ज्वारीय ऊर्जा >300 टेरावाट-घंटे
समुद्री धारा शक्ति >800 टेरावाट-घंटे
आसमाटिक शक्ति लवणता प्रवणता 2,000 टेरावाट-घंटे
महासागर तापीय ऊर्जा ऊष्मीय प्रवणता 10,000 टेरावाट-घंटे
तरंग ऊर्जा 8,000–80,000 टेरावाट-घंटे
स्रोत, आईईए-ओईएस, वार्षिक रिपोर्ट 2007[3]

इंडोनेशिया, एक द्वीपसमूह देश के रूप में जो कि तीन चौथाई महासागर है, उसके पास 49 जीडब्लू मान्यता प्राप्त संभावित महासागर ऊर्जा है और 727 जीडब्लू सैद्धांतिक संभावित महासागर ऊर्जा है।[4]

महासागरीय ऊर्जा के रूप

महासागर सतह की तरंगों, द्रव प्रवाह,लवणता प्रवणता और तापीय अंतर के रूप में ऊर्जा के एक विशाल और बड़े पैमाने पर अप्रयुक्त स्रोत का प्रतिनिधित्व करते हैं।

यूएस और अंतर्राष्ट्रीय जल में समुद्री और जलीय (एमएचके) या समुद्री ऊर्जा विकास में निम्नलिखित उपकरणों का उपयोग करने वाली परियोजनाएं सम्मिलित हैं,

समुद्री धारा शक्ति

तापमान, हवा, लवणता,बेथीमेट्री और पृथ्वी के घूमने के संयोजन से मजबूत समुद्री धाराएँ उत्पन्न होती हैं। सूर्य प्राथमिक प्रेरक शक्ति के रूप में कार्य करता है, जिससे हवाओ और तापमान में अंतर होता है। क्योंकि धारा गति और धारा के स्थान में दिशा में कोई परिवर्तन नहीं होने के कारण केवल छोटे उतार-चढ़ाव होते हैं, इसलिए टर्बाइन जैसे ऊर्जा निष्कर्षण उपकरणों को तैनात करने के लिए समुद्री धाराएँ उपयुक्त स्थान हो सकती हैं।

दुनिया भर के कई क्षेत्रों में जलवायु का निर्धारण करने में महासागरीय धाराएँ महत्वपूर्ण भूमिका निभाती हैं। जबकि समुद्र की धारा ऊर्जा को हटाने के प्रभावों के बारे में बहुत कम जानकारी है, इसलिए फ़ारफ़ील्ड पर्यावरण पर धारा ऊर्जा को हटाने के प्रभाव एक महत्वपूर्ण पर्यावरणीय चिंता का विषय हो सकते हैं। ब्लेड स्ट्राइक, समुद्री जीवों के उलझने और ध्वनिक प्रभावों के साथ विशिष्ट टरबाइन मुद्दे अभी भी मौजूद हैं, हालाँकि, प्रवासन उद्देश्यों के लिए समुद्री धाराओं का उपयोग करने वाले समुद्री जीवों की अधिक विविध आबादी की उपस्थिति के कारण इन्हें बढ़ाया जा सकता है। स्थान आगे अपतटीय हो सकते हैं और इसलिए लंबे बिजली के तारों की आवश्यकता होती है जो विद्युत चुम्बकीय उत्पादन के साथ समुद्री पर्यावरण को प्रभावित कर सकते हैं।[5]

आसमाटिक शक्ति

नदियों के मुहाने पर जहां ताजा पानी खारे पानी के साथ मिल जाता है, वहां दबाव-मंद विपरीत ऑस्मोसिस प्रक्रिया और संबंधित रूपांतरण तकनीकों का उपयोग करके लवणता प्रवणता से जुड़ी ऊर्जा का दोहन किया जा सकता है। एक अन्य प्रणाली समुद्री जल में डूबी एक टरबाइन के माध्यम से मीठे पानी के उत्स्रवण पर आधारित है, और एक विद्युत रासायनिक प्रतिक्रिया भी विकास में है।

1975 से 1985 तक महत्वपूर्ण शोध हुए और पीआरओ और आरईडी संयंत्रों की अर्थव्यवस्था के संबंध में विभिन्न परिणाम दिए। यह ध्यान रखना महत्वपूर्ण है कि जापान, इज़राइल और संयुक्त राज्य अमेरिका जैसे अन्य देशों में लवणता बिजली उत्पादन में छोटे पैमाने पर जांच की जाती है। यूरोप में अनुसंधान नॉर्वे और नीदरलैंड में केंद्रित है, जहाँ दोनों जगहों पर छोटे पायलटों का परीक्षण किया जाता है। लवणता प्रवणता ऊर्जा वह ऊर्जा है जो मीठे पानी और खारे पानी के बीच नमक की सघनता के अंतर से उपलब्ध होती है। इस ऊर्जा स्रोत को समझना आसान नहीं है, क्योंकि यह गर्मी, झरने, हवा, लहरों, या विकिरण के रूप में प्रकृति में प्रत्यक्ष रूप से नहीं हो रहा है।[6]

महासागर तापीय ऊर्जा

पानी आमतौर पर सीधे सूर्य के प्रकाश द्वारा गर्म की गई सतह से अधिक गहराई तक तापमान में भिन्न होता है जहां सूर्य का प्रकाश प्रवेश नहीं कर सकता है। यह अंतर उष्णकटिबंधीय जल में सबसे बड़ा है, जिससे यह तकनीक जल स्थानों में सबसे अधिक लागू होती है। टर्बाइन को चलाने के लिए द्रव को प्रायः वाष्पीकृत किया जाता है जो बिजली पैदा कर सकता है या अलवणीकृत पानी का उत्पादन कर सकता है। प्रणालियाँ या तो खुली-चक्र, बंद-चक्र या संकरित हो सकती हैं।[7]

ज्वारीय शक्ति

पानी के बढ़ते द्रव्यमान से ऊर्जा - पनबिजली उत्पादन का एक लोकप्रिय रूप है। ज्वारीय विद्युत उत्पादन में तीन मुख्य रूप सम्मिलित हैं, अर्थात् ज्वारीय धारा शक्ति,ज्वारीय बैराज शक्ति और गतिशील ज्वारीय शक्ति

तरंग शक्ति

सूर्य से सौर ऊर्जा तापमान में अंतर पैदा करती है जिसके परिणामस्वरूप हवा चलती है। हवा और पानी की सतह के बीच पारस्परिक क्रिया तरंगों का निर्माण करती है, जो तब बड़ी होती हैं जब उनके निर्माण के लिए अधिक दूरी होती है। हवा की वैश्विक दिशा के कारण पश्चिमी तट पर दोनों गोलार्द्धों में 30° और 60° अक्षांश के बीच तरंग ऊर्जा क्षमता सबसे बड़ी है। एक प्रौद्योगिकी प्रकार के रूप में तरंग ऊर्जा का मूल्यांकन करते समय, चार सबसे सामान्य दृष्टिकोणों के बीच अंतर करना महत्वपूर्ण है, बिंदु अवशोषक तरेरी, सतह क्षीणक, दोलनशील पानी के स्तंभ, और उच्चातिक्रमी उपकरण[8]

लहर ऊर्जा क्षेत्र उद्योग के विकास में एक महत्वपूर्ण मील के पत्थर तक पहुंच रहा है, जिसमें वाणिज्यिक व्यवहार्यता की दिशा में सकारात्मक कदम उठाए जा रहे हैं। अधिक उन्नत उपकरण विकासक अब एकल इकाई प्रदर्शन उपकरणों से आगे बढ़ रहे हैं और सरणी विकास और बहु-मेगावाट परियोजनाओं के लिए आगे बढ़ रहे हैं।[9] प्रमुख उपयोगिता कंपनियों का समर्थन अब विकास प्रक्रिया के भीतर साझेदारी के माध्यम से, आगे के निवेश को प्रकट करने और कुछ मामलों में, अंतर्राष्ट्रीय सहयोग के माध्यम से प्रकट हो रहा है।

एक सरलीकृत स्तर पर, तरंग ऊर्जा प्रौद्योगिकी निकट-किनारे और अपतटीय स्थित हो सकती है। तरंग ऊर्जा परिवर्तको को विशिष्ट जल गहराई स्थितियों जैसे ,गहरे पानी, मध्यवर्ती पानी या उथले पानी में संचालन के लिए भी बनाया जा सकता है। मौलिक उपकरण प्रारुप उपकरण के स्थान और इच्छित संसाधन विशेषताओं पर निर्भर करेगा।

समुद्री ऊर्जा विकास

यूके लहर और ज्वारीय (समुद्री) बिजली उत्पादन में अग्रणी है। ब्रिटेन में समुद्री ऊर्जा उद्योग के विकास को शुरू करने के लिए 2003 में दुनिया की पहली समुद्री ऊर्जा परीक्षण सुविधा स्थापित की गई थी। ओर्कने, स्कॉटलैंड में स्थित, यूरोपियन समुद्री ऊर्जा केंद्र (ईएमईसी) ने दुनिया में किसी भी अन्य एकल साइट की तुलना में अधिक लहर और ज्वारीय ऊर्जा उपकरणों की तैनाती का समर्थन किया है। केंद्र की स्थापना स्कॉटिश सरकार, हाइलैंड्स और आइलैंड्स उद्योग, कार्बन ट्रस्ट, यूके सरकार, स्कॉटिश उद्योग, यूरोपीय संघ और ऑर्कनी आइलैंड्स समिति से लगभग £36 मिलियन के वित्त पोषण के साथ की गई थी, और यह एकमात्र मान्यता प्राप्त लहर और ज्वारीय परीक्षण केंद्र है जहाँ दुनिया में समुद्री नवीकरणीय ऊर्जा, राष्ट्रीय ग्रिड में बिजली का उत्पादन करते समय कुछ कठोर मौसम स्थितियों में एक साथ कई पूर्ण पैमाने के उपकरणों का परीक्षण करने के लिए उपयुक्त है।

जिन ग्राहकों ने केंद्र में परीक्षण किया है उनमें जलीय शक्ति, एडब्ल्यू ऊर्जा, पेलामी की तरंग शक्ति, सीट्रिकिटी, स्कॉटिश शक्ति नवीकरणीय ऊर्जा और तरंग दृष्टि पर वेलो, और अल्स्टॉम (पूर्व में ज्वारीय उत्पादन लिमिटेड), एंड्रिट्ज़ हाइड्रो हैमरफेस्ट, कावासाकी भारी उद्योग, मैगलेन्स, न्यूट्रीसिटी, खुला जल, स्कोटरीन्युएबल्स ज्वारीय शक्ति और ज्वारीय स्थल पर वोइथ, ये सभी सम्मिलित है।

€11मिलियन फोरसिया (रणनीतिक यूरोपीय कार्रवाई के माध्यम से वित्त पोषण महासागरीय नवीकरणीय ऊर्जा) परियोजना का नेतृत्व करते हुए, जो यूरोप की विश्व-अग्रणी महासागरीय ऊर्जा परीक्षण सुविधाओं तक पहुँचने के लिए महासागरीय ऊर्जा प्रौद्योगिकी विकासकर्ताओं को वित्तीय सहायता प्रदान करता है, वह ईएमईसी साइट पर परीक्षण के लिए कई तरंग और ज्वारीय ग्राहकों का अपनी पाइपलाइन में स्वागत करेगा।

उपकरण परीक्षण से परे, ईएमईसी परामर्श और अनुसंधान सेवाओं की एक विस्तृत श्रृंखला भी प्रदान करता है, और समुद्री ऊर्जा विकासको के लिए सहमति प्रक्रिया को कारगर बनाने के लिए समुद्री स्कॉटलैंड के साथ मिलकर काम कर रहा है। समुद्री ऊर्जा के लिए अंतरराष्ट्रीय मानकों के विकास में ईएमईसी सबसे आगे है, और अन्य देशों के साथ गठजोड़ कर रहा है, और वैश्विक समुद्री नवीकरणीय उद्योग के विकास को प्रोत्साहित करने के लिए दुनिया भर में अपने ज्ञान का निर्यात कर रहा है।[10]

पर्यावरणीय प्रभाव

समुद्री ऊर्जा विकास से जुड़ी सामान्य पर्यावरण संबंधी चिंताएं सम्मिलित हैं,

टेथिस डेटाबेस समुद्री ऊर्जा के संभावित पर्यावरणीय प्रभावों पर वैज्ञानिक साहित्य और सामान्य जानकारी तक एक्सेस प्रदान करता है।[14]

यह भी देखें

संदर्भ

  1. Carbon Trust, Future Marine Energy. Results of the Marine Energy Challenge: Cost competitiveness and growth of wave and tidal stream energy, January 2006
  2. "Ocean—potential". International Energy Agency (IEA). Archived from the original on 2015-05-22. Retrieved 2016-08-08.
  3. "Implementing Agreement on Ocean Energy Systems (IEA-OES), Annual Report 2007" (PDF). International Energy Agency, Jochen Bard ISET. 2007. p. 5. Archived from the original (PDF) on 1 July 2015. Retrieved 9 February 2016.
  4. "Indonesian Ocean Energy". indopos.co.id. Archived from the original on 2 February 2014. Retrieved 5 April 2018.
  5. "टेथिस". Archived from the original on 22 June 2017. Retrieved 21 April 2014.
  6. "Ocean Energy Europe - Salinity Gradient". Archived from the original on 24 September 2015. Retrieved 20 February 2014.
  7. "टेथिस". Archived from the original on 21 June 2017. Retrieved 26 September 2014.
  8. "टेथिस". Archived from the original on 20 May 2014. Retrieved 21 April 2014.
  9. "Ocean Energy Europe - the trade association for ocean renewables - Home". Archived from the original on 11 February 2014. Retrieved 20 February 2014.
  10. "EMEC: European Marine Energy Centre". Archived from the original on 27 January 2007. Retrieved 6 August 2014.
  11. "Dynamic Device - Tethys". tethys.pnnl.gov. Archived from the original on 27 September 2018. Retrieved 5 April 2018.
  12. "EMF - Tethys". tethys.pnnl.gov. Archived from the original on 27 September 2018. Retrieved 5 April 2018.
  13. "टेथिस". Archived from the original on 25 June 2018. Retrieved 21 April 2014.
  14. "Tethys". Archived from the original on 10 November 2014.


आगे की पढाई


बाहरी कड़ियाँ