ऑर्थोमोड ट्रांसड्यूसर: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Component for guiding radio waves}} | {{short description|Component for guiding radio waves}} | ||
[[Image:Orthogonal Mode Transduceur.jpg|thumb|200px|right|ऑर्थोमोड ट्रांसड्यूसर (पोर्टेंसिग्ने, फ्रांस)]] | [[Image:Orthogonal Mode Transduceur.jpg|thumb|200px|right|ऑर्थोमोड ट्रांसड्यूसर (पोर्टेंसिग्ने, फ्रांस)]] | ||
[[Image:OMT 02.jpg|thumb|right|200px| ऑर्थोमोड ट्रांसड्यूसर, ऊर्ध्वाधर और क्षैतिज ध्रुवता]] | [[Image:OMT 02.jpg|thumb|right|200px| ऑर्थोमोड ट्रांसड्यूसर, ऊर्ध्वाधर और क्षैतिज ध्रुवता]] | ||
Line 64: | Line 62: | ||
वैचारिक रूप से, यदि माप सेटअप के भाग के रूप में एक आदर्श ओएमटी उपलब्ध है, जिसे हमेशा "गोल्डन सैंपल" नाम दिया जाता है, इसके दोहरे ध्रुवीकृत पोर्ट को DUT पर इसके प्रतिरूप जोड़ा जा सकता है, जिसके परिणामस्वरूप 4 एकल-ध्रुवीकरण पोर्ट के साथ 4-पोर्ट समतुल्य डिवाइस प्राप्त होता है। आदर्श ओएमटी दोहरे ध्रुवीकृत पोर्ट पर दो ध्रुवीकरणों को दो मानक एकल-ध्रुवीकृत पोर्ट्स में विभाजित करता है और ऐसी व्यवस्था DUT के सभी प्रकीर्णन पैरामीटर के प्रत्यक्ष माप की अनुमति देती है (या तो 4-पोर्ट वेक्टर नेटवर्क विश्लेषक (VNA) का उपयोग करके या 2-पोर्ट वाला 2 एकल-ध्रुवीकृत भार के साथ कई संयोजनों में उपयोग किया जाता है)। | वैचारिक रूप से, यदि माप सेटअप के भाग के रूप में एक आदर्श ओएमटी उपलब्ध है, जिसे हमेशा "गोल्डन सैंपल" नाम दिया जाता है, इसके दोहरे ध्रुवीकृत पोर्ट को DUT पर इसके प्रतिरूप जोड़ा जा सकता है, जिसके परिणामस्वरूप 4 एकल-ध्रुवीकरण पोर्ट के साथ 4-पोर्ट समतुल्य डिवाइस प्राप्त होता है। आदर्श ओएमटी दोहरे ध्रुवीकृत पोर्ट पर दो ध्रुवीकरणों को दो मानक एकल-ध्रुवीकृत पोर्ट्स में विभाजित करता है और ऐसी व्यवस्था DUT के सभी प्रकीर्णन पैरामीटर के प्रत्यक्ष माप की अनुमति देती है (या तो 4-पोर्ट वेक्टर नेटवर्क विश्लेषक (VNA) का उपयोग करके या 2-पोर्ट वाला 2 एकल-ध्रुवीकृत भार के साथ कई संयोजनों में उपयोग किया जाता है)। | ||
ऐसा आदर्श सेटअप केवल दोहरे-ध्रुवीकृत पोर्ट्स के भौतिक स्थान और संरेखण से संबंधित यांत्रिक अनिश्चितताओं से | ऐसा आदर्श सेटअप केवल दोहरे-ध्रुवीकृत पोर्ट्स के भौतिक स्थान और संरेखण से संबंधित यांत्रिक अनिश्चितताओं से उन्मुख है। एक साधारण और असंरेखित कोण <math>\epsilon</math> प्रत्येक ध्रुवीकरण से <math>\sin{\epsilon}</math> के विपरीत आनुपातिक तक एक कृत्रिम पथ का परिचय देता है | डीयूटी के एक्सपीडी और इस कृत्रिम हानि <math>\sin{\epsilon}</math> के कारण रिसाव (<math>S_{Vh}</math> (या <math>S_{Hv}</math>) का चरणबद्ध संयोजन वास्तविक बाहरी मापी गई मात्रा है। यदि, उचित चरण पुनर्संयोजन द्वारा, दोनों सहयोग एक-दूसरे को रद्द कर देते हैं, जिससे वास्तविक मापा गया एक्सपीडी अनंत तक बढ़ सकता है (केवल तभी संभव है जब <math>|S_{Vh}|=|\sin\epsilon|</math>), इस प्रकार एक बड़ी अनुमान त्रुटि हुई। | ||
डीयूटी के अपेक्षित एक्सपीडी के आधार पर, कृत्रिम माप अनिश्चितता को | डीयूटी के अपेक्षित एक्सपीडी के आधार पर, कृत्रिम माप अनिश्चितता को अनदेखा किया जा सकता है, इसकी गारंटी के लिए यांत्रिक प्रति-उपाय उपलब्ध किए जाने चाहिए। | ||
हालाँकि, इस आदर्श सेटअप से कोई भी विचलन त्रुटियों और अनिश्चितताओं का परिचय देता है। | हालाँकि, इस आदर्श सेटअप से कोई भी विचलन त्रुटियों और अनिश्चितताओं का परिचय देता है। |
Revision as of 13:56, 14 August 2023
ऑर्थोमोड ट्रांसड्यूसर (ओएमटी) एक वेवगाइड (विद्युत चुंबकत्व) घटक है जिसे सामान्यत: ध्रुवीकरण डुप्लेक्सर के रूप में जाना जाता है। ऑर्थोमोड, ओर्थोगोनल मोड का संक्षिप्त रूप है। ऑर्थोमोड ट्रांसड्यूसर या तो दो ऑर्थोगोनली ध्रुवीकरण (तरंगों) माइक्रोवेव सिग्नल पथों को संयोजित करने या अलग करने का काम करते हैं।[1] पथों में से एक अपलिंक बनाता है, जो प्राप्त सिग्नल पथ या डाउनलिंक पथ के समान वेवगाइड (विद्युत चुंबकत्व) पर प्रसारित होता है। ऐसा उपकरण बहुत छोटे एपर्चर टर्मिनल (वीएसएटी) एंटीना फीड या स्थलीय माइक्रोवेव रेडियो फीड का भाग हो सकता है; उदाहरण के लिए ओएमटी का उपयोग हमेशा सिग्नल के ऑर्थोगोनल ध्रुवीकरण को अलग करने और विभिन्न पोर्ट्स पर सिग्नल को भेजने और प्राप्त करने के लिए फीड हॉर्न के साथ किया जाता है।[2]
वीएसएटी और सैटेलाइट अर्थ स्टेशन अनुप्रयोग
वीएसएटी मॉडेम के लिए ट्रांसमिशन और रिसेप्शन पथ एक-दूसरे से 90° पर होते हैं, या दूसरे शब्दों में, सिग्नल एक-दूसरे के संबंध में ऑर्थोगोनल रूप से ध्रुवीकृत होते हैं। दो सिग्नल पथों के बीच यह ऑर्थोगोनल परिवर्तन Ku बैंड और Ka बैंड रेडियो आवृति बैंड में लगभग 40 डीबी का पृथक्करण प्रदान करता है।
इसलिए यह उपकरण वीएसएटी मॉडेम की बाहरी इकाई (ओडीयू) के लिय जंक्शन अवयव के रूप में एक आवश्यक भूमिका निभाता है। यह ब्लॉक अप कनवर्टर (बीयूसी) द्वारा उत्पन्न आउटपुट सिग्नल की शक्ति द्वारा रिसीवर फ्रंट-एंड घटक (कम-शोर ब्लॉक कनवर्टर, एलएनबी) को बर्न-आउट से बचाता है। बीयूसी ओएमटी जंक्शन डिवाइस के वेव गाइड पोर्ट के माध्यम से फीड हॉर्न से भी जुड़ा हुआ है।
ऑर्थोमोड ट्रांसड्यूसर का उपयोग दोहरे ध्रुवीकृत वीएसएटी, कम आबादी वाले क्षेत्रों, रडार एंटीना , रेडियोमीटर और संचार लिंक में किया जाता है। वे आमतौर पर एंटीना के डाउन कनवर्टर या एलएनबी और ट्रांसमिटिंग एंटीना से जुड़े हाई-पावर एम्पलीफायर (एचपीए) से जुड़े होते हैं।
जब एंटीना से प्रसारित और प्राप्त रेडियो सिग्नल में दो अलग-अलग ध्रुवीकरण (क्षैतिज और ऊर्ध्वाधर) होते हैं, तो उन्हें ऑर्थोगोनल कहा जाता है। इसका मतलब यह है कि दो रेडियो सिग्नल तरंगों के मॉड्यूलेशन एक दूसरे से 90 डिग्री पर हैं। ओएमटी डिवाइस का उपयोग दो समान आवृत्ति संकेतों को अलग करने के लिए किया जाता है, लेकिन उच्च और निम्न सिग्नल शक्ति के अलग-अलग ध्रुवीकरण होते हैं। सुरक्षात्मक पृथक्करण आवश्यक है क्योंकि ट्रांसमीटर इकाई एंटीना पर बहुत संवेदनशील कम माइक्रो-वोल्टेज (μV), फ्रंट-एंड रिसीवर एम्पलीफायर इकाई को अधिक नुकसान पहुंचाएगी।
उच्च शक्ति की अप-लिंक ट्रांसमिशन सिग्नल (सामान्य वीएसएटी उपकरण के लिए 1, 2, या 5 वाट) का बीयूसी से उत्पन्न होता है और बहुत कम शक्ति की सिग्नल (µV के क्रम में) एंटीना से प्राप्त होता है। एलएनबी रिसीवर इन सभी कार्यो के लिय एक दूसरे के सापेक्ष 90° के कोण पर हैं, दोनों परवलयिक एंटीना के फीड -हॉर्न फोकल-बिंदु पर एक साथ जुड़े हुए हैं। वह उपकरण जो अप-लिंक और डाउन-लिंक दोनों पथों को जोड़ता है, जो एक दूसरे से 90° पर हैं, ओएमटी कहलाता है।
संचलन के समय वीएसएटी कू बैंड में एक विशिष्ट ओएमटी फीड हॉर्न से जुड़े प्रत्येक रेडियो पोर्ट के बीच -40 डीबी अंतर प्रदान करता है, जो परवलयिक डिश रिफ्लेक्टर का सामना करता है (-40 डीबी का मतलब है कि ट्रांसमीटर की आउटपुट पावर का केवल 0.01% रिसीवर के वेव गाइड पोर्ट में क्रॉस-फेड होता है)। ऐन्टेना के परवलयिक परावर्तक का सामना करने वाला पोर्ट एक गोलाकार ध्रुवीकरण पोर्ट है ताकि इनबाउंड और आउटबाउंड रेडियो सिग्नल का क्षैतिज और ऊर्ध्वाधर ध्रुवीयता युग्मन आसानी से प्राप्त हो सके।
40 डीबी अंतर ट्रांसमीटर इकाई के अपेक्षाकृत उच्च-शक्ति सिग्नल से जलने के खिलाफ बहुत संवेदनशील रिसीवर एम्पलीफायर को आवश्यक सुरक्षा प्रदान करता है।-100 डीबी (-100 डीबी का मतलब है कि ट्रांसमीटर की आउटपुट पावर का केवल 10-10 भाग रिसीवर के वेव गाइड पोर्ट में क्रॉस-फेड होता है) के अंतर को प्राप्त करने के लिए चयनात्मक रेडियो आवृती फिल्टरिंग के माध्यम से आगे के अंतर को प्राप्त किया जा सकता है।
दूसरी तरफ दो प्रकार की आउटडोर इकाइयों को प्रदर्शित करती है, एक 1-वाट ह्यूजेस इकाई और 2-वाट बीयूसी/ओएमटी/एलएनबी एंड्रयू, स्वीडिश माइक्रोवेव इकाइयों का एक समग्र विन्यास है।
निम्नलिखित छवियां पोर्टेंसिग्ने और हिर्शमैन कू बैंड विन्यास को दिखाती हैं, जो क्षैतिज ऊर्ध्वाधर, और गोलाकार ध्रुवीकृत वेब-गाइड पोर्ट को प्रदर्शित करता है, जो बाहरी इकाई के फीड-हॉर्न, एलएनबी या बीयूसी उपकरणों से जुड़ते हैं।
स्थलीय माइक्रोवेव रेडियो लिंक
ऑर्थो-मोड ट्रांसड्यूसर भी एक घटक है जो सामान्यत: उच्च क्षमता वाले स्थलीय माइक्रोवेव रेडियो लिंक पर पाया जाता है। इस व्यवस्था में दो परवलयिक परावर्तक डिश एक बिंदु से दुसरे बिंदु माइक्रोवेव रेडियो पथ (4 गीगाहर्ट्ज से 85 गीगाहर्ट्ज) में चार रेडियो के साथ काम करते हैं, जहां प्रत्येक छोर पर दो स्थित होते हैं। प्रत्येक डिश पर फीड के पीछे एक टी-आकार का ऑर्थो-मोड ट्रांसड्यूसर लगाया जाता है, जो फीड से सिग्नल को दो अलग-अलग रेडियो सिंग्नल में करता है, एक क्षैतिज ध्रुवता में काम करता है, और दूसरा ऊर्ध्वाधर ध्रुवता में काम करता है। इस व्यवस्था का उपयोग एक बिंदु से बिंदु माइक्रोवेव पथ पर दो डिशों के बीच कुल डेटा थ्रूपुट को बढ़ाने के लिए किया जाता है। कुछ प्रकार के आउटडोर माइक्रोवेव रेडियो में एकीकृत ऑर्थोमोड ट्रांसड्यूसर होता है और यह एक ही रेडियो इकाई से दोनों ध्रुवीयता में संचालित होता है, जो रेडियो इकाई के भीतर ही क्रॉस-पोलराइजेशन इंटरफेरेंस कैंसिलेशन (XPIC) करते हैं।
वैकल्पिक रूप से ऑर्थोमोड ट्रांसड्यूसर को एंटीना के रूप में बनाया जा सकता है, जो अलग-अलग रेडियो या एक ही रेडियो के अलग-अलग पोर्ट को एंटीना से जोड़ने की अनुमति दे।
लक्षण वर्णन
एक ऑर्थो-मोड ट्रांसड्यूसर को 4-पोर्ट डिवाइस के रूप में तैयार किया जा सकता है, इनमें से 2 (एच और वी) एकल-ध्रुवीकरण पोर्ट के रूप में प्रदर्शित करते हैं और शेष (एच, वी) दोहरे-ध्रुवीकृत पोर्ट में विकृत मोड द्वारा स्थित होते हैं।
प्रकीर्णन पैरामीटर को 4×4 प्रकीर्णन आव्यूह के रूप में एकत्र किया जा सकता है, जो पारस्परिक ओएमटी के लिए सममित है (अर्थात इसमें सर्कुलेटर्स, आइसोलेटर्स या सक्रिय घटक शामिल नहीं हैं), इस प्रकार एक सामान्य हानिपूर्ण डिवाइस के लिए 10 स्वतंत्र शब्द निकलते हैं:
यहाँ इन:
- 4(, , , ) 4 पोर्ट्स के आंतरिक प्रतिबिंब शर्त् को प्रदर्शित करता है, जो वापसी हानि से संबंधित है जब सभी पोर्ट, पोर्ट विशेषता प्रतिबाधा के बराबर आदर्श भार पर बंद हो जाते हैं;
- 2(, ) मुख्य प्रत्यक्ष संचरण शब्द हैं, जो(प्रत्येक एकल-ध्रुवीकरण पोर्ट से दोहरे-ध्रुवीकरण पोर्ट पर संबंधित मोड तक);
- 2(, ) क्रॉस-ध्रुवीकरण भेदभाव (एक्सपीडी) का प्रदर्शित करते हैं: प्रत्येक एकल-ध्रुवीकरण पोर्ट से दोहरे-ध्रुवीकरण पोर्ट पर कथित-पृथक मोड तक;
- 2(, ) शर्तों को मॉडल करें (कभी-कभी इंटर-पोर्ट अलगाव, आईपीआई के रूप में संदर्भित): दो एकल-ध्रुवीकृत बंदरगाहों के बीच और दोहरे-ध्रुवीकृत पोर्ट पर दो ऑर्थोगोनल मोड के बीच।
एक आदर्श ओएमटी पूर्ण मिलान (विकर्ण पर शून्य शब्द), एकात्मक प्रत्यक्ष संचरण शब्द और अनंत एक्सपीडी और अलगाव (शून्य संगत बिखरने वाले पैरामीटर) प्रदर्शित करता है:
निर्मित ओएमटी (जिसे परीक्षण के तहत उपकरण माना जाता है, डीयूटी) का लक्षण वर्णन सामान्यत: यांत्रिक और सैद्धांतिक दोनों कारणों से एक समान्य कारक है।
वैचारिक रूप से, यदि माप सेटअप के भाग के रूप में एक आदर्श ओएमटी उपलब्ध है, जिसे हमेशा "गोल्डन सैंपल" नाम दिया जाता है, इसके दोहरे ध्रुवीकृत पोर्ट को DUT पर इसके प्रतिरूप जोड़ा जा सकता है, जिसके परिणामस्वरूप 4 एकल-ध्रुवीकरण पोर्ट के साथ 4-पोर्ट समतुल्य डिवाइस प्राप्त होता है। आदर्श ओएमटी दोहरे ध्रुवीकृत पोर्ट पर दो ध्रुवीकरणों को दो मानक एकल-ध्रुवीकृत पोर्ट्स में विभाजित करता है और ऐसी व्यवस्था DUT के सभी प्रकीर्णन पैरामीटर के प्रत्यक्ष माप की अनुमति देती है (या तो 4-पोर्ट वेक्टर नेटवर्क विश्लेषक (VNA) का उपयोग करके या 2-पोर्ट वाला 2 एकल-ध्रुवीकृत भार के साथ कई संयोजनों में उपयोग किया जाता है)।
ऐसा आदर्श सेटअप केवल दोहरे-ध्रुवीकृत पोर्ट्स के भौतिक स्थान और संरेखण से संबंधित यांत्रिक अनिश्चितताओं से उन्मुख है। एक साधारण और असंरेखित कोण प्रत्येक ध्रुवीकरण से के विपरीत आनुपातिक तक एक कृत्रिम पथ का परिचय देता है | डीयूटी के एक्सपीडी और इस कृत्रिम हानि के कारण रिसाव ( (या ) का चरणबद्ध संयोजन वास्तविक बाहरी मापी गई मात्रा है। यदि, उचित चरण पुनर्संयोजन द्वारा, दोनों सहयोग एक-दूसरे को रद्द कर देते हैं, जिससे वास्तविक मापा गया एक्सपीडी अनंत तक बढ़ सकता है (केवल तभी संभव है जब ), इस प्रकार एक बड़ी अनुमान त्रुटि हुई।
डीयूटी के अपेक्षित एक्सपीडी के आधार पर, कृत्रिम माप अनिश्चितता को अनदेखा किया जा सकता है, इसकी गारंटी के लिए यांत्रिक प्रति-उपाय उपलब्ध किए जाने चाहिए।
हालाँकि, इस आदर्श सेटअप से कोई भी विचलन त्रुटियों और अनिश्चितताओं का परिचय देता है।
यदि आदर्श ओएमटी के स्थान पर एक दोहरे-ध्रुवीकरण मिलान भार उपलब्ध है, तो यह एकल-ध्रुवीकरण पोर्ट्स से 2×2 माप की अनुमति देता है, केवल 2 प्रतिबिंब शर्तों को प्राप्त करता है ( और ) और एक आईपीआई (). डीयूटी के अन्य बिखरने वाले मापदंडों का अनुमान प्राप्त करने के उद्देश्य से किए गए अन्य मापों में दोहरे-ध्रुवीकृत पोर्ट शामिल हैं और अतिरिक्त घटकों की आवश्यकता होती है, जैसे दोहरे-ध्रुवीकृत से एकल-ध्रुवीकृत संक्रमण या टेपर, जो अक्सर दोनों में से कम से कम एक पर मेल नहीं खाते हैं। ध्रुवीकरण: यह अवांछित प्रतिबिंब बनाता है जो ओएमटी के माध्यम से फैलता है और वीएनए पोर्ट्स पर संयोजित होता है और इस प्रकार प्रत्यक्ष माप को रोकता है। ये मुद्दे यांत्रिक कारकों को जोड़ते हैं और माप प्रक्रिया में अनिश्चितताओं को बढ़ाते हैं।
उच्च क्षमता वाले डेटा लिंक की बढ़ती मांग के कारण, दोहरे ध्रुवीकरण के शोषण ने व्यावहारिक कठिनाइयों को दूर करने के लिए ओएमटी के डिजाइन और लक्षण वर्णन में अनुसंधान को बढ़ावा दिया है। ओएमटी मॉडलिंग और व्यावहारिक लक्षण वर्णन से संबंधित साहित्य में राष्ट्रीय अनुसंधान परिषद (इटली) जैसे अकादमिक संगठनों द्वारा किए गए कार्य शामिल हैं।[3] मार्चे पॉलिटेक्निक विश्वविद्यालय और यूरोपीय अंतरिक्ष एजेंसी[4] और इसी तरह कॉमस्कोप जैसी औद्योगिक टीमों द्वारा भी[5] और सिया माइक्रोइलेक्ट्रॉनिक्स[6] आधुनिक दोहरे-ध्रुवीकृत दूरसंचार प्रणालियों के उत्पादों पर तत्काल प्रभाव के साथ, उदाहरण के लिए #टेरेस्ट्रियल माइक्रोवेव रेडियो लिंक बैकहॉल (दूरसंचार)।
यह भी देखें
- वेवगाइड (विद्युत चुंबकत्व)
- आवाजलगाना
संदर्भ
- ↑ "ऑर्थोमोड ट्रांसड्यूसर". Institute for Telecommunication Sciences. 1996-08-23. Retrieved 2013-06-29.
- ↑ Bartlett, Mike (2010). "सामान्य प्रश्न". SAS Ltd. Archived from the original on 2013-07-06. Retrieved 2013-06-29.
- ↑ Peverini, O.; Tascone, R.; Olivieri, A.; Baralis, M.; Orta, R.; Virone, G. (2003). "ऑर्थो-मोड ट्रांसड्यूसर के पूर्ण लक्षण वर्णन के लिए एक माइक्रोवेव माप प्रक्रिया". IEEE Transactions on Microwave Theory and Techniques. 51 (4): 1207–1213. Bibcode:2003ITMTT..51.1207P. doi:10.1109/TMTT.2003.809629.
- ↑ Morini, A.; Guglielmi, M.; Farina, M. (2013). "ओवरमोडेड वेवगाइड उपकरणों के सामान्यीकृत बिखरने वाले मैट्रिक्स की माप के लिए एक तकनीक". IEEE Transactions on Microwave Theory and Techniques. 61 (7): 2705–2714. Bibcode:2013ITMTT..61.2705M. doi:10.1109/TMTT.2013.2265683. S2CID 15432629.
- ↑ Syme, Jim (26 August 2014). "Back to Basics in Microwave Systems: Cross-Polar Discrimination". Retrieved 6 December 2016.
- ↑ Oldoni, Matteo; Tresoldi, Dario (2016). ऑर्थोमोड ट्रांसड्यूसर के सटीक लक्षण वर्णन के लिए सस्ता तरीका. IEEE Microwave Symposium Digest (MTT). doi:10.1109/MWSYM.2016.7538836.
बाहरी संबंध
- VSAT specific training that demonstrates the use of the Orthomode Transducer (OMT):