गणितीय आकृतिविज्ञान: Difference between revisions
(→इतिहास) |
m (Sugatha moved page गणितीय आकृति विज्ञान to गणितीय आकृतिविज्ञान) |
||
(25 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
[[File:DilationErosion.png|thumb|right|एक आकार (नीले रंग में) और इसके रूपात्मक | [[File:DilationErosion.png|thumb|right|एक आकार (नीले रंग में) और इसके रूपात्मक विस्फार (हरे रंग में) और अपरदन (पीले रंग में) हीरे के आकार के संरचनात्मक तत्व द्वारा।]]'''गणितीय आकृति विज्ञान (एमएम)''' [[समुच्चय सिद्धान्त]], [[जाली|जालक]] सिद्धांत, [[टोपोलॉजी|सांस्थिति विज्ञान]] और यादृच्छिक फलन के आधार पर [[ज्यामिति]] संरचनाओं के विश्लेषण और प्रसंस्करण के लिए एक सिद्धांत और तकनीक है। एमएम सामान्यतः [[डिजिटल छवि|अंकीय प्रतिबिंबबो]] पर लागू होता है, लेकिन इसे [[ग्राफ (असतत गणित)|ग्राफ]], [[बहुभुज जाल|सतह जाल]], [[ठोस]] और कई अन्य स्थानिक संरचनाओं पर भी नियोजित किया जा सकता है। | ||
[[सांस्थिति विज्ञान]] और [[ज्यामितीय सतत]]-समष्टि अवधारणाएं जैसे [[आकार]], प्रतिरूप, [[उत्तल सेट|उत्तलता]], [[ संयुक्तता | संयोजकता]] और [[जियोडेसिक दूरी|अल्पांतरी दूरी]], एमएम द्वारा निरंतर और असतत दोनों [[विविक्तसमष्टियो]] पर पेश किए गए थे। एमएम रूपात्मक[[ मूर्ति प्रोद्योगिकी | प्रतिबिंब प्रक्रमण]] की नींव भी है, जिसमें संचालको का एक समुच्चय होता है जो उपरोक्त विशेषताओं के अनुसार प्रतिबिम्बो को रूपांतरित करता है। | [[सांस्थिति विज्ञान]] और [[ज्यामितीय सतत]]-समष्टि अवधारणाएं जैसे [[आकार]], प्रतिरूप, [[उत्तल सेट|उत्तलता]], [[ संयुक्तता | संयोजकता]] और [[जियोडेसिक दूरी|अल्पांतरी दूरी]], एमएम द्वारा निरंतर और असतत दोनों [[विविक्तसमष्टियो]] पर पेश किए गए थे। एमएम रूपात्मक[[ मूर्ति प्रोद्योगिकी | प्रतिबिंब प्रक्रमण]] की नींव भी है, जिसमें संचालको का एक समुच्चय होता है जो उपरोक्त विशेषताओं के अनुसार प्रतिबिम्बो को रूपांतरित करता है। | ||
मूल रूपात्मक संचालक [[अपरदन]], [[फैलाव (आकृति विज्ञान)| | मूल रूपात्मक संचालक [[अपरदन]], [[फैलाव (आकृति विज्ञान)|विस्फार]], [[उद्घाटन (आकृति विज्ञान)|विवृति]] और [[समापन (आकृति विज्ञान)|समापन]] हैं। | ||
एमएम मूल रूप से [[द्विआधारी छवि|द्विआधारी प्रतिबिम्बो]] के लिए विकसित किया गया था, और बाद में इसे[[स्केल|ग्रेस्केल]] [[फलनो]] और प्रतिबिम्बो तक बढ़ा दिया गया था। [[ | एमएम मूल रूप से [[द्विआधारी छवि|द्विआधारी प्रतिबिम्बो]] के लिए विकसित किया गया था, और बाद में इसे[[स्केल|ग्रेस्केल]] [[फलनो|फलन]] और प्रतिबिम्बो तक बढ़ा दिया गया था। [[जाली|जालक]] को पूरा करने के बाद के सामान्यीकरण को आज एमएम के सैद्धांतिक नींव के रूप में व्यापक रूप से स्वीकार किया जाता है। | ||
== इतिहास == | == इतिहास == | ||
Line 12: | Line 12: | ||
1968 में, माथेरॉन और सेरा के नेतृत्व में [[फॉनटेनब्लियू]], फ्रांस में इकोले डेस माइन्स डे पेरिस द्वारा [[सेंटर डी मॉर्फोलोजी मैथेमेटिक|सेंटर डी आकृति विज्ञान गणित]] की स्थापना की गई थी। | 1968 में, माथेरॉन और सेरा के नेतृत्व में [[फॉनटेनब्लियू]], फ्रांस में इकोले डेस माइन्स डे पेरिस द्वारा [[सेंटर डी मॉर्फोलोजी मैथेमेटिक|सेंटर डी आकृति विज्ञान गणित]] की स्थापना की गई थी। | ||
शेष 1960 के दशक और अधिकांश 1970 के दशक के दौरान, एमएम अनिवार्य रूप से [[द्विआधारी प्रतिबिम्बो]] के साथ काम करता था, जिसे [[सेट (गणित)|समुच्चय]] के रूप में माना गया था, और बड़ी संख्या में [[बाइनरी ऑपरेटर|द्विआधारी संचालको]] और तकनीकों को उत्पन्न करता था, [[ | शेष 1960 के दशक और अधिकांश 1970 के दशक के दौरान, एमएम अनिवार्य रूप से [[द्विआधारी प्रतिबिम्बो]] के साथ काम करता था, जिसे [[सेट (गणित)|समुच्चय]] के रूप में माना गया था, और बड़ी संख्या में [[बाइनरी ऑपरेटर|द्विआधारी संचालको]] और तकनीकों को उत्पन्न करता था, [[हिट-या-मिस ट्रांसफॉर्म|हिट-या-मिस रूपांतरण]], [[फैलाव, कटाव, उद्घाटन, समापन|विस्फार, अपरदन, विवृति, समापन]],[[ ग्रैनुलोमेट्री (आकृति विज्ञान) | कणमिति,]][[ परम क्षरण | विरलन]], [[सशर्त द्विभाजक|शैलमृदाभवन]], [[परम क्षरण|परम अपरदन]], [[सशर्त द्विभाजक]] और अन्य है। उपन्यास प्रतिबिम्ब प्रारूप के आधार पर एक यादृच्छिक दृष्टिकोण भी विकसित किया गया था। उस अवधि का अधिकांश कार्य फॉनटेनब्लियू में विकसित किया गया था। | ||
1970 के दशक के मध्य से 1980 के दशक के मध्य तक, एमएम को [[ग्रेस्केल]] | 1970 के दशक के मध्य से 1980 के दशक के मध्य तक, एमएम को [[ग्रेस्केल]] फलन और [[प्रतिबिम्बो]] के लिए भी सामान्यीकृत किया गया था। फलन के लिए मुख्य अवधारणाओं (जैसे विस्फार, अपरदन, आदि) को विस्तारित करने के अलावा, इस सामान्यीकरण ने नए प्रचालको, जैसे [[रूपात्मक ढाल]], [[शीर्ष-टोपी परिवर्तन|शीर्ष-रूपांतरण]] और [[वाटरशेड (एल्गोरिदम)|जल विभाजक]] (एमएम का मुख्य [[ विभाजन (इमेज प्रोसेसिंग) | विभाजन]] दृष्टिकोण) को जन्म दिया। | ||
1980 और 1990 के दशक में, एमएम को एक व्यापक पहचान मिली, क्योंकि कई देशों के अनुसंधान केंद्रों ने इस पद्धति को स्वीकृत करना और उसकी जांच करना शुरू किया। एमएम को बड़ी संख्या में प्रतिबिंबन समस्याओं और अनुप्रयोगों, विशेष रूप से शोर प्रतिबिम्बो के अरैखिक निस्यंदन के क्षेत्र में लागू किया जाना शुरू हुआ। | 1980 और 1990 के दशक में, एमएम को एक व्यापक पहचान मिली, क्योंकि कई देशों के अनुसंधान केंद्रों ने इस पद्धति को स्वीकृत करना और उसकी जांच करना शुरू किया। एमएम को बड़ी संख्या में प्रतिबिंबन समस्याओं और अनुप्रयोगों, विशेष रूप से शोर प्रतिबिम्बो के अरैखिक निस्यंदन के क्षेत्र में लागू किया जाना शुरू हुआ। | ||
1986 में, सेरा ने एमएम को इस बार [[पूर्ण जाली]] पर आधारित एक सैद्धांतिक ढांचे के लिए सामान्यीकृत किया। यह सामान्यीकरण सिद्धांत में लचीलापन लाया, इसके अनुप्रयोग को बहुत बड़ी संख्या में संरचनाओं में सक्षम किया, जिसमें रंगीन प्रतिबिंब, वीडियो, [[ग्राफ]], [[मेष (गणित)|मेष]] आदि सम्मिलित हैं। साथ ही, माथेरॉन और सेरा ने नए | 1986 में, सेरा ने एमएम को इस बार [[पूर्ण जाली|पूर्ण जालक]] पर आधारित एक सैद्धांतिक ढांचे के लिए सामान्यीकृत किया। यह सामान्यीकरण सिद्धांत में लचीलापन लाया, इसके अनुप्रयोग को बहुत बड़ी संख्या में संरचनाओं में सक्षम किया, जिसमें रंगीन प्रतिबिंब, वीडियो, [[ग्राफ]], [[मेष (गणित)|मेष]] आदि सम्मिलित हैं। साथ ही, माथेरॉन और सेरा ने नए जालक ढांचे के आधार पर रूपात्मक [[फ़िल्टर (गणित)|निस्यंदन]] के लिए एक सिद्धांत भी तैयार किया। | ||
1990 और 2000 के दशक में [[कनेक्शन (आकृति विज्ञान)|सम्बन्ध]] और [[लेवलिंग (आकृति विज्ञान)|स्तरीकरण]] की अवधारणाओं सहित आगे की सैद्धांतिक प्रगति भी देखी गई। | 1990 और 2000 के दशक में [[कनेक्शन (आकृति विज्ञान)|सम्बन्ध]] और [[लेवलिंग (आकृति विज्ञान)|स्तरीकरण]] की अवधारणाओं सहित आगे की सैद्धांतिक प्रगति भी देखी गई। | ||
1993 में, गणितीय आकृति विज्ञान (आईएसएमएम) पर पहली अंतर्राष्ट्रीय संगोष्ठी [[बार्सिलोना]], [[स्पेन]] में हुई। तब से, आईएसएमएम प्रत्येक 2-3 वर्षों में | 1993 में, गणितीय आकृति विज्ञान (आईएसएमएम) पर पहली अंतर्राष्ट्रीय संगोष्ठी [[बार्सिलोना]], [[स्पेन]] में हुई। तब से, आईएसएमएम प्रत्येक 2-3 वर्षों में ,[[फॉनटेनब्लियू, फ्रांस]] (1994), [[अटलांटा]], [[संयुक्त राज्य अमेरिका|सीए, यूएसए]] (1996), [[एम्स्टर्डम]], [[नीदरलैंड|नीदरलैंड्स]] (1998), [[ ऊंचा पोल | पाल आल्टो]], [[सीए, यूएसए]] (2000), [[सिडनी]], [[ऑस्ट्रेलिया]] (2002), [[पेरिस, फ्रांस]] (2005), [[रियो डी जनेरियो]], [[ब्राज़िल]] (2007), [[ग्रोनिंगन (शहर)|ग्रोनिंगन]], [[नीदरलैंड्स]] (2009), इंट्रा ([[वर्बानिया]]), [[इटली]] (2011), [[अपसला]], स्वीडन (2013), [[रिक्जेविक]], आइसलैंड (2015), और [[फॉनटेनब्लियू, फ्रांस]] (2017) इन जगहों पर आयोजित किए जाते हैं,। | ||
=== संदर्भ === | === संदर्भ === | ||
Line 29: | Line 29: | ||
* "Appendix A: The 'Centre de Morphologie Mathématique', an overview" by Jean Serra, in ([[#serra94|Serra ''et al.'' (Eds.) 1994]]), pgs. 369-374. | * "Appendix A: The 'Centre de Morphologie Mathématique', an overview" by Jean Serra, in ([[#serra94|Serra ''et al.'' (Eds.) 1994]]), pgs. 369-374. | ||
*"Foreword" in ([[#ronse05|Ronse ''et al.'' (Eds.) 2005]]) | *"Foreword" in ([[#ronse05|Ronse ''et al.'' (Eds.) 2005]]) | ||
== | == द्विआधारी आकृति विज्ञान == | ||
द्विआधारी आकृति विज्ञान में, एक प्रतिबिम्ब को कुछ आयाम d के लिए [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन समष्टि]] <math>\mathbb{R}^d</math> या पूर्णांक | द्विआधारी आकृति विज्ञान में, एक प्रतिबिम्ब को कुछ आयाम d के लिए [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन समष्टि]] <math>\mathbb{R}^d</math> या पूर्णांक जालक <math>\mathbb{Z}^d</math> के [[सबसेट|उपसमुच्चय]] के रूप में देखा जाता है। | ||
=== | === संरचना तत्व === | ||
द्विआधारी | द्विआधारी आकार विज्ञान में मूल विचार एक प्रतिबिम्ब को एक सरल, पूर्व-परिभाषित आकार के साथ जांचना है, साथ ही यह निष्कर्ष निकालना है कि यह आकार प्रतिबिम्ब में कैसे फिट बैठता है या आकार में छूट जाता है। इस सरल "जांच" को [[संरचनात्मक तत्व]] कहा जाता है, और यह स्वयं एक द्विआधारी प्रतिबिम्ब (यानी, समष्टि या जालक का उपसमुच्चय) है। | ||
यहां व्यापक रूप से उपयोग किए जाने वाले संरचनात्मक तत्वों के कुछ उदाहरण दिए गए हैं (बी द्वारा चिह्नित) | यहां व्यापक रूप से उपयोग किए जाने वाले संरचनात्मक तत्वों के कुछ उदाहरण दिए गए हैं (बी द्वारा चिह्नित), | ||
* | * मान लीजिए <math>E = \mathbb{R}^2</math>, B त्रिज्या r की एक खुली डिस्क है, जो मूल बिंदु पर केंद्रित है। | ||
* | * मान लीजिए <math>E = \mathbb{Z}^2</math>, B एक 3 × 3 वर्ग है, अर्थात, B = {(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 0), ( 0, 1), (1, −1), (1, 0), (1, 1)}। | ||
* | * मान लीजिए <math>E = \mathbb{Z}^2</math>, B, B = {(−1, 0), (0, -1), (0, 0), (0, 1), (1, 0)} द्वारा दिया गया अनुप्रस्थ है। | ||
=== | === मूलभूत संचालक === | ||
मूल संचालन | मूल संचालन स्थानान्तरित निश्चर ([[अनुवाद संबंधी व्युत्क्रम|स्थानांतरण संबंधी व्युत्क्रम]]) संचालक हैं जो [[मिन्कोव्स्की जोड़]] से दृढ़ता से संबंधित हैं। | ||
E को यूक्लिडियन समष्टि या पूर्णांक जालक होने दें, और A तथा E में एक द्विआधारी प्रतिबिम्ब होने दें। | |||
==== | ==== अपरदन ==== | ||
[[File:Erosion.png|thumb|right|एक डिस्क द्वारा गहरे-नीले वर्ग का | [[File:Erosion.png|thumb|right|एक डिस्क द्वारा गहरे-नीले वर्ग का अपरदन, जिसके परिणामस्वरूप हल्का-नीला वर्ग बनता है।]]संरचनात्मक तत्व ''B'' द्वारा द्विआधारी प्रतिबिम्ब A के अपरदन <math>A \ominus B = \{z\in E | B_{z} \subseteq A\},</math> | ||
द्वारा परिभाषित किया गया है जहां B<sub>''z''</sub> सदिश z द्वारा B का स्थानांतरण है, अर्थात, <math>B_z = \{b + z \mid b \in B\}</math>, <math>\forall z \in E</math>। | |||
जब संरचनात्मक तत्व | जब संरचनात्मक तत्व B का एक केंद्र होता है (उदाहरण के लिए, B एक डिस्क या वर्ग है), और यह केंद्र E की उत्पत्ति पर स्थित हो, तो B द्वारा A के अपरदन को B के केंद्र द्वारा B के केंद्र तक पहुँचने वाले [[बिंदुओं]] के स्थान के रूप में समझा जा सकता है जब B, A के अंदर गतिविधि करता है। उदाहरण के लिए, मूल पर केंद्रित 10 भुजा के वर्ग का अपरदन, त्रिज्या 2 की एक डिस्क द्वारा, जो मूल पर केंद्रित है, तथा मूल पर केंद्रित भुजा 6 का एक वर्ग है। | ||
B द्वारा A का अपरदन भी व्यंजक <math>A \ominus B = \bigcap_{b \in B} A_{-b}</math> द्वारा दिया जाता है। | |||
उदाहरण आवेदन | उदाहरण आवेदन, मान लें कि हमें एक डार्क फोटोकॉपी का फैक्स प्राप्त हुआ है। सब कुछ ऐसा लगता है जैसे यह खून बह रहा कलम से लिखा गया हो। अपरदन प्रक्रिया मोटी रेखाओं को पतला होने देगी और o अक्षर के अंदर छेद का पता लगाएगी। | ||
==== | ==== विस्फार ==== | ||
[[File:Dilation.png|thumb|right|एक डिस्क द्वारा गहरे-नीले वर्ग का | [[File:Dilation.png|thumb|right|एक डिस्क द्वारा गहरे-नीले वर्ग का विस्फार, जिसके परिणामस्वरूप गोलाकार कोनों वाला हल्का-नीला वर्ग बनता है।]]संरचनात्मक तत्व B द्वारा A का [[फैलाव|विस्फार]] | ||
: <math>A \oplus B = \bigcup_{b \in B} A_b.</math> | : <math>A \oplus B = \bigcup_{b \in B} A_b.</math> | ||
:द्वारा परिभाषित किया गया है। विस्फार क्रमविनिमेय है, जिसे <math>A \oplus B = B \oplus A = \bigcup_{a \in A} B_a</math> द्वारा दिया जाता है। | |||
यदि B का केंद्र पहले की तरह मूल बिंदु पर है, तो A द्वारा B के विस्फार को B द्वारा आवृत किए गए बिंदुओं के स्थान के रूप में समझा जा सकता है, जब B का केंद्र A के अंदर गतिविधि करता है। उपरोक्त उदाहरण में, त्रिज्या 2 की डिस्क द्वारा भुजा 10 के वर्ग का विस्फार मूल पर केंद्रित गोल कोनों के साथ, भुजा 14 भुजा का एक वर्ग है। गोल कोनों की त्रिज्या 2 है। | |||
विस्फार <math>A \oplus B = \{z \in E \mid (B^s)_z \cap A \neq \varnothing\}</math> द्वारा भी प्राप्त किया जा सकता है, जहां B<sup>s</sup> B की [[घूर्णी समरूपता|सममिति]] अर्थात, <math>B^s = \{x \in E \mid -x \in B\}</math>को दर्शाता है। | |||
उदाहरण अनुप्रयोग, विस्फार अपरदन की दोहरी क्रिया है। बहुत हल्के ढंग से खींचे गए आंकड़े "पतले" होने पर मोटे हो जाते हैं। इसका वर्णन करने का सबसे आसान तरीका यह कल्पना करना है कि उसी फैक्स/टेक्स्ट को मोटे पेन से लिखा गया है। | |||
==== विवृति ==== | |||
[[File:Opening.png|thumb|right|एक डिस्क द्वारा गहरे-नीले वर्ग की विवृति, जिसके परिणामस्वरूप गोल कोनों वाला हल्का-नीला वर्ग बनता है।]]A द्वारा B की विवृति A द्वारा B के अपरदन द्वारा प्राप्त की जाती है, जिसके परिणामस्वरूप B द्वारा परिणामी प्रतिबिम्ब का विस्फार होता है, | |||
: <math>A \circ B = (A \ominus B) \oplus B.</math> | |||
विवृति भी <math>A \circ B = \bigcup_{B_x \subseteq A} B_x</math> द्वारा दी गई है, जिसका अर्थ है कि यह प्रतिबिम्ब A के अंदर संरचनात्मक तत्व B के स्थानांतरण का स्थान है। 10 भुजा के वर्ग की स्थिति में, और त्रिज्या 2 की एक डिस्क संरचना तत्व के रूप में, विवृति गोल कोनों के साथ 10 भुजा का एक वर्ग है, जहाँ कोने की त्रिज्या 2 है। | |||
उदाहरण अनुप्रयोग, मान लें कि किसी ने एक न-भिगने वाले कागज पर एक नोट लिखा है और यह लेखन ऐसा दिखता है जैसे कि यह छोटे बालों वाली जड़ों को बढ़ा रहा हो। अनिवार्य रूप से विवृति बाहरी छोटी अतिसूक्षम रेखा लीक को हटा देता है और पाठ को पुनर्स्थापित करता है। दुष्प्रभाव यह है कि यह चीजों को गोल कर देता है। तब तीक्ष्ण कोर गायब होने लगते हैं। | |||
उदाहरण अनुप्रयोग | |||
==== समापन ==== | ==== समापन ==== | ||
[[File:Closing.png|thumb|right|एक डिस्क द्वारा गहरे-नीले आकार (दो वर्गों का | [[File:Closing.png|thumb|right|एक डिस्क द्वारा गहरे-नीले आकार (दो वर्गों का संयोग) का समापन, जिसके परिणामस्वरूप गहरे-नीले आकार और हल्के-नीले क्षेत्रों का मिलन होता है।]]A द्वारा B का समापन A द्वारा B के विस्फार द्वारा प्राप्त किया जाता है, इसके बाद B द्वारा परिणामी संरचना का अपरदन होता है | ||
: <math>A \bullet B = (A \oplus B) \ominus B.</math> | : <math>A \bullet B = (A \oplus B) \ominus B.</math> | ||
समापन <math>A \bullet B = (A^c \circ B^s)^c</math> द्वारा भी प्राप्त किया जा सकता है, जहां X<sup>c,</sup> E के सापेक्ष X के [[पूरक (सेट सिद्धांत)|पूरक]] को दर्शाता है (अर्थात, <math>X^c = \{x \in E \mid x \notin X\}</math>)। उपरोक्त का अर्थ है कि समापन प्रतिबिम्ब A के बाहर संरचनात्मक तत्व के सममित के स्थानांतरण के बिन्दुपथ का पूरक है। | |||
==== मूल प्रचालको के गुण ==== | ==== मूल प्रचालको के गुण ==== | ||
यहाँ | यहाँ मूल द्विआधारी रूपात्मक संचालकों (विस्तार, अपरदन, विवृति और समापन) के कुछ गुण हैं, | ||
* वे | * वे [[अनुवाद अपरिवर्तनीय|स्थानांतरण निश्चर]] हैं। | ||
* वे बढ़ रहे हैं, | * वे बढ़ रहे हैं, अर्थात यदि <math>A\subseteq C</math>, तब <math>A\oplus B \subseteq C\oplus B</math>, और <math>A\ominus B \subseteq C\ominus B</math>, आदि है। | ||
* | * विस्फार [[विनिमेय|क्रमविनिमेय]] है, <math>A\oplus B = B\oplus A</math>। | ||
* यदि | * यदि E की उत्पत्ति संरचनात्मक तत्व B से संबंधित है, तो <math>A\ominus B\subseteq A\circ B\subseteq A\subseteq A\bullet B\subseteq A\oplus B</math>। | ||
* | * विस्फार [[साहचर्य]] है, अर्थात, <math>(A\oplus B)\oplus C = A\oplus (B\oplus C)</math>। इसके अलावा, अपरदन <math>(A\ominus B)\ominus C = A\ominus (B\oplus C)</math> संतुष्ट करता है। | ||
* | * अपरदन और विस्फार द्वैतता <math>A \oplus B = (A^{c} \ominus B^{s})^{c}</math> को संतुष्ट करते हैं। | ||
* | * विवृति और समापन द्वैतता <math>A \bullet B = (A^{c} \circ B^{s})^{c}</math> को संतुष्ट करता है। | ||
* | * विस्फार समुच्चय [[संयोग]] पर [[वितरण]] है | ||
* | * अपरदन समुच्चय [[सर्वनिष्ठ]] पर [[वितरण]] है | ||
* | * विस्फार अपरदन का [[छद्म-प्रतिलोम]] है, और इसके विपरीत, निम्नलिखित अर्थों में, <math>A\subseteq (C\ominus B)</math> यदि और केवल <math>(A\oplus B)\subseteq C</math>। | ||
* | *विवृति और समापन उदासीन हैं। | ||
* | * विवृति [[विरोधी व्यापक]] है, यानी, <math>A\circ B\subseteq A</math>, जबकि समापन व्यापक है, अर्थात, <math>A\subseteq A\bullet B</math>। | ||
=== अन्य | === अन्य संचालक और उपकरण === | ||
* हिट-या-मिस ट्रांसफॉर्म | * [[हिट-या-मिस ट्रांसफॉर्म|हिट-या-मिस]] [[रूपांतरण]] | ||
* प्रूनिंग (आकृति विज्ञान) | * [[प्रूनिंग (आकृति विज्ञान)|कृंतन रूपांतरण]] | ||
* [[रूपात्मक कंकाल]] | * [[रूपात्मक कंकाल|रूपात्मक सारांश]] | ||
* [[पुनर्निर्माण द्वारा फ़िल्टरिंग]] | * [[पुनर्निर्माण द्वारा फ़िल्टरिंग|पुनर्निर्माण द्वारा निस्यंदन]] | ||
* अंतिम कटाव और सशर्त द्विभाजक | * [[अंतिम कटाव और सशर्त द्विभाजक|अंतिम अपरदन और सशर्त द्विभाजक]] | ||
* ग्रैनुलोमेट्री (आकृति विज्ञान) | * [[ग्रैनुलोमेट्री (आकृति विज्ञान)|कणमिति]] | ||
* [[जियोडेसिक डिस्टेंस फंक्शन]] | * [[जियोडेसिक डिस्टेंस फंक्शन|अल्पान्तरी दूरी फलन]] | ||
== ग्रेस्केल आकृति विज्ञान == | == ग्रेस्केल आकृति विज्ञान == | ||
[[File:Watershed of gradient of MRI heart image.png|thumb|right| | [[File:Watershed of gradient of MRI heart image.png|thumb|right|हृदय प्रतिबिम्ब के प्रवणता का जल विभाजक]][[ग्रेस्केल]] आकारिकी में, प्रतिबिम्ब [[यूक्लिडियन समष्टि]] या जालक E को <math>\mathbb{R}\cup\{\infty,-\infty\}</math> में मानचित्र करने वाले [[फलन]] हैं , जहां <math>\mathbb{R}</math> [[वास्तविक संख्या|वास्तविक]] का समुच्चय है, <math>\infty</math> किसी भी वास्तविक संख्या से बड़ा तत्व है, और <math>-\infty</math> किसी भी वास्तविक संख्या से छोटा तत्व है। | ||
ग्रेस्केल | ग्रेस्केल संरचना तत्व भी उसी प्रारूप के फलन हैं, जिन्हें संरचना फलन कहा जाता है। | ||
एक | एक प्रतिबिम्ब को f(x) द्वारा संरचना फलन को b(x) द्वारा और g को B द्वारा समर्थित करने पर, f द्वारा b का ग्रेस्केल विस्फार | ||
: <math>(f \oplus b)(x) = \sup_{y \in B}[f(y) + b(x - y)],</math> | : <math>(f \oplus b)(x) = \sup_{y \in B}[f(y) + b(x - y)],</math> | ||
जहां sup सर्वोच्चता को दर्शाता है। | द्वारा दिया जाता है, जहां sup [[सर्वोच्चता]] को दर्शाता है। | ||
इसी तरह, f | इसी तरह, b द्वारा f का अपरदन | ||
: <math>(f \ominus b)(x) = \inf_{y \in B}[f(y) - b(y - x)],</math> | : <math>(f \ominus b)(x) = \inf_{y \in B}[f(y) - b(y - x)],</math> | ||
जहां | द्वारा दिया जाता है, जहां "inf" [[न्यूनतम]] को दर्शाता है। | ||
द्विआधारी | द्विआधारी आकृति विज्ञान की तरह, ही विवृति और समापन क्रमशः | ||
: <math>f \circ b = (f \ominus b) \oplus b,</math> | : <math>f \circ b = (f \ominus b) \oplus b,</math> | ||
: <math>f \bullet b = (f \oplus b) \ominus b.</math> | : <math>f \bullet b = (f \oplus b) \ominus b.</math> | ||
द्वारा दिए गए हैं। | |||
=== समतल संरचना फलन === | |||
रूपात्मक अनुप्रयोगों में समतल संरचना वाले तत्वों का उपयोग करना सामान्य है। समतल संरचना वाले फलन b(x) के रूप में फलन | |||
रूपात्मक अनुप्रयोगों में समतल संरचना वाले तत्वों का उपयोग करना | |||
: <math>b(x) = \begin{cases} | : <math>b(x) = \begin{cases} | ||
Line 147: | Line 145: | ||
-\infty & \text{otherwise}, | -\infty & \text{otherwise}, | ||
\end{cases}</math> | \end{cases}</math> | ||
हैं, जहाँ <math>B \subseteq E</math>। | |||
इस | इस स्थिति में, विस्फार और अपरदन को बहुत सरल किया जाता है, और क्रमशः | ||
: <math>(f \oplus b)(x) = \sup_{z \in B^s} f(x + z),</math | : <math>(f \oplus b)(x) = \sup_{z \in B^s} f(x + z),</math> | ||
: <math>(f \ominus b)(x) = \inf_{z \in B} f(x + z).</math> | : <math>(f \ominus b)(x) = \inf_{z \in B} f(x + z).</math> | ||
द्वारा दिया जाता है। परिबद्ध, असतत स्थिति में (E एक जालक है और B परिबद्ध है), [[अधिकतम|सर्वोच्च]] और [[न्यूनतम]] प्रचालको को [[अधिकतम]] और [[न्यूनतम]] द्वारा प्रतिस्थापित किया जा सकता है। इस प्रकार, विस्फार और अपरदन क्रम सांख्यिकी निस्यंदन की विशेष स्थिति हैं, जिसमें विस्फार एक गतिमान खिड़की के भीतर अधिकतम मूल्य लौटाता है (संरचना फलन का सममित समर्थन B), और गतिमान खिड़की B के भीतर न्यूनतम मूल्य लौटाता है। | |||
समतल संरचना वाले तत्व की स्थिति में, रूपात्मक संचालक उनके संख्यात्मक मानों की परवाह किए बिना केवल [[पिक्सेल]] मानों के सापेक्ष क्रम पर निर्भर करते हैं, और इसलिए विशेष रूप से [[द्विआधारी प्रतिबिम्बो]] और [[ग्रेस्केल प्रतिबिम्बो]] के प्रसंस्करण के लिए उपयुक्त होते हैं जिनके [[प्रकाश हस्तांतरण फलन]] ज्ञात नहीं होते हैं। | |||
=== अन्य संचालक और उपकरण === | |||
* [[आकृति संबंधी प्रवणता]] | |||
* [[शीर्ष रूपांतरण|टॉप-हैट रूपांतरण]] | |||
* [[जल विभाजक कलन विधि]] | |||
== पूर्ण | इन प्रचालको के संयोजन से कई प्रतिबिंब प्रक्रमण फलन के लिए कलन विधि प्राप्त किया जा सकता है, जैसे[[ सुविधा निकालना | विशेष गुण पहचान]], [[ छवि विभाजन |प्रतिबिम्ब विभाजन]], [[अनशार्प मास्किंग|प्रतिबिम्ब]] [[अनशार्प मास्किंग|सुस्पष्टता]], [[फ़िल्टर (सिग्नल प्रोसेसिंग)|प्रतिबिम्ब]] [[फ़िल्टर (सिग्नल प्रोसेसिंग)|निस्यंदन]], और [[सांख्यिकीय वर्गीकरण|वर्गीकरण]]। इस रेखा के साथ-साथ [[सतत आकृति विज्ञान]] पर भी ध्यान देना चाहिए<ref>G. Sapiro, R. Kimmel, D. Shaked, B. Kimia, and A. M. Bruckstein. [https://www.cs.technion.ac.il/~ron/PAPERS/morphology_1993.pdf ''Implementing continuous-scale morphology via curve evolution'']. Pattern Recognition, 26(9):1363–1372, 1993.</ref> | ||
== पूर्ण जालक पर गणितीय आकारिकी == | |||
पूर्ण | [[पूर्ण जालक]] [[आंशिक रूप से आदेशित सेट|आंशिक रूप से आदेशित समुच्चय]] हैं, जहां प्रत्येक उपसमुच्चय में एक [[न्यूनतम]] और एक [[उच्चतम|अधिकतम]] है। विशेष रूप से, इसमें [[कम से कम तत्व|छोटे से छोटे तत्व]] और [[सबसे बड़ा तत्व]] होता है (जिसे ब्रह्मांड भी कहा जाता है)। | ||
=== संयोजन ( | === संयोजन (विस्फार और अपरदन) === | ||
क्रमशः <math>\wedge</math> और <math>\vee</math> के प्रतीक के रूप में न्यूनतम और अधिकतम के साथ, मान लो <math>(L,\leq)</math> एक पूर्ण जालक हो। इसका ब्रह्मांड और सबसे छोटा तत्व क्रमशः U और <math>\emptyset</math> द्वारा दर्शाया गया है। इसके अलावा, <math>\{ X_{i} \}</math> को L से तत्वों का एक संग्रह होने दें। | |||
एक | एक विस्फार कोई संचालक <math>\delta\colon L\rightarrow L</math> है जो सर्वोच्च पर वितरित करता है, और छोटे से छोटे तत्व को संरक्षित करता है, अर्थात, | ||
* <math>\bigvee_{i}\delta(X_i)=\delta\left(\bigvee_{i} X_i\right)</math>, | * <math>\bigvee_{i}\delta(X_i)=\delta\left(\bigvee_{i} X_i\right)</math>, | ||
* <math>\delta(\emptyset)=\emptyset</math> | * <math>\delta(\emptyset)=\emptyset</math>। | ||
अपरदन कोई संचालक <math>\varepsilon\colon L\rightarrow L</math> है जो न्यूनतम पर वितरित करता है, और ब्रह्मांड को संरक्षित करता है। अर्थात, | |||
* <math>\bigwedge_{i}\varepsilon(X_i)=\varepsilon\left(\bigwedge_{i} X_i\right)</math>, | * <math>\bigwedge_{i}\varepsilon(X_i)=\varepsilon\left(\bigwedge_{i} X_i\right)</math>, | ||
* <math>\varepsilon(U)=U</math> | * <math>\varepsilon(U)=U</math>। | ||
विस्फार और अपरदन [[गाल्वा कनेक्शन|गाल्वा सम्बन्ध]] बनाते हैं। अर्थात्, प्रत्येक विस्फार के लिए <math>\delta</math> एक अपरदन है जो <math>\varepsilon</math> को सभी | |||
: <math>X\leq \varepsilon(Y)\Leftrightarrow \delta(X)\leq Y</math> | : <math>X\leq \varepsilon(Y)\Leftrightarrow \delta(X)\leq Y</math> | ||
<math>X,Y\in L</math> के लिए संतुष्ट करता है। | |||
इसी प्रकार, प्रत्येक अपरदन के लिए उपरोक्त संबंध को संतुष्ट करने वाला एक और | इसी प्रकार, प्रत्येक अपरदन के लिए उपरोक्त संबंध को संतुष्ट करने वाला एक और विस्फार होता है। | ||
इसके अलावा, यदि दो | इसके अलावा, यदि दो संचालक सम्बन्ध को संतुष्ट करते हैं, तब <math>\delta</math> एक विस्फार होना चाहिए, और <math>\varepsilon</math> एक अपरदन होना चाहिए। | ||
उपरोक्त सम्बन्ध को संतुष्ट करने वाले | उपरोक्त सम्बन्ध को संतुष्ट करने वाले अपरदन और विस्फार के जोड़े को संयोजन कहा जाता है, और इसके विपरीत अपरदन को विस्फार का संलग्न अपरदन कहा जाता है। | ||
=== | === विवृति और समापन === | ||
प्रत्येक संयोजन <math>(\varepsilon,\delta)</math> के लिए, रूपात्मक विवृति <math>\gamma \colon L \to L</math> और रूपात्मक समापन <math>\phi \colon L \to L</math> निम्नानुसार परिभाषित किया गया है, | |||
: <math>\gamma = \delta\varepsilon,</math> | : <math>\gamma = \delta\varepsilon,</math> | ||
: <math>\phi = \varepsilon\delta.</math> | : <math>\phi = \varepsilon\delta.</math> | ||
रूपात्मक | रूपात्मक विवृति और समापन [[बीजगणितीय उद्घाटन|बीजगणितीय विवृति]] (या आसानी से विवृति) और [[बीजगणितीय समापन]] (या आसानी से समापन) की विशेष स्थिति हैं। बीजगणितीय विवृति L में संचालक हैं जो निष्क्रिय, बढ़ते और विरोधी व्यापक हैं। बीजगणितीय समापन L में संचालक हैं जो निष्क्रिय, बढ़ते और व्यापक हैं। | ||
=== | === विशिष्ट स्थिति === | ||
द्विआधारी आकृति विज्ञान | द्विआधारी आकृति विज्ञान जालक आकारिकी की एक विशेष स्थिति है, जहां L E (यूक्लिडियन समष्टि या जालक ) का[[ सत्ता स्थापित | घात समुच्चय]] है, यानी L E के सभी उपसमुच्चय का समुच्चय है, और <math>\leq</math> [[सेट समावेशन|समुच्चय समावेशन]] है। इस स्थिति में, न्यूनतम [[समुच्चय सर्वनिष्ठ]] है, और अधिकतम [[समुच्चय सम्मिलन]] है। | ||
इसी तरह, ग्रेस्केल | इसी तरह, ग्रेस्केल आकृति विज्ञान एक और विशेष स्थिति है, जहां L, E को <math>\mathbb{R}\cup\{\infty,-\infty\}</math>, और <math>\leq</math>, <math>\vee</math>, और <math>\wedge</math>, में मानचित्रित करने वाले फलन का समुच्चय है, क्रमशः बिंदु-वार क्रम, सर्वोच्च और न्यूनतम हैं। अर्थात्, f और g, L में फलन हैं, तब <math>f\leq g</math> यदि केवल <math>f(x)\leq g(x),\forall x\in E</math>, सबसे अधिकतमकम <math>f\wedge g</math> द्वारा दिया गया है <math>(f\wedge g)(x)=f(x)\wedge g(x)</math>, और सर्वोच्च <math>f\vee g</math> द्वारा दिया गया है <math>(f\vee g)(x)=f(x)\vee g(x)</math>। | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[एच-मैक्सिमा परिवर्तन]] | * [[एच-मैक्सिमा परिवर्तन|एच-अधिकतम रूपांतरण]] | ||
== टिप्पणियाँ == | == टिप्पणियाँ == | ||
Line 240: | Line 235: | ||
* [http://www.ulg.ac.be/telecom/research/libmorphoDoc/index.html Fast morphological erosions, dilations, openings, and closings] | * [http://www.ulg.ac.be/telecom/research/libmorphoDoc/index.html Fast morphological erosions, dilations, openings, and closings] | ||
* [http://www.johanneshjorth.se/SynD Morphological analysis of neurons using Matlab] | * [http://www.johanneshjorth.se/SynD Morphological analysis of neurons using Matlab] | ||
[[Category:Created On 08/06/2023]] | [[Category:Created On 08/06/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:गणितीय आकृति विज्ञान| गणितीय आकृति विज्ञान ]] | |||
[[Category:डिजिटल ज्यामिति]] | |||
[[Category:प्रबंधन साइबरनेटिक्स]] | |||
[[Category:मूर्ति प्रोद्योगिकी]] |
Latest revision as of 11:46, 17 October 2023
गणितीय आकृति विज्ञान (एमएम) समुच्चय सिद्धान्त, जालक सिद्धांत, सांस्थिति विज्ञान और यादृच्छिक फलन के आधार पर ज्यामिति संरचनाओं के विश्लेषण और प्रसंस्करण के लिए एक सिद्धांत और तकनीक है। एमएम सामान्यतः अंकीय प्रतिबिंबबो पर लागू होता है, लेकिन इसे ग्राफ, सतह जाल, ठोस और कई अन्य स्थानिक संरचनाओं पर भी नियोजित किया जा सकता है।
सांस्थिति विज्ञान और ज्यामितीय सतत-समष्टि अवधारणाएं जैसे आकार, प्रतिरूप, उत्तलता, संयोजकता और अल्पांतरी दूरी, एमएम द्वारा निरंतर और असतत दोनों विविक्तसमष्टियो पर पेश किए गए थे। एमएम रूपात्मक प्रतिबिंब प्रक्रमण की नींव भी है, जिसमें संचालको का एक समुच्चय होता है जो उपरोक्त विशेषताओं के अनुसार प्रतिबिम्बो को रूपांतरित करता है।
मूल रूपात्मक संचालक अपरदन, विस्फार, विवृति और समापन हैं।
एमएम मूल रूप से द्विआधारी प्रतिबिम्बो के लिए विकसित किया गया था, और बाद में इसेग्रेस्केल फलन और प्रतिबिम्बो तक बढ़ा दिया गया था। जालक को पूरा करने के बाद के सामान्यीकरण को आज एमएम के सैद्धांतिक नींव के रूप में व्यापक रूप से स्वीकार किया जाता है।
इतिहास
1964 में इकोले डेस माइन्स डे पेरिस, फ्रांस में जॉर्जेस माथेरॉन और जॉन सेरा के सहयोगात्मक कार्य द्वारा गणितीय आकृति विज्ञान का विकास किया गया था। माथेरॉन ने सेरा की पीएचडी अभिधारणा का पर्यवेक्षण किया, जो पतले अनुप्रस्थ काट से खनिज विशेषताओं की मात्रा का ठहराव के लिए समर्पित था, और इस काम के परिणामस्वरूप एक उपन्यास व्यावहारिक दृष्टिकोण सामने आया, साथ ही अभिन्न ज्यामिति और सांस्थिति विज्ञान में सैद्धांतिक प्रगति भी हुई।
1968 में, माथेरॉन और सेरा के नेतृत्व में फॉनटेनब्लियू, फ्रांस में इकोले डेस माइन्स डे पेरिस द्वारा सेंटर डी आकृति विज्ञान गणित की स्थापना की गई थी।
शेष 1960 के दशक और अधिकांश 1970 के दशक के दौरान, एमएम अनिवार्य रूप से द्विआधारी प्रतिबिम्बो के साथ काम करता था, जिसे समुच्चय के रूप में माना गया था, और बड़ी संख्या में द्विआधारी संचालको और तकनीकों को उत्पन्न करता था, हिट-या-मिस रूपांतरण, विस्फार, अपरदन, विवृति, समापन, कणमिति, विरलन, शैलमृदाभवन, परम अपरदन, सशर्त द्विभाजक और अन्य है। उपन्यास प्रतिबिम्ब प्रारूप के आधार पर एक यादृच्छिक दृष्टिकोण भी विकसित किया गया था। उस अवधि का अधिकांश कार्य फॉनटेनब्लियू में विकसित किया गया था।
1970 के दशक के मध्य से 1980 के दशक के मध्य तक, एमएम को ग्रेस्केल फलन और प्रतिबिम्बो के लिए भी सामान्यीकृत किया गया था। फलन के लिए मुख्य अवधारणाओं (जैसे विस्फार, अपरदन, आदि) को विस्तारित करने के अलावा, इस सामान्यीकरण ने नए प्रचालको, जैसे रूपात्मक ढाल, शीर्ष-रूपांतरण और जल विभाजक (एमएम का मुख्य विभाजन दृष्टिकोण) को जन्म दिया।
1980 और 1990 के दशक में, एमएम को एक व्यापक पहचान मिली, क्योंकि कई देशों के अनुसंधान केंद्रों ने इस पद्धति को स्वीकृत करना और उसकी जांच करना शुरू किया। एमएम को बड़ी संख्या में प्रतिबिंबन समस्याओं और अनुप्रयोगों, विशेष रूप से शोर प्रतिबिम्बो के अरैखिक निस्यंदन के क्षेत्र में लागू किया जाना शुरू हुआ।
1986 में, सेरा ने एमएम को इस बार पूर्ण जालक पर आधारित एक सैद्धांतिक ढांचे के लिए सामान्यीकृत किया। यह सामान्यीकरण सिद्धांत में लचीलापन लाया, इसके अनुप्रयोग को बहुत बड़ी संख्या में संरचनाओं में सक्षम किया, जिसमें रंगीन प्रतिबिंब, वीडियो, ग्राफ, मेष आदि सम्मिलित हैं। साथ ही, माथेरॉन और सेरा ने नए जालक ढांचे के आधार पर रूपात्मक निस्यंदन के लिए एक सिद्धांत भी तैयार किया।
1990 और 2000 के दशक में सम्बन्ध और स्तरीकरण की अवधारणाओं सहित आगे की सैद्धांतिक प्रगति भी देखी गई।
1993 में, गणितीय आकृति विज्ञान (आईएसएमएम) पर पहली अंतर्राष्ट्रीय संगोष्ठी बार्सिलोना, स्पेन में हुई। तब से, आईएसएमएम प्रत्येक 2-3 वर्षों में ,फॉनटेनब्लियू, फ्रांस (1994), अटलांटा, सीए, यूएसए (1996), एम्स्टर्डम, नीदरलैंड्स (1998), पाल आल्टो, सीए, यूएसए (2000), सिडनी, ऑस्ट्रेलिया (2002), पेरिस, फ्रांस (2005), रियो डी जनेरियो, ब्राज़िल (2007), ग्रोनिंगन, नीदरलैंड्स (2009), इंट्रा (वर्बानिया), इटली (2011), अपसला, स्वीडन (2013), रिक्जेविक, आइसलैंड (2015), और फॉनटेनब्लियू, फ्रांस (2017) इन जगहों पर आयोजित किए जाते हैं,।
संदर्भ
- "Introduction" by Pierre Soille, in (Serra et al. (Eds.) 1994), pgs. 1-4.
- "Appendix A: The 'Centre de Morphologie Mathématique', an overview" by Jean Serra, in (Serra et al. (Eds.) 1994), pgs. 369-374.
- "Foreword" in (Ronse et al. (Eds.) 2005)
द्विआधारी आकृति विज्ञान
द्विआधारी आकृति विज्ञान में, एक प्रतिबिम्ब को कुछ आयाम d के लिए यूक्लिडियन समष्टि या पूर्णांक जालक के उपसमुच्चय के रूप में देखा जाता है।
संरचना तत्व
द्विआधारी आकार विज्ञान में मूल विचार एक प्रतिबिम्ब को एक सरल, पूर्व-परिभाषित आकार के साथ जांचना है, साथ ही यह निष्कर्ष निकालना है कि यह आकार प्रतिबिम्ब में कैसे फिट बैठता है या आकार में छूट जाता है। इस सरल "जांच" को संरचनात्मक तत्व कहा जाता है, और यह स्वयं एक द्विआधारी प्रतिबिम्ब (यानी, समष्टि या जालक का उपसमुच्चय) है।
यहां व्यापक रूप से उपयोग किए जाने वाले संरचनात्मक तत्वों के कुछ उदाहरण दिए गए हैं (बी द्वारा चिह्नित),
- मान लीजिए , B त्रिज्या r की एक खुली डिस्क है, जो मूल बिंदु पर केंद्रित है।
- मान लीजिए , B एक 3 × 3 वर्ग है, अर्थात, B = {(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 0), ( 0, 1), (1, −1), (1, 0), (1, 1)}।
- मान लीजिए , B, B = {(−1, 0), (0, -1), (0, 0), (0, 1), (1, 0)} द्वारा दिया गया अनुप्रस्थ है।
मूलभूत संचालक
मूल संचालन स्थानान्तरित निश्चर (स्थानांतरण संबंधी व्युत्क्रम) संचालक हैं जो मिन्कोव्स्की जोड़ से दृढ़ता से संबंधित हैं।
E को यूक्लिडियन समष्टि या पूर्णांक जालक होने दें, और A तथा E में एक द्विआधारी प्रतिबिम्ब होने दें।
अपरदन
संरचनात्मक तत्व B द्वारा द्विआधारी प्रतिबिम्ब A के अपरदन
द्वारा परिभाषित किया गया है जहां Bz सदिश z द्वारा B का स्थानांतरण है, अर्थात, , ।
जब संरचनात्मक तत्व B का एक केंद्र होता है (उदाहरण के लिए, B एक डिस्क या वर्ग है), और यह केंद्र E की उत्पत्ति पर स्थित हो, तो B द्वारा A के अपरदन को B के केंद्र द्वारा B के केंद्र तक पहुँचने वाले बिंदुओं के स्थान के रूप में समझा जा सकता है जब B, A के अंदर गतिविधि करता है। उदाहरण के लिए, मूल पर केंद्रित 10 भुजा के वर्ग का अपरदन, त्रिज्या 2 की एक डिस्क द्वारा, जो मूल पर केंद्रित है, तथा मूल पर केंद्रित भुजा 6 का एक वर्ग है।
B द्वारा A का अपरदन भी व्यंजक द्वारा दिया जाता है।
उदाहरण आवेदन, मान लें कि हमें एक डार्क फोटोकॉपी का फैक्स प्राप्त हुआ है। सब कुछ ऐसा लगता है जैसे यह खून बह रहा कलम से लिखा गया हो। अपरदन प्रक्रिया मोटी रेखाओं को पतला होने देगी और o अक्षर के अंदर छेद का पता लगाएगी।
विस्फार
संरचनात्मक तत्व B द्वारा A का विस्फार
- द्वारा परिभाषित किया गया है। विस्फार क्रमविनिमेय है, जिसे द्वारा दिया जाता है।
यदि B का केंद्र पहले की तरह मूल बिंदु पर है, तो A द्वारा B के विस्फार को B द्वारा आवृत किए गए बिंदुओं के स्थान के रूप में समझा जा सकता है, जब B का केंद्र A के अंदर गतिविधि करता है। उपरोक्त उदाहरण में, त्रिज्या 2 की डिस्क द्वारा भुजा 10 के वर्ग का विस्फार मूल पर केंद्रित गोल कोनों के साथ, भुजा 14 भुजा का एक वर्ग है। गोल कोनों की त्रिज्या 2 है।
विस्फार द्वारा भी प्राप्त किया जा सकता है, जहां Bs B की सममिति अर्थात, को दर्शाता है।
उदाहरण अनुप्रयोग, विस्फार अपरदन की दोहरी क्रिया है। बहुत हल्के ढंग से खींचे गए आंकड़े "पतले" होने पर मोटे हो जाते हैं। इसका वर्णन करने का सबसे आसान तरीका यह कल्पना करना है कि उसी फैक्स/टेक्स्ट को मोटे पेन से लिखा गया है।
विवृति
A द्वारा B की विवृति A द्वारा B के अपरदन द्वारा प्राप्त की जाती है, जिसके परिणामस्वरूप B द्वारा परिणामी प्रतिबिम्ब का विस्फार होता है,
विवृति भी द्वारा दी गई है, जिसका अर्थ है कि यह प्रतिबिम्ब A के अंदर संरचनात्मक तत्व B के स्थानांतरण का स्थान है। 10 भुजा के वर्ग की स्थिति में, और त्रिज्या 2 की एक डिस्क संरचना तत्व के रूप में, विवृति गोल कोनों के साथ 10 भुजा का एक वर्ग है, जहाँ कोने की त्रिज्या 2 है।
उदाहरण अनुप्रयोग, मान लें कि किसी ने एक न-भिगने वाले कागज पर एक नोट लिखा है और यह लेखन ऐसा दिखता है जैसे कि यह छोटे बालों वाली जड़ों को बढ़ा रहा हो। अनिवार्य रूप से विवृति बाहरी छोटी अतिसूक्षम रेखा लीक को हटा देता है और पाठ को पुनर्स्थापित करता है। दुष्प्रभाव यह है कि यह चीजों को गोल कर देता है। तब तीक्ष्ण कोर गायब होने लगते हैं।
समापन
A द्वारा B का समापन A द्वारा B के विस्फार द्वारा प्राप्त किया जाता है, इसके बाद B द्वारा परिणामी संरचना का अपरदन होता है
समापन द्वारा भी प्राप्त किया जा सकता है, जहां Xc, E के सापेक्ष X के पूरक को दर्शाता है (अर्थात, )। उपरोक्त का अर्थ है कि समापन प्रतिबिम्ब A के बाहर संरचनात्मक तत्व के सममित के स्थानांतरण के बिन्दुपथ का पूरक है।
मूल प्रचालको के गुण
यहाँ मूल द्विआधारी रूपात्मक संचालकों (विस्तार, अपरदन, विवृति और समापन) के कुछ गुण हैं,
- वे स्थानांतरण निश्चर हैं।
- वे बढ़ रहे हैं, अर्थात यदि , तब , और , आदि है।
- विस्फार क्रमविनिमेय है, ।
- यदि E की उत्पत्ति संरचनात्मक तत्व B से संबंधित है, तो ।
- विस्फार साहचर्य है, अर्थात, । इसके अलावा, अपरदन संतुष्ट करता है।
- अपरदन और विस्फार द्वैतता को संतुष्ट करते हैं।
- विवृति और समापन द्वैतता को संतुष्ट करता है।
- विस्फार समुच्चय संयोग पर वितरण है
- अपरदन समुच्चय सर्वनिष्ठ पर वितरण है
- विस्फार अपरदन का छद्म-प्रतिलोम है, और इसके विपरीत, निम्नलिखित अर्थों में, यदि और केवल ।
- विवृति और समापन उदासीन हैं।
- विवृति विरोधी व्यापक है, यानी, , जबकि समापन व्यापक है, अर्थात, ।
अन्य संचालक और उपकरण
- हिट-या-मिस रूपांतरण
- कृंतन रूपांतरण
- रूपात्मक सारांश
- पुनर्निर्माण द्वारा निस्यंदन
- अंतिम अपरदन और सशर्त द्विभाजक
- कणमिति
- अल्पान्तरी दूरी फलन
ग्रेस्केल आकृति विज्ञान
ग्रेस्केल आकारिकी में, प्रतिबिम्ब यूक्लिडियन समष्टि या जालक E को में मानचित्र करने वाले फलन हैं , जहां वास्तविक का समुच्चय है, किसी भी वास्तविक संख्या से बड़ा तत्व है, और किसी भी वास्तविक संख्या से छोटा तत्व है।
ग्रेस्केल संरचना तत्व भी उसी प्रारूप के फलन हैं, जिन्हें संरचना फलन कहा जाता है।
एक प्रतिबिम्ब को f(x) द्वारा संरचना फलन को b(x) द्वारा और g को B द्वारा समर्थित करने पर, f द्वारा b का ग्रेस्केल विस्फार
द्वारा दिया जाता है, जहां sup सर्वोच्चता को दर्शाता है।
इसी तरह, b द्वारा f का अपरदन
द्वारा दिया जाता है, जहां "inf" न्यूनतम को दर्शाता है।
द्विआधारी आकृति विज्ञान की तरह, ही विवृति और समापन क्रमशः
द्वारा दिए गए हैं।
समतल संरचना फलन
रूपात्मक अनुप्रयोगों में समतल संरचना वाले तत्वों का उपयोग करना सामान्य है। समतल संरचना वाले फलन b(x) के रूप में फलन
हैं, जहाँ ।
इस स्थिति में, विस्फार और अपरदन को बहुत सरल किया जाता है, और क्रमशः
द्वारा दिया जाता है। परिबद्ध, असतत स्थिति में (E एक जालक है और B परिबद्ध है), सर्वोच्च और न्यूनतम प्रचालको को अधिकतम और न्यूनतम द्वारा प्रतिस्थापित किया जा सकता है। इस प्रकार, विस्फार और अपरदन क्रम सांख्यिकी निस्यंदन की विशेष स्थिति हैं, जिसमें विस्फार एक गतिमान खिड़की के भीतर अधिकतम मूल्य लौटाता है (संरचना फलन का सममित समर्थन B), और गतिमान खिड़की B के भीतर न्यूनतम मूल्य लौटाता है।
समतल संरचना वाले तत्व की स्थिति में, रूपात्मक संचालक उनके संख्यात्मक मानों की परवाह किए बिना केवल पिक्सेल मानों के सापेक्ष क्रम पर निर्भर करते हैं, और इसलिए विशेष रूप से द्विआधारी प्रतिबिम्बो और ग्रेस्केल प्रतिबिम्बो के प्रसंस्करण के लिए उपयुक्त होते हैं जिनके प्रकाश हस्तांतरण फलन ज्ञात नहीं होते हैं।
अन्य संचालक और उपकरण
इन प्रचालको के संयोजन से कई प्रतिबिंब प्रक्रमण फलन के लिए कलन विधि प्राप्त किया जा सकता है, जैसे विशेष गुण पहचान, प्रतिबिम्ब विभाजन, प्रतिबिम्ब सुस्पष्टता, प्रतिबिम्ब निस्यंदन, और वर्गीकरण। इस रेखा के साथ-साथ सतत आकृति विज्ञान पर भी ध्यान देना चाहिए[1]
पूर्ण जालक पर गणितीय आकारिकी
पूर्ण जालक आंशिक रूप से आदेशित समुच्चय हैं, जहां प्रत्येक उपसमुच्चय में एक न्यूनतम और एक अधिकतम है। विशेष रूप से, इसमें छोटे से छोटे तत्व और सबसे बड़ा तत्व होता है (जिसे ब्रह्मांड भी कहा जाता है)।
संयोजन (विस्फार और अपरदन)
क्रमशः और के प्रतीक के रूप में न्यूनतम और अधिकतम के साथ, मान लो एक पूर्ण जालक हो। इसका ब्रह्मांड और सबसे छोटा तत्व क्रमशः U और द्वारा दर्शाया गया है। इसके अलावा, को L से तत्वों का एक संग्रह होने दें।
एक विस्फार कोई संचालक है जो सर्वोच्च पर वितरित करता है, और छोटे से छोटे तत्व को संरक्षित करता है, अर्थात,
- ,
- ।
अपरदन कोई संचालक है जो न्यूनतम पर वितरित करता है, और ब्रह्मांड को संरक्षित करता है। अर्थात,
- ,
- ।
विस्फार और अपरदन गाल्वा सम्बन्ध बनाते हैं। अर्थात्, प्रत्येक विस्फार के लिए एक अपरदन है जो को सभी
के लिए संतुष्ट करता है।
इसी प्रकार, प्रत्येक अपरदन के लिए उपरोक्त संबंध को संतुष्ट करने वाला एक और विस्फार होता है।
इसके अलावा, यदि दो संचालक सम्बन्ध को संतुष्ट करते हैं, तब एक विस्फार होना चाहिए, और एक अपरदन होना चाहिए।
उपरोक्त सम्बन्ध को संतुष्ट करने वाले अपरदन और विस्फार के जोड़े को संयोजन कहा जाता है, और इसके विपरीत अपरदन को विस्फार का संलग्न अपरदन कहा जाता है।
विवृति और समापन
प्रत्येक संयोजन के लिए, रूपात्मक विवृति और रूपात्मक समापन निम्नानुसार परिभाषित किया गया है,
रूपात्मक विवृति और समापन बीजगणितीय विवृति (या आसानी से विवृति) और बीजगणितीय समापन (या आसानी से समापन) की विशेष स्थिति हैं। बीजगणितीय विवृति L में संचालक हैं जो निष्क्रिय, बढ़ते और विरोधी व्यापक हैं। बीजगणितीय समापन L में संचालक हैं जो निष्क्रिय, बढ़ते और व्यापक हैं।
विशिष्ट स्थिति
द्विआधारी आकृति विज्ञान जालक आकारिकी की एक विशेष स्थिति है, जहां L E (यूक्लिडियन समष्टि या जालक ) का घात समुच्चय है, यानी L E के सभी उपसमुच्चय का समुच्चय है, और समुच्चय समावेशन है। इस स्थिति में, न्यूनतम समुच्चय सर्वनिष्ठ है, और अधिकतम समुच्चय सम्मिलन है।
इसी तरह, ग्रेस्केल आकृति विज्ञान एक और विशेष स्थिति है, जहां L, E को , और , , और , में मानचित्रित करने वाले फलन का समुच्चय है, क्रमशः बिंदु-वार क्रम, सर्वोच्च और न्यूनतम हैं। अर्थात्, f और g, L में फलन हैं, तब यदि केवल , सबसे अधिकतमकम द्वारा दिया गया है , और सर्वोच्च द्वारा दिया गया है ।
यह भी देखें
टिप्पणियाँ
- ↑ G. Sapiro, R. Kimmel, D. Shaked, B. Kimia, and A. M. Bruckstein. Implementing continuous-scale morphology via curve evolution. Pattern Recognition, 26(9):1363–1372, 1993.
संदर्भ
- Image Analysis and Mathematical Morphology by Jean Serra, ISBN 0-12-637240-3 (1982)
- Image Analysis and Mathematical Morphology, Volume 2: Theoretical Advances by Jean Serra, ISBN 0-12-637241-1 (1988)
- An Introduction to Morphological Image Processing by Edward R. Dougherty, ISBN 0-8194-0845-X (1992)
- Morphological Image Analysis; Principles and Applications by Pierre Soille, ISBN 3-540-65671-5 (1999), 2nd edition (2003)
- Mathematical Morphology and its Application to Signal Processing, J. Serra and Ph. Salembier (Eds.), proceedings of the 1st International workshop on mathematical morphology and its applications to signal processing (ISएमएम'93), ISBN 84-7653-271-7 (1993)
- Mathematical Morphology and Its Applications to Image Processing, J. Serra and P. Soille (Eds.), proceedings of the 2nd international symposium on mathematical morphology (ISMM'94), ISBN 0-7923-3093-5 (1994)
- Mathematical Morphology and its Applications to Image and Signal Processing, Henk J.A.M. Heijmans and Jos B.T.M. Roerdink (Eds.), proceedings of the 4th international symposium on mathematical morphology (ISएमएम'98), ISBN 0-7923-5133-9 (1998)
- Mathematical Morphology: 40 Years On, Christian Ronse, Laurent Najman, and Etienne Decencière (Eds.), ISBN 1-4020-3442-3 (2005)
- Mathematical Morphology and its Applications to Signal and Image Processing, Gerald J.F. Banon, Junior Barrera, Ulisses M. Braga-Neto (Eds.), proceedings of the 8th international symposium on mathematical morphology (ISएमएम'07), ISBN 978-85-17-00032-4 (2007)
- Mathematical morphology: from theory to applications, Laurent Najman and Hugues Talbot (Eds). ISTE-Wiley. ISBN 978-1-84821-215-2. (520 pp.) June 2010
बाहरी संबंध
- Online course on mathematical morphology, by Jean Serra (in English, French, and Spanish)
- Center of Mathematical Morphology, Paris School of Mines
- History of Mathematical Morphology, by Georges Matheron and Jean Serra
- Morphology Digest, a newsletter on mathematical morphology, by Pierre Soille
- Lectures on Image Processing: A collection of 18 lectures in pdf format from Vanderbilt University. Lectures 16-18 are on Mathematical Morphology, by Alan Peters
- Mathematical Morphology; from Computer Vision lectures, by Robyn Owens
- SMIL - A Simple (but efficient) Morphological Image Library (from Ecole des Mines de Paris)
- Free SIMD Optimized Image processing library
- Java applet demonstration
- FILTERS : a free open source image processing library
- Fast morphological erosions, dilations, openings, and closings
- Morphological analysis of neurons using Matlab