बेरिऑन असममिति: Difference between revisions

From Vigyanwiki
No edit summary
 
(4 intermediate revisions by 4 users not shown)
Line 39: Line 39:
|author2-link=Robert Woodrow Wilson
|author2-link=Robert Woodrow Wilson
  |author-link=Arno Allan Penzias
  |author-link=Arno Allan Penzias
  }}</ref>में [[सीपी उल्लंघन]] की आधुनिक खोजों से प्रेरित थीं<ref name=CroninFitch1964>
  }}</ref>में [[सीपी उल्लंघन]] की अभिनव खोजों से प्रेरित थीं<ref name=CroninFitch1964>
{{cite journal
{{cite journal
  | author = J. W. Cronin |author2=V. L. Fitch
  | author = J. W. Cronin |author2=V. L. Fitch
Line 55: Line 55:
* बेरिऑन संख्या <math>B</math> [[सीपी उल्लंघन|उल्लंघन।]]
* बेरिऑन संख्या <math>B</math> [[सीपी उल्लंघन|उल्लंघन।]]
* [[सी-समरूपता]] और [[सीपी-समरूपता]] का [[सीपी उल्लंघन|उल्लंघन]]।
* [[सी-समरूपता]] और [[सीपी-समरूपता]] का [[सीपी उल्लंघन|उल्लंघन]]।
* [[थर्मल संतुलन|तापीय संतुलन]] से बाहर का अन्योन्यक्रिया।
* [[थर्मल संतुलन|तापीय संतुलन]] से बाहर की अन्योन्यक्रिया।


=== बेरिऑन संख्या का उल्लंघन ===
=== बेरिऑन संख्या का उल्लंघन ===
बेरिऑन संख्या का उल्लंघन प्रति-बैरिअन्स पर बेरिअन्स की अधिकता उत्पन्न करने के लिए एक आवश्यक प्रतिबंध है। लेकिन सी-समरूपता के उल्लंघन की भी आवश्यकता है ताकि जो अन्योन्यक्रिया प्रति-बैरोन की तुलना में अधिक बैरोन का उत्पादन करते हैं, वे अन्योन्यक्रिया से असंतुलित नहीं होंगे जो बैरन की तुलना में अधिक प्रति-बैरियन उत्पन्न करते हैं। सीपी-समरूपता का उल्लंघन इसी तरह आवश्यक है क्योंकि अन्यथा समान संख्या में बाएं हाथ के बेरोन और दाएं हाथ के प्रति-बैरियन का उत्पादन होगा, साथ ही बाएं हाथ के प्रति-बैरियन और दाएं हाथ के बैरन की समान संख्या का उत्पादन किया जाएगा। अंत में, अंतःक्रियाएं तापीय संतुलन से बाहर होनी चाहिए, क्योंकि अन्यथा [[सीपीटी समरूपता]] बेरोन संख्या को बढ़ाने और घटाने वाली प्रक्रियाओं के मध्य प्रतिकरण का आश्वासन देगी।<ref name=FarrarShaposhnikov1993>
बेरिऑन संख्या का उल्लंघन प्रति-बैरिअन्स पर बेरिअन्स की अधिकता उत्पन्न करने के लिए एक आवश्यक प्रतिबंध है। लेकिन सी-समरूपता के उल्लंघन की भी आवश्यकता है ताकि जो अन्योन्यक्रिया प्रति-बैरोन की तुलना में अधिक बैरोन का उत्पादन करते हैं, वे अन्योन्यक्रिया से असंतुलित नहीं होंगे जो बैरन की तुलना में अधिक प्रति-बैरियन उत्पन्न करते हैं। सीपी-समरूपता का उल्लंघन इसी तरह आवश्यक है क्योंकि अन्यथा समान संख्या में बाएं हाथ के बेरोन और दाएं हाथ के प्रति-बैरियन का उत्पादन होगा, साथ ही बाएं हाथ के प्रति-बैरियन और दाएं हाथ के बैरन की समान संख्या का उत्पादन किया जाएगा। अंत में, अंतःक्रियाएं तापीय संतुलन से बाहर होनी चाहिए, क्योंकि अन्यथा [[सीपीटी समरूपता]] बेरोन संख्या को वर्द्धमान और ह्रासमान वाली प्रक्रियाओं के मध्य प्रतिकरण का आश्वासन देगी।<ref name=FarrarShaposhnikov1993>
{{cite journal
{{cite journal
  |author1=M. E. Shaposhnikov |author2=G. R. Farrar | year = 1993
  |author1=M. E. Shaposhnikov |author2=G. R. Farrar | year = 1993
Line 69: Line 69:
  | issue = 19 | pmid = 10053665 |s2cid=15937666 }}</ref>
  | issue = 19 | pmid = 10053665 |s2cid=15937666 }}</ref>


वर्तमान में, कण अंतःक्रियाओं का कोई प्रायोगिक साक्ष्य नहीं है जहां बेरिऑन संख्या का संरक्षण विक्षोभ रूप से खंडित है: यह सलाह देने के लिए प्रतीत होता है कि सभी देखी गई कण प्रतिक्रियाओं में पहले और बाद में बेरिऑन संख्या समान होती है। गणितीय रूप से, बेरोन संख्या [[ऑपरेटर की राशि|प्रचालक]] का [[कम्यूटेटर|दिक्परिवर्तक]] (परटर्बेटिव) मानक निर्देश [[हैमिल्टनियन (क्वांटम यांत्रिकी)|हैमिल्टनियन]] के साथ शून्य है: <math>[B,H] = BH - HB = 0</math>। यद्यपि, मानक मॉडल को बेरोन संख्या के संरक्षण का उल्लंघन करने के लिए केवल गैर-विक्षुब्ध रूप से जाना जाता है: एक वैश्विक U(1) अनियमितता। बैरियोजेनेसिस में बैरियोन उल्लंघन के लिए, ऐसी स्थिति (प्रोटॉन क्षय सहित) [[महा एकीकरण सिद्धांत]] (जीयूटीएस) और [[सुपरसिमेट्री|अति सममित]] (एसयूएसवाई) निर्देश में [[एक्स और वाई बोसोन|X बोसॉन]] जैसे परिकल्पित बड़े पैमाने पर बोसोन के माध्यम से हो सकती हैं।
वर्तमान में, कण अंतःक्रियाओं का कोई प्रायोगिक साक्ष्य नहीं है जहां बेरिऑन संख्या का संरक्षण विक्षोभ रूप से खंडित है: यह सलाह देने के लिए प्रतीत होता है कि सभी देखी गई कण प्रतिक्रियाओं में पहले और बाद में बेरिऑन संख्या समान होती है। गणितीय रूप से, बेरोन संख्या [[ऑपरेटर की राशि|प्रचालक]] का [[कम्यूटेटर|दिक्परिवर्तक]] (परटर्बेटिव) मानक निर्देश [[हैमिल्टनियन (क्वांटम यांत्रिकी)|हैमिल्टनियन]] के साथ शून्य है: <math>[B,H] = BH - HB = 0</math>। यद्यपि, मानक मॉडल को बेरोन संख्या के संरक्षण का उल्लंघन करने के लिए केवल गैर-विक्षुब्ध रूप से जाना जाता है: एक वैश्विक U(1) अनियमितता है। बैरियोजेनेसिस में बैरियोन उल्लंघन के लिए, ऐसी स्थिति (प्रोटॉन क्षय सहित) [[महा एकीकरण सिद्धांत]] (जीयूटीएस) और [[सुपरसिमेट्री|अति सममित]] (एसयूएसवाई) निर्देश में [[एक्स और वाई बोसोन|X बोसॉन]] जैसे परिकल्पित विस्तृत बोसोन के माध्यम से हो सकती हैं।


===सीपी-समरूपता उल्लंघन===
===सीपी-समरूपता उल्लंघन===
Line 75: Line 75:
{{See also|चिएन-शीउंग वू|वू प्रयोग }}
{{See also|चिएन-शीउंग वू|वू प्रयोग }}


बेरोन विषमता उत्पन्न करने के लिए दूसरा प्रतिबंध - आवेश-समता समरूपता का उल्लंघन - यह है कि एक प्रक्रिया अपने प्रतिद्रव्य समकक्ष के लिए एक अलग दर पर होने में सक्षम है। मानक निर्देश में, कमजोर अंतःक्रिया के क्वार्क [[सीकेएम मैट्रिक्स|मिश्रण आव्यूह]] में सीपी उल्लंघन एक जटिल स्थिति के रूप में प्रकट होते है। [[पीएमएनएस मैट्रिक्स|न्यूट्रिनो]] [[सीकेएम मैट्रिक्स|मिश्रण आव्यूह]] में एक शून्येतर सीपी-उल्लंघन स्थिति भी हो सकती है, लेकिन यह वर्तमान में अनिर्धारित है। मूलभूत भौतिक सिद्धांतों की श्रृंखला में सबसे पहले चिएन-शिउंग वू के [[वू प्रयोग|प्रयोग]] के माध्यम से समता का उल्लंघन किया गया था। इसके कारण सीपी उल्लंघन को 1964 के फिच-क्रोनिन प्रयोग में निष्पक्ष काओन के साथ सत्यापित किया गया, जिसके परिणामस्वरूप 1980 में [[भौतिकी में नोबेल पुरस्कार|भौतिकी नोबेल पुरस्कार]] मिला (प्रत्यक्ष सीपी उल्लंघन, जो क्षय प्रक्रिया में सीपी समरूपता का उल्लंघन है, बाद में 1999 में खोजा गया था)। [[सीपी]][[टी समरूपता]] के कारण, सीपी समरूपता का उल्लंघन समय व्युत्क्रम समरूपता, या टी-समरूपता के उल्लंघन की याचना करता है। मानक निर्देश में सीपी उल्लंघन की अनुमति के बदले, बैरियन संख्या उल्लंघन की सीमाओं को देखते हुए ब्रह्मांड की प्रेक्षित बेरिऑन विषमता (बीएयू) के लिए यह अपर्याप्त है, जिसका अर्थ है कि [[मानक मॉडल से परे भौतिकी|मानक निर्देश से अतिरिक्त]] स्रोतों की आवश्यकता है।
बेरोन विषमता उत्पन्न करने के लिए दूसरा प्रतिबंध आवेश-समता समरूपता का उल्लंघन-यह है कि एक प्रक्रिया अपने प्रतिद्रव्य समकक्ष के लिए एक अलग दर पर होने में सक्षम है। मानक निर्देश में, कमजोर अंतःक्रिया के क्वार्क [[सीकेएम मैट्रिक्स|मिश्रण आव्यूह]] में सीपी उल्लंघन एक जटिल स्थिति के रूप में प्रकट होते है। [[पीएमएनएस मैट्रिक्स|न्यूट्रिनो]] [[सीकेएम मैट्रिक्स|मिश्रण आव्यूह]] में एक शून्येतर सीपी-उल्लंघन स्थिति भी हो सकती है, लेकिन यह वर्तमान में अनिर्धारित है। मूलभूत भौतिक सिद्धांतों की श्रृंखला में सबसे पहले चिएन-शिउंग वू के [[वू प्रयोग|प्रयोग]] के माध्यम से समता का उल्लंघन किया गया था। इसके कारण सीपी उल्लंघन को 1964 के फिच-क्रोनिन प्रयोग में निष्पक्ष काओन के साथ सत्यापित किया गया, जिसके परिणामस्वरूप 1980 में [[भौतिकी में नोबेल पुरस्कार|भौतिकी नोबेल पुरस्कार]] मिला (प्रत्यक्ष सीपी उल्लंघन, जो क्षय प्रक्रिया में सीपी समरूपता का उल्लंघन है, बाद में 1999 में खोजा गया था)। [[सीपी]][[टी समरूपता]] के कारण, सीपी समरूपता का उल्लंघन समय व्युत्क्रम समरूपता, या टी-समरूपता के उल्लंघन की याचना करता है। मानक निर्देश में सीपी उल्लंघन की अनुमति के बदले, बैरियन संख्या उल्लंघन की सीमाओं को देखते हुए ब्रह्मांड की प्रेक्षित बेरिऑन विषमता (बीएयू) के लिए यह अपर्याप्त है, जिसका अर्थ है कि [[मानक मॉडल से परे भौतिकी|मानक निर्देश से अतिरिक्त]] स्रोतों की आवश्यकता है।


एलएचसी संचालन के पहले तीन वर्षों (मार्च 2010 से आरंभ) के समय LHCb सहयोग द्वारा [[लार्ज हैड्रान कोलाइडर|बड़ा हैड्रोन कोलाइडर]] (एलएचसी) में CP उल्लंघन का एक संभावित नया स्रोत पाया गया है। प्रयोग ने दो कणों, आधार लैम्डा (Λ<sub>b</sub><sup>0</sup>) और इसके प्रतिकण के क्षय का विश्लेषण किया और क्षय उत्पादों के वितरण की तुलना की है। डेटा ने सीपी-उल्लंघन संवेदनशील मात्रा के 20% तक की विषमता दिखाई, जिसका अर्थ सीपी-समरूपता का विभंजन करना है। एलएचसी के बाद के रन से अधिक डेटा द्वारा विश्लेषण की पुष्टि करने की आवश्यकता होगी।<ref>{{Cite web|url=https://home.cern/about/updates/2017/01/new-source-asymmetry-between-matter-and-antimatter|title=New source of asymmetry between matter and antimatter {{!}} CERN|website=home.cern|language=en|access-date=2017-12-05}}</ref>
एलएचसी संचालन के पहले तीन वर्षों (मार्च 2010 से आरंभ) के समय LHCb सहयोग द्वारा [[लार्ज हैड्रान कोलाइडर|बड़ा हैड्रोन कोलाइडर]] (एलएचसी) में CP उल्लंघन का एक संभावित नया स्रोत पाया गया है। प्रयोग ने दो कणों, आधार लैम्डा (Λ<sub>b</sub><sup>0</sup>) और इसके प्रतिकण के क्षय का विश्लेषण किया और क्षय उत्पादों के वितरण की तुलना की है। डेटा ने सीपी-उल्लंघन संवेदनशील मात्रा के 20% तक की विषमता दिखाई, जिसका अर्थ सीपी-समरूपता का विभंजन करना है। एलएचसी के बाद के रन से अधिक डेटा द्वारा विश्लेषण की पुष्टि करने की आवश्यकता होगी।<ref>{{Cite web|url=https://home.cern/about/updates/2017/01/new-source-asymmetry-between-matter-and-antimatter|title=New source of asymmetry between matter and antimatter {{!}} CERN|website=home.cern|language=en|access-date=2017-12-05}}</ref>
Line 93: Line 93:
स्पष्ट बेरोन विषमता का एक अन्य संभावित स्पष्टीकरण यह है कि पदार्थ और प्रतिद्रव्य अनिवार्य रूप से ब्रह्मांड के भिन्न, व्यापक रूप से दूर के क्षेत्रों में अलग हो जाते हैं। प्रतिद्रव्य आकाशगंगाओं के गठन को मूल रूप से बैरोन विषमता की व्याख्या करने के लिए सोचा गया था, क्योंकि दूर से, प्रतिद्रव्य परमाणु पदार्थ परमाणुओं से अप्रभेद्य होते हैं; दोनों एक ही तरह से प्रकाश (फोटॉन) उत्पन्न करते हैं। पदार्थ और प्रतिद्रव्य क्षेत्रों के मध्य की सीमा के साथ, यद्यपि, विलोपन (और [[गामा विकिरण]] के बाद के उत्पादन) का पता लगाया जा सकता है, जो इसकी दूरी और पदार्थ और प्रतिद्रव्य के घनत्व पर निर्भर करता है। ऐसी सीमाएँ, यदि वे उपस्तिथ हैं, तो संभवतः गहरे अंतरामंदाकिनीय आकाश में स्थित होंगी। अंतरामंदाकिनीय आकाश में पदार्थ का घनत्व यथोचित रूप से लगभग एक परमाणु प्रति घन मीटर पर स्थापित है।<ref>{{cite book |last1=Davidson |first1=Keay |last2=Smoot |first2=George |author2-link=George Smoot |title=समय में झुर्रियाँ|publisher=Avon |location=New York |year=2008 |isbn=978-0061344442 |pages=158–163 }}</ref><ref>{{cite book |last=Silk |first=Joseph |author-link=Joseph Silk |title=महा विस्फोट|location=New York |publisher=Freeman |year=1977 |page=299 |url=https://books.google.com/books?id=XLwe1lUmz5kC|isbn=9780805072563 }}</ref> यह मानते हुए कि यह एक सीमा के पास एक विशिष्ट घनत्व है, सीमा संपर्क क्षेत्र की गामा किरण चमक की गणना की जा सकती है। ऐसे किसी भी क्षेत्र का पता नहीं चला है, लेकिन 30 वर्षों के शोध ने इस बात की सीमा तय कर दी है कि वे कितनी दूर हो सकते हैं। इस तरह के विश्लेषणों के आधार पर, अब यह असंभव माना जाता है कि देखने योग्य ब्रह्मांड के भीतर किसी भी क्षेत्र में प्रतिद्रव्य का वर्चस्व है।<ref name=MatterAndAntimatterInTheUniverse>{{cite journal|first1=L. |last1=Canetti |first2=M. |last2=Drewes |first3=M. |last3=Shaposhnikov |title=ब्रह्मांड में पदार्थ और एंटीमैटर|journal=New J. Phys. |year=2012 |volume=14 |issue=9 |pages=095012 |doi=10.1088/1367-2630/14/9/095012 |arxiv = 1204.4186 |bibcode = 2012NJPh...14i5012C |s2cid=119233888 }}</ref>
स्पष्ट बेरोन विषमता का एक अन्य संभावित स्पष्टीकरण यह है कि पदार्थ और प्रतिद्रव्य अनिवार्य रूप से ब्रह्मांड के भिन्न, व्यापक रूप से दूर के क्षेत्रों में अलग हो जाते हैं। प्रतिद्रव्य आकाशगंगाओं के गठन को मूल रूप से बैरोन विषमता की व्याख्या करने के लिए सोचा गया था, क्योंकि दूर से, प्रतिद्रव्य परमाणु पदार्थ परमाणुओं से अप्रभेद्य होते हैं; दोनों एक ही तरह से प्रकाश (फोटॉन) उत्पन्न करते हैं। पदार्थ और प्रतिद्रव्य क्षेत्रों के मध्य की सीमा के साथ, यद्यपि, विलोपन (और [[गामा विकिरण]] के बाद के उत्पादन) का पता लगाया जा सकता है, जो इसकी दूरी और पदार्थ और प्रतिद्रव्य के घनत्व पर निर्भर करता है। ऐसी सीमाएँ, यदि वे उपस्तिथ हैं, तो संभवतः गहरे अंतरामंदाकिनीय आकाश में स्थित होंगी। अंतरामंदाकिनीय आकाश में पदार्थ का घनत्व यथोचित रूप से लगभग एक परमाणु प्रति घन मीटर पर स्थापित है।<ref>{{cite book |last1=Davidson |first1=Keay |last2=Smoot |first2=George |author2-link=George Smoot |title=समय में झुर्रियाँ|publisher=Avon |location=New York |year=2008 |isbn=978-0061344442 |pages=158–163 }}</ref><ref>{{cite book |last=Silk |first=Joseph |author-link=Joseph Silk |title=महा विस्फोट|location=New York |publisher=Freeman |year=1977 |page=299 |url=https://books.google.com/books?id=XLwe1lUmz5kC|isbn=9780805072563 }}</ref> यह मानते हुए कि यह एक सीमा के पास एक विशिष्ट घनत्व है, सीमा संपर्क क्षेत्र की गामा किरण चमक की गणना की जा सकती है। ऐसे किसी भी क्षेत्र का पता नहीं चला है, लेकिन 30 वर्षों के शोध ने इस बात की सीमा तय कर दी है कि वे कितनी दूर हो सकते हैं। इस तरह के विश्लेषणों के आधार पर, अब यह असंभव माना जाता है कि देखने योग्य ब्रह्मांड के भीतर किसी भी क्षेत्र में प्रतिद्रव्य का वर्चस्व है।<ref name=MatterAndAntimatterInTheUniverse>{{cite journal|first1=L. |last1=Canetti |first2=M. |last2=Drewes |first3=M. |last3=Shaposhnikov |title=ब्रह्मांड में पदार्थ और एंटीमैटर|journal=New J. Phys. |year=2012 |volume=14 |issue=9 |pages=095012 |doi=10.1088/1367-2630/14/9/095012 |arxiv = 1204.4186 |bibcode = 2012NJPh...14i5012C |s2cid=119233888 }}</ref>
===विद्युत द्विध्रुवीय क्षण===
===विद्युत द्विध्रुवीय क्षण===
किसी मूलभूत कण में विद्युत द्विध्रुव आघूर्ण (ईडीएम) की उपस्थिति समता (पी) और समय (टी) दोनों समरूपताओं का उल्लंघन करेगी। इस प्रकार, एक ईडीएम पदार्थ और प्रतिद्रव्य को अलग दरों पर क्षय करने की अनुमति देगा, जिससे आज के रूप में संभावित पदार्थ-प्रतिद्रव्य विषमता हो सकती है। विभिन्न भौतिक कणों के ईडीएम को मापने के लिए वर्तमान में कई प्रयोग किए जा रहे हैं। सभी माप वर्तमान में बिना द्विध्रुवीय क्षण के संगत हैं। यद्यपि, परिणाम समरूपता उल्लंघन की मात्रा पर कठोर प्रतिबंध लगाते हैं जो एक भौतिक निर्देश अनुमति दे सकते है। सबसे आधुनिक ईडीएम सीमा, 2014 में प्रकाशित हुई, ACME सहयोग की थी, जिसने [[थोरियम मोनोऑक्साइड]] (ThO) अणुओं के स्पंदित बीम का उपयोग करके अतिसूक्ष्म परमाणु के ईडीएम को मापा है।<ref>{{cite journal |author=The ACME Collaboration |title=इलेक्ट्रॉन के विद्युत द्विध्रुव आघूर्ण पर परिमाण की छोटी सीमा का क्रम|journal=Science |volume=343 |issue=269 |pages=269–72 |date=17 January 2014 |url=https://www.science.org/doi/full/10.1126/science.1248213 |doi=10.1126/science.1248213 |display-authors=etal |pmid=24356114|bibcode = 2014Sci...343..269B |arxiv=1310.7534 |s2cid=564518 }}</ref>
किसी मूलभूत कण में विद्युत द्विध्रुव आघूर्ण (ईडीएम) की उपस्थिति समता (पी) और समय (टी) दोनों समरूपताओं का उल्लंघन करेगी। इस प्रकार, एक ईडीएम पदार्थ और प्रतिद्रव्य को अलग दरों पर क्षय करने की अनुमति देगा, जिससे आज के रूप में संभावित पदार्थ-प्रतिद्रव्य विषमता हो सकती है। विभिन्न भौतिक कणों के ईडीएम को मापने के लिए वर्तमान में कई प्रयोग किए जा रहे हैं। सभी माप वर्तमान में बिना द्विध्रुवीय क्षण के संगत हैं। यद्यपि, परिणाम समरूपता उल्लंघन की मात्रा पर कठोर प्रतिबंध लगाते हैं जो एक भौतिक निर्देश अनुमति दे सकते है। सबसे अभिनव ईडीएम सीमा, 2014 में प्रकाशित हुई, ACME सहयोग की थी, जिसने [[थोरियम मोनोऑक्साइड]] (ThO) अणुओं के स्पंदित किरण का उपयोग करके अतिसूक्ष्म परमाणु के ईडीएम को मापा है।<ref>{{cite journal |author=The ACME Collaboration |title=इलेक्ट्रॉन के विद्युत द्विध्रुव आघूर्ण पर परिमाण की छोटी सीमा का क्रम|journal=Science |volume=343 |issue=269 |pages=269–72 |date=17 January 2014 |url=https://www.science.org/doi/full/10.1126/science.1248213 |doi=10.1126/science.1248213 |display-authors=etal |pmid=24356114|bibcode = 2014Sci...343..269B |arxiv=1310.7534 |s2cid=564518 }}</ref>
=== दर्पण विरोधी ब्रह्मांड ===
=== दर्पण विरोधी ब्रह्मांड ===
[[File:Universe Antiuniverse model.png|thumb|बिग बैंग ने एक ब्रह्मांड-विरोधी जोड़ी उत्पन्न की, हमारा ब्रह्मांड समय के साथ आगे बढ़ता है, जबकि हमारा दर्पण समकक्ष पीछे की ओर बहता है।]]ब्रह्मांड की स्थिति, जैसा कि यह है, सीपीटी समरूपता का उल्लंघन नहीं करती है, क्योंकि बिग बैंग को द्विपार्ष्व घटना के रूप में माना जा सकता है, दोनों शास्त्रीय और क्वांटम यांत्रिक रूप से, जिसमें ब्रह्मांड-विरोधी ब्रह्मांड जोड़ी सम्मिलित है। इसका अर्थ है कि यह ब्रह्मांड ब्रह्मांड-विरोधी का आवेश (C), समता (P) और समय (T) प्रतिबिंब है। यह जोड़ी बिग बैंग युगों से निकलकर सीधे ऊष्म, विकिरण-प्रभुत्व वाले युग में नहीं आई है। प्रतिब्रह्मांड बिग बैंग से समय यात्रा प्रवाहित होगी, ऐसा करने पर बड़ी होती जाएगी, और प्रतिद्रव्य का भी प्रमुख होगी। हमारे ब्रह्मांड में उन लोगों की तुलना में इसके स्थानिक गुण प्रतिलोमित हैं, जो एक निर्वात में [[इलेक्ट्रॉन|अतिसूक्ष्म परमाणु]]-पॉजिट्रॉन जोड़े बनाने के समान स्थिति है। [[कनाडा]] में [[सैद्धांतिक भौतिकी के लिए परिधि संस्थान]] के भौतिकविदों द्वारा तैयार किया गया यह निर्देश प्रस्तावित करता है कि[[ ब्रह्मांडीय माइक्रोवेव पृष्ठभूमि | ब्रह्मांडीय माइक्रोवेव पृष्ठभूमि]] (सीएमबी) में तापमान में उतार-चढ़ाव बिग बैंग विलक्षणता के पास समष्टि -टाइम की क्वांटम-यांत्रिकीय प्रकृति के कारण होता है।<ref>{{Cite web|url=https://physicsworld.com/a/our-universe-has-antimatter-partner-on-the-other-side-of-the-big-bang-say-physicists/|title=भौतिकविदों का कहना है कि हमारे ब्रह्मांड में बिग बैंग के दूसरी तरफ एंटीमैटर पार्टनर है|date=2019-01-03|website=Physics World|language=en-GB|access-date=2020-02-04}}</ref> इसका अर्थ यह है कि हमारे ब्रह्मांड के भविष्य में एक बिंदु और ब्रह्मांड विरोधी के दूरस्थ अतीत में एक बिंदु निश्चित शास्त्रीय बिंदु प्रदान करेगा, जबकि सभी संभावित क्वांटम-आधारित क्रमपरिवर्तन मध्य में उपस्तिथ होंगे। क्वांटम अनिश्चितता ब्रह्मांड और ब्रह्मांड विरोधी को एक दूसरे के सटीक दर्पण प्रतिबिंब नहीं होने का कारण बनती है।<ref>{{Cite journal|last1=Boyle|first1=Latham|last2=Finn|first2=Kieran|last3=Turok|first3=Neil|date=2018-12-20|title=सी पी टी - सममित ब्रह्मांड|journal=Physical Review Letters|language=en|volume=121|issue=25|pages=251301|doi=10.1103/PhysRevLett.121.251301|pmid=30608856|issn=0031-9007|bibcode=2018PhRvL.121y1301B|arxiv=1803.08928|s2cid=58638592}}</ref>
[[File:Universe Antiuniverse model.png|thumb|बिग बैंग ने एक ब्रह्मांड-विरोधी जोड़ी उत्पन्न की, हमारा ब्रह्मांड समय के साथ आगे बढ़ता है, जबकि हमारा दर्पण समकक्ष पीछे की ओर बहता है।]]ब्रह्मांड की स्थिति, जैसा कि यह है, सीपीटी समरूपता का उल्लंघन नहीं करती है, क्योंकि बिग बैंग को द्विपार्ष्व घटना के रूप में माना जा सकता है, दोनों शास्त्रीय और क्वांटम यांत्रिक रूप से, जिसमें ब्रह्मांड-विरोधी ब्रह्मांड जोड़ी सम्मिलित है। इसका अर्थ है कि यह ब्रह्मांड-विरोधी का आवेश (C), समता (P) और समय (T) प्रतिबिंब है। यह जोड़ी बिग बैंग युगों से निकलकर सीधे ऊष्म, विकिरण-प्रभुत्व वाले युग में नहीं आई है। प्रतिब्रह्मांड बिग बैंग से समय यात्रा प्रवाहित होगी, ऐसा करने पर बड़ी होती जाएगी, और प्रतिद्रव्य का भी प्रमुख होगा। हमारे ब्रह्मांड में उन लोगों की तुलना में इसके स्थानिक गुण प्रतिलोमित हैं, जो एक निर्वात में [[इलेक्ट्रॉन|अतिसूक्ष्म परमाणु]]-पॉजिट्रॉन जोड़े बनाने के समान स्थिति है। [[कनाडा]] में [[सैद्धांतिक भौतिकी के लिए परिधि संस्थान]] के भौतिकविदों द्वारा तैयार किया गया यह निर्देश प्रस्तावित करता है कि[[ ब्रह्मांडीय माइक्रोवेव पृष्ठभूमि | ब्रह्मांडीय सूक्ष्मतरंग पृष्ठभूमि]] (सीएमबी) में तापमान में उतार-चढ़ाव बिग बैंग विलक्षणता के पास समष्टि-समय की क्वांटम-यांत्रिकीय प्रकृति के कारण होता है।<ref>{{Cite web|url=https://physicsworld.com/a/our-universe-has-antimatter-partner-on-the-other-side-of-the-big-bang-say-physicists/|title=भौतिकविदों का कहना है कि हमारे ब्रह्मांड में बिग बैंग के दूसरी तरफ एंटीमैटर पार्टनर है|date=2019-01-03|website=Physics World|language=en-GB|access-date=2020-02-04}}</ref> इसका अर्थ यह है कि हमारे ब्रह्मांड के भविष्य में एक बिंदु और ब्रह्मांड विरोधी के दूरस्थ अतीत में एक बिंदु निश्चित शास्त्रीय बिंदु प्रदान करेगा, जबकि सभी संभावित क्वांटम-आधारित क्रमपरिवर्तन मध्य में उपस्तिथ होंगे। क्वांटम अनिश्चितता ब्रह्मांड और ब्रह्मांड विरोधी को एक दूसरे के सटीक दर्पण प्रतिबिंब नहीं होने का कारण बनती है।<ref>{{Cite journal|last1=Boyle|first1=Latham|last2=Finn|first2=Kieran|last3=Turok|first3=Neil|date=2018-12-20|title=सी पी टी - सममित ब्रह्मांड|journal=Physical Review Letters|language=en|volume=121|issue=25|pages=251301|doi=10.1103/PhysRevLett.121.251301|pmid=30608856|issn=0031-9007|bibcode=2018PhRvL.121y1301B|arxiv=1803.08928|s2cid=58638592}}</ref>
इस निर्देश ने यह नहीं दिखाया है कि क्या यह मुद्रास्फीति के परिदृश्य के बारे में कुछ टिप्पणियों को पुन: दिखाई दे सकता है, जैसे बड़े पैमाने पर ब्रह्मांड की एकरूपता की व्याख्या करना है। यद्यपि, यह [[ गहरे द्रव्य |गहरे द्रव्य]] के लिए एक प्राकृतिक और सीधी व्याख्या प्रदान करता है। इस तरह की एक ब्रह्मांड-विरोधी जोड़ी बड़ी संख्या में अतिभारी [[न्युट्रीनो]] का उत्पादन करेगी, जिसे [[बाँझ न्यूट्रिनो|बंध्य न्यूट्रिनो]] के रूप में भी जाना जाता है। ये न्यूट्रिनो उच्च-ऊर्जा [[ब्रह्मांडीय किरणों]] के आधुनिक देखे गए विस्फोटों के स्रोत भी हो सकते हैं।<ref>{{Cite journal|date=2018-12-20|title=Synopsis: Universe Preceded by an Antiuniverse?|journal=Physics|volume=121|issue=25|pages=251301|language=en|doi=10.1103/PhysRevLett.121.251301|pmid=30608856|last1=Boyle|first1=L.|last2=Finn|first2=K.|last3=Turok|first3=N.|doi-access=free}}</ref>
इस निर्देश ने यह नहीं दिखाया है कि क्या यह मुद्रास्फीति के परिदृश्य के बारे में कुछ टिप्पणियों को पुन: दिखाई दे सकता है, जैसे बड़े पैमाने पर ब्रह्मांड की एकरूपता की व्याख्या करना है। यद्यपि, यह [[ गहरे द्रव्य |गहरे द्रव्य]] के लिए एक प्राकृतिक और सीधी व्याख्या प्रदान करता है। इस तरह की एक ब्रह्मांड-विरोधी जोड़ी बड़ी संख्या में अतिभारी [[न्युट्रीनो]] का उत्पादन करेगी, जिसे [[बाँझ न्यूट्रिनो|बंध्य न्यूट्रिनो]] के रूप में भी जाना जाता है। ये न्यूट्रिनो उच्च-ऊर्जा [[ब्रह्मांडीय किरणों]] के अभिनव देखे गए विस्फोटों के स्रोत भी हो सकते हैं।<ref>{{Cite journal|date=2018-12-20|title=Synopsis: Universe Preceded by an Antiuniverse?|journal=Physics|volume=121|issue=25|pages=251301|language=en|doi=10.1103/PhysRevLett.121.251301|pmid=30608856|last1=Boyle|first1=L.|last2=Finn|first2=K.|last3=Turok|first3=N.|doi-access=free}}</ref>
== बेरियन विषमता प्राचल ==
== बेरियन विषमता प्राचल ==
फिर भौतिकी के सिद्धांतों का निर्देशार्थ यह है कि प्रतिद्रव्य पर पदार्थ की प्रबलता और इस विषमता के परिमाण को कैसे उत्पन्न किया जाए, इसकी व्याख्या कैसे की जाए। विषमता प्राचल एक महत्वपूर्ण परिमाणवाचक है,
फिर भौतिकी के सिद्धांतों का निर्देशार्थ यह है कि प्रतिद्रव्य पर पदार्थ की प्रबलता और इस विषमता के परिमाण को कैसे उत्पन्न किया जाए, इसकी व्याख्या कैसे की जाए। विषमता प्राचल एक महत्वपूर्ण परिमाणवाचक है,
Line 102: Line 102:
यह मात्रा बेरोन और ऐन्टिबेरियॉन (क्रमशः ''n''<sub>B</sub> और ''n''<sub>B</sub>) के मध्य समग्र संख्या घनत्व अंतर और ब्रह्मांडीय पृष्ठभूमि विकिरण [[फोटोन]] की संख्या घनत्व n<sub>''γ''</sub> की संख्या घनत्व से संबंधित है।
यह मात्रा बेरोन और ऐन्टिबेरियॉन (क्रमशः ''n''<sub>B</sub> और ''n''<sub>B</sub>) के मध्य समग्र संख्या घनत्व अंतर और ब्रह्मांडीय पृष्ठभूमि विकिरण [[फोटोन]] की संख्या घनत्व n<sub>''γ''</sub> की संख्या घनत्व से संबंधित है।


बिग बैंग निर्देश के अनुसार, लगभग 3000 केल्विन के तापमान पर ब्रह्माण्ड पृष्‍ठभूमि विकिरण (सीबीआर) से अलग हुआ पदार्थ, 3000 K / (10.08×10<sup>3</sup> K/eV) = 0.3 eV की औसत गतिज ऊर्जा के अनुरूप है। वियुग्मन के बाद, सीबीआर फोटोन की कुल संख्या स्थिर रहती है। इसलिए, समष्टि-समय के विस्तार के कारण फोटॉन घनत्व कम हो जाता है। संतुलन तापमान ''T'' के प्रति घन सेंटीमीटर पर फोटॉन घनत्व द्वारा दिया जाता है
बिग बैंग निर्देश के अनुसार, लगभग 3000 केल्विन के तापमान पर ब्रह्माण्ड पृष्‍ठभूमि विकिरण (सीबीआर) से अलग हुआ पदार्थ, 3000 K / (10.08×10<sup>3</sup> K/eV) = 0.3 eV की औसत गतिज ऊर्जा के अनुरूप है। वियुग्मन के बाद, सीबीआर फोटोन की कुल संख्या स्थिर रहती है। इसलिए, समष्टि-समय के विस्तार के कारण फोटॉन घनत्व कम हो जाता है। संतुलन तापमान ''T'' के प्रति घन सेंटीमीटर पर फोटॉन घनत्व द्वारा दिया जाता है।
:<math>n_\gamma = \frac{1}{\pi^2} \left(\frac{k_B T}{\hbar c}\right)^3 \int_0^\infty \frac{x^2}{e^x - 1} \, dx =
:<math>n_\gamma = \frac{1}{\pi^2} \left(\frac{k_B T}{\hbar c}\right)^3 \int_0^\infty \frac{x^2}{e^x - 1} \, dx =
   \frac{2\zeta(3)}{\pi^2} \left(\frac{k_B T}{\hbar c}\right)^3 \approx
   \frac{2\zeta(3)}{\pi^2} \left(\frac{k_B T}{\hbar c}\right)^3 \approx
   20.3 \left(\frac{T}{1\text{K}}\right)^3 \text{cm}^{-3},
   20.3 \left(\frac{T}{1\text{K}}\right)^3 \text{cm}^{-3},
</math>
</math>
बोल्ट्ज़मैन स्थिरांक के रूप में ''k''<sub>B</sub> के साथ, ħ [[प्लैंक स्थिरांक]] के रूप में 2{{pi}} और c द्वारा निर्वात में प्रकाश की गति के रूप में विभाजित, और ζ(3) एपेरी स्थिरांक के रूप में है। {{val|2.725|u=K}} के वर्तमान सीबीआर फोटॉन तापमान पर, यह लगभग 411 सीबीआर फोटोन प्रति घन सेंटीमीटर के फोटॉन घनत्व n<sub>γ</sub> के अनुरूप है।
बोल्ट्ज़मैन स्थिरांक के रूप में ''k''<sub>B</sub> के साथ, ''ħ'' [[प्लैंक स्थिरांक]] के रूप में 2{{pi}} और c द्वारा निर्वात में प्रकाश की गति के रूप में विभाजित, और ζ(3) एपेरी स्थिरांक के रूप में है। {{val|2.725|u=K}} के वर्तमान सीबीआर फोटॉन तापमान पर, यह लगभग 411 सीबीआर फोटोन प्रति घन सेंटीमीटर के फोटॉन घनत्व n<sub>γ</sub> के अनुरूप है।


इसलिए, विषमता प्राचल η, जैसा कि ऊपर परिभाषित किया गया है, <nowiki>''अच्छा''</nowiki> प्राचल नहीं है। इसके बदले, वरीय विषमता प्राचल [[एन्ट्रापी]] घनत्व ''s'' का उपयोग करती है,
इसलिए, विषमता प्राचल η, जैसा कि ऊपर परिभाषित किया गया है, <nowiki>''अच्छा''</nowiki> प्राचल नहीं है। इसके बदले, वरीय विषमता प्राचल [[एन्ट्रापी]] घनत्व ''s'' का उपयोग करता है,
:<math>\eta_s = \frac{n_B - n_{\bar B}}{s}</math>
:<math>\eta_s = \frac{n_B - n_{\bar B}}{s}</math>
क्योंकि ब्रह्मांड का एन्ट्रापी घनत्व इसके अधिकांश विकास के समय यथोचित रूप से स्थिर रहा है। एन्ट्रापी घनत्व
क्योंकि ब्रह्मांड का एन्ट्रापी घनत्व इसके अधिकांश विकास के समय यथोचित रूप से स्थिर रहा है। एन्ट्रापी घनत्व
Line 115: Line 115:
ऊर्जा घनत्व प्रदिश ''T<sub>μν</sub>'' से दबाव और घनत्व के रूप में ''p'' और ρ के साथ, और ''g''<sub>*</sub> तापमान ''T'' पर "द्रव्यमान रहित" कणों ''(जितना mc2 ≪ kBT धारण करता है)'' के लिए स्वतंत्रता की डिग्री की प्रभावी संख्या के रूप में,
ऊर्जा घनत्व प्रदिश ''T<sub>μν</sub>'' से दबाव और घनत्व के रूप में ''p'' और ρ के साथ, और ''g''<sub>*</sub> तापमान ''T'' पर "द्रव्यमान रहित" कणों ''(जितना mc2 ≪ kBT धारण करता है)'' के लिए स्वतंत्रता की डिग्री की प्रभावी संख्या के रूप में,
:<math>g_*(T) = \sum_{i=\mathrm{bosons}} g_i \left(\frac{T_i}{T}\right)^3 + \frac{7}{8}\sum_{j=\mathrm{fermions}} g_j{\left(\frac{T_j}{T}\right)}^3</math>,
:<math>g_*(T) = \sum_{i=\mathrm{bosons}} g_i \left(\frac{T_i}{T}\right)^3 + \frac{7}{8}\sum_{j=\mathrm{fermions}} g_j{\left(\frac{T_j}{T}\right)}^3</math>,
''T<sub>i</sub>'' और ''T<sub>j</sub>''  तापमान पर स्वतंत्रता की  ''g<sub>i</sub>'' और ''g<sub>j</sub>''  डिग्री के साथ बोसॉन और फर्मिअन के लिए है। वर्तमान में, ''s'' = 7.04''n<sub>γ</sub>''
''T<sub>i</sub>'' और ''T<sub>j</sub>''  तापमान पर स्वतंत्रता की  ''g<sub>i</sub>'' और ''g<sub>j</sub>''  डिग्री के साथ बोसॉन और फर्मिअन के लिए है। वर्तमान में, ''s'' = 7.04''n<sub>γ</sub>'' है।


== यह भी देखें{{Portal|Astronomy}}==
== यह भी देखें{{Portal|Astronomy}}==
Line 127: Line 127:
{{Authority control}}
{{Authority control}}


{{DEFAULTSORT:Baryon Asymmetry}}[[Category: खगोल भौतिकी]] [[Category: भौतिकी में अनसुलझी समस्याएं]] [[Category: विषमता]] [[Category: antimatter]]
{{DEFAULTSORT:Baryon Asymmetry}}


 
[[Category:Antimatter|Baryon Asymmetry]]
 
[[Category:Articles with hatnote templates targeting a nonexistent page|Baryon Asymmetry]]
[[Category: Machine Translated Page]]
[[Category:CS1 British English-language sources (en-gb)]]
[[Category:Created On 31/03/2023]]
[[Category:CS1 English-language sources (en)]]
[[Category:CS1 русский-language sources (ru)]]
[[Category:Created On 31/03/2023|Baryon Asymmetry]]
[[Category:Lua-based templates|Baryon Asymmetry]]
[[Category:Machine Translated Page|Baryon Asymmetry]]
[[Category:Pages with empty portal template|Baryon Asymmetry]]
[[Category:Pages with script errors|Baryon Asymmetry]]
[[Category:Portal templates with redlinked portals|Baryon Asymmetry]]
[[Category:Templates Translated in Hindi|Baryon Asymmetry]]
[[Category:Templates Vigyan Ready|Baryon Asymmetry]]
[[Category:Templates that add a tracking category|Baryon Asymmetry]]
[[Category:Templates that generate short descriptions|Baryon Asymmetry]]
[[Category:Templates using TemplateData|Baryon Asymmetry]]
[[Category:खगोल भौतिकी|Baryon Asymmetry]]
[[Category:भौतिकी में अनसुलझी समस्याएं|Baryon Asymmetry]]
[[Category:विषमता|Baryon Asymmetry]]

Latest revision as of 15:35, 17 October 2023

भौतिक ब्रह्माण्ड विज्ञान में, बेरोन विषमता समस्या, जिसे पदार्थ विषमता समस्या या द्रव्य-प्रतिपदार्थ विषमता समस्या के रूप में भी जाना जाता है,[1][2] अवलोकन योग्य ब्रह्मांड में बैरोनिक पदार्थ (प्रतिदिन की जिंदगी में अनुभव किए जाने वाले पदार्थ का प्रकार) और प्रतिबैरोनिक पदार्थ में देखा गया असंतुलन है। कण भौतिकी न तो मानक निर्देश का और न ही सामान्य सापेक्षता का सिद्धांत इस बारे में कोई ज्ञात स्पष्टीकरण प्रदान करता है कि ऐसा क्यों होना चाहिए, और यह एक स्वाभाविक धारणा है कि ब्रह्मांड सभी संरक्षित आवेशों (भौतिकी) के साथ निष्पक्ष है।[3] बिग बैंग को समान मात्रा में पदार्थ और प्रतिद्रव्य का उत्पादन करना चाहिए था। ऐसा प्रतीत नहीं होता है कि ऐसा हुआ है, इसलिए यह संभव है कि कुछ भौतिक नियमों ने अलग तरह से कार्य किया होगा या पदार्थ और प्रतिद्रव्य के लिए उपस्तिथ नहीं थे। पदार्थ और प्रतिद्रव्य के असंतुलन की व्याख्या करने के लिए कई प्रतिस्पर्धी परिकल्पनाएं उपस्तिथ हैं, जिसके परिणामस्वरूप बेरियोजेनेसिस हुआ था। यद्यपि, इस घटना की व्याख्या करने के लिए अभी तक कोई सर्वसम्मति सिद्धांत नहीं है, जिसे "भौतिकी के महान रहस्यों में से एक" के रूप में वर्णित किया गया है।[4]

सखारोव की स्थिति

1967 में, आंद्रेई सखारोव ने [5] तीन आवश्यक प्रतिबंध का एक समुच्चय प्रस्तावित किया, जो एक बैरोन-उत्पादक परस्परक्रिया को भिन्न दरों पर पदार्थ और प्रतिद्रव्य का उत्पादन करने के लिए संतुष्ट करना चाहिए। ये स्थितियाँ ब्रह्मांडीय पृष्ठभूमि विकिरण और निष्पक्ष काओन प्रणाली [6]में सीपी उल्लंघन की अभिनव खोजों से प्रेरित थीं[7] तीन आवश्यक ''सखारोव प्रतिबंध'' हैं:

बेरिऑन संख्या का उल्लंघन

बेरिऑन संख्या का उल्लंघन प्रति-बैरिअन्स पर बेरिअन्स की अधिकता उत्पन्न करने के लिए एक आवश्यक प्रतिबंध है। लेकिन सी-समरूपता के उल्लंघन की भी आवश्यकता है ताकि जो अन्योन्यक्रिया प्रति-बैरोन की तुलना में अधिक बैरोन का उत्पादन करते हैं, वे अन्योन्यक्रिया से असंतुलित नहीं होंगे जो बैरन की तुलना में अधिक प्रति-बैरियन उत्पन्न करते हैं। सीपी-समरूपता का उल्लंघन इसी तरह आवश्यक है क्योंकि अन्यथा समान संख्या में बाएं हाथ के बेरोन और दाएं हाथ के प्रति-बैरियन का उत्पादन होगा, साथ ही बाएं हाथ के प्रति-बैरियन और दाएं हाथ के बैरन की समान संख्या का उत्पादन किया जाएगा। अंत में, अंतःक्रियाएं तापीय संतुलन से बाहर होनी चाहिए, क्योंकि अन्यथा सीपीटी समरूपता बेरोन संख्या को वर्द्धमान और ह्रासमान वाली प्रक्रियाओं के मध्य प्रतिकरण का आश्वासन देगी।[8]

वर्तमान में, कण अंतःक्रियाओं का कोई प्रायोगिक साक्ष्य नहीं है जहां बेरिऑन संख्या का संरक्षण विक्षोभ रूप से खंडित है: यह सलाह देने के लिए प्रतीत होता है कि सभी देखी गई कण प्रतिक्रियाओं में पहले और बाद में बेरिऑन संख्या समान होती है। गणितीय रूप से, बेरोन संख्या प्रचालक का दिक्परिवर्तक (परटर्बेटिव) मानक निर्देश हैमिल्टनियन के साथ शून्य है: । यद्यपि, मानक मॉडल को बेरोन संख्या के संरक्षण का उल्लंघन करने के लिए केवल गैर-विक्षुब्ध रूप से जाना जाता है: एक वैश्विक U(1) अनियमितता है। बैरियोजेनेसिस में बैरियोन उल्लंघन के लिए, ऐसी स्थिति (प्रोटॉन क्षय सहित) महा एकीकरण सिद्धांत (जीयूटीएस) और अति सममित (एसयूएसवाई) निर्देश में X बोसॉन जैसे परिकल्पित विस्तृत बोसोन के माध्यम से हो सकती हैं।

सीपी-समरूपता उल्लंघन

बेरोन विषमता उत्पन्न करने के लिए दूसरा प्रतिबंध आवेश-समता समरूपता का उल्लंघन-यह है कि एक प्रक्रिया अपने प्रतिद्रव्य समकक्ष के लिए एक अलग दर पर होने में सक्षम है। मानक निर्देश में, कमजोर अंतःक्रिया के क्वार्क मिश्रण आव्यूह में सीपी उल्लंघन एक जटिल स्थिति के रूप में प्रकट होते है। न्यूट्रिनो मिश्रण आव्यूह में एक शून्येतर सीपी-उल्लंघन स्थिति भी हो सकती है, लेकिन यह वर्तमान में अनिर्धारित है। मूलभूत भौतिक सिद्धांतों की श्रृंखला में सबसे पहले चिएन-शिउंग वू के प्रयोग के माध्यम से समता का उल्लंघन किया गया था। इसके कारण सीपी उल्लंघन को 1964 के फिच-क्रोनिन प्रयोग में निष्पक्ष काओन के साथ सत्यापित किया गया, जिसके परिणामस्वरूप 1980 में भौतिकी नोबेल पुरस्कार मिला (प्रत्यक्ष सीपी उल्लंघन, जो क्षय प्रक्रिया में सीपी समरूपता का उल्लंघन है, बाद में 1999 में खोजा गया था)। सीपीटी समरूपता के कारण, सीपी समरूपता का उल्लंघन समय व्युत्क्रम समरूपता, या टी-समरूपता के उल्लंघन की याचना करता है। मानक निर्देश में सीपी उल्लंघन की अनुमति के बदले, बैरियन संख्या उल्लंघन की सीमाओं को देखते हुए ब्रह्मांड की प्रेक्षित बेरिऑन विषमता (बीएयू) के लिए यह अपर्याप्त है, जिसका अर्थ है कि मानक निर्देश से अतिरिक्त स्रोतों की आवश्यकता है।

एलएचसी संचालन के पहले तीन वर्षों (मार्च 2010 से आरंभ) के समय LHCb सहयोग द्वारा बड़ा हैड्रोन कोलाइडर (एलएचसी) में CP उल्लंघन का एक संभावित नया स्रोत पाया गया है। प्रयोग ने दो कणों, आधार लैम्डा (Λb0) और इसके प्रतिकण के क्षय का विश्लेषण किया और क्षय उत्पादों के वितरण की तुलना की है। डेटा ने सीपी-उल्लंघन संवेदनशील मात्रा के 20% तक की विषमता दिखाई, जिसका अर्थ सीपी-समरूपता का विभंजन करना है। एलएचसी के बाद के रन से अधिक डेटा द्वारा विश्लेषण की पुष्टि करने की आवश्यकता होगी।[9]

तापीय संतुलन से बाहर अन्योन्यक्रिया

संतुलन से बाहर क्षय परिदृश्य में,[10] अंतिम स्थिति बताती है कि एक प्रतिक्रिया की दर जो बैरोन-असममिति उत्पन्न करती है, ब्रह्मांड के विस्तार की दर से कम होनी चाहिए। इस स्थिति में कण और उनके संगत प्रतिकण तेजी से विस्तार के कारण तापीय संतुलन प्राप्त नहीं कर पाते जिससे युग्म-विलोपन की घटना घट जाती है।

अन्य स्पष्टीकरण

ब्रह्मांड के क्षेत्र जहां प्रतिद्रव्य प्रमुख है

स्पष्ट बेरोन विषमता का एक अन्य संभावित स्पष्टीकरण यह है कि पदार्थ और प्रतिद्रव्य अनिवार्य रूप से ब्रह्मांड के भिन्न, व्यापक रूप से दूर के क्षेत्रों में अलग हो जाते हैं। प्रतिद्रव्य आकाशगंगाओं के गठन को मूल रूप से बैरोन विषमता की व्याख्या करने के लिए सोचा गया था, क्योंकि दूर से, प्रतिद्रव्य परमाणु पदार्थ परमाणुओं से अप्रभेद्य होते हैं; दोनों एक ही तरह से प्रकाश (फोटॉन) उत्पन्न करते हैं। पदार्थ और प्रतिद्रव्य क्षेत्रों के मध्य की सीमा के साथ, यद्यपि, विलोपन (और गामा विकिरण के बाद के उत्पादन) का पता लगाया जा सकता है, जो इसकी दूरी और पदार्थ और प्रतिद्रव्य के घनत्व पर निर्भर करता है। ऐसी सीमाएँ, यदि वे उपस्तिथ हैं, तो संभवतः गहरे अंतरामंदाकिनीय आकाश में स्थित होंगी। अंतरामंदाकिनीय आकाश में पदार्थ का घनत्व यथोचित रूप से लगभग एक परमाणु प्रति घन मीटर पर स्थापित है।[11][12] यह मानते हुए कि यह एक सीमा के पास एक विशिष्ट घनत्व है, सीमा संपर्क क्षेत्र की गामा किरण चमक की गणना की जा सकती है। ऐसे किसी भी क्षेत्र का पता नहीं चला है, लेकिन 30 वर्षों के शोध ने इस बात की सीमा तय कर दी है कि वे कितनी दूर हो सकते हैं। इस तरह के विश्लेषणों के आधार पर, अब यह असंभव माना जाता है कि देखने योग्य ब्रह्मांड के भीतर किसी भी क्षेत्र में प्रतिद्रव्य का वर्चस्व है।[4]

विद्युत द्विध्रुवीय क्षण

किसी मूलभूत कण में विद्युत द्विध्रुव आघूर्ण (ईडीएम) की उपस्थिति समता (पी) और समय (टी) दोनों समरूपताओं का उल्लंघन करेगी। इस प्रकार, एक ईडीएम पदार्थ और प्रतिद्रव्य को अलग दरों पर क्षय करने की अनुमति देगा, जिससे आज के रूप में संभावित पदार्थ-प्रतिद्रव्य विषमता हो सकती है। विभिन्न भौतिक कणों के ईडीएम को मापने के लिए वर्तमान में कई प्रयोग किए जा रहे हैं। सभी माप वर्तमान में बिना द्विध्रुवीय क्षण के संगत हैं। यद्यपि, परिणाम समरूपता उल्लंघन की मात्रा पर कठोर प्रतिबंध लगाते हैं जो एक भौतिक निर्देश अनुमति दे सकते है। सबसे अभिनव ईडीएम सीमा, 2014 में प्रकाशित हुई, ACME सहयोग की थी, जिसने थोरियम मोनोऑक्साइड (ThO) अणुओं के स्पंदित किरण का उपयोग करके अतिसूक्ष्म परमाणु के ईडीएम को मापा है।[13]

दर्पण विरोधी ब्रह्मांड

बिग बैंग ने एक ब्रह्मांड-विरोधी जोड़ी उत्पन्न की, हमारा ब्रह्मांड समय के साथ आगे बढ़ता है, जबकि हमारा दर्पण समकक्ष पीछे की ओर बहता है।

ब्रह्मांड की स्थिति, जैसा कि यह है, सीपीटी समरूपता का उल्लंघन नहीं करती है, क्योंकि बिग बैंग को द्विपार्ष्व घटना के रूप में माना जा सकता है, दोनों शास्त्रीय और क्वांटम यांत्रिक रूप से, जिसमें ब्रह्मांड-विरोधी ब्रह्मांड जोड़ी सम्मिलित है। इसका अर्थ है कि यह ब्रह्मांड-विरोधी का आवेश (C), समता (P) और समय (T) प्रतिबिंब है। यह जोड़ी बिग बैंग युगों से निकलकर सीधे ऊष्म, विकिरण-प्रभुत्व वाले युग में नहीं आई है। प्रतिब्रह्मांड बिग बैंग से समय यात्रा प्रवाहित होगी, ऐसा करने पर बड़ी होती जाएगी, और प्रतिद्रव्य का भी प्रमुख होगा। हमारे ब्रह्मांड में उन लोगों की तुलना में इसके स्थानिक गुण प्रतिलोमित हैं, जो एक निर्वात में अतिसूक्ष्म परमाणु-पॉजिट्रॉन जोड़े बनाने के समान स्थिति है। कनाडा में सैद्धांतिक भौतिकी के लिए परिधि संस्थान के भौतिकविदों द्वारा तैयार किया गया यह निर्देश प्रस्तावित करता है कि ब्रह्मांडीय सूक्ष्मतरंग पृष्ठभूमि (सीएमबी) में तापमान में उतार-चढ़ाव बिग बैंग विलक्षणता के पास समष्टि-समय की क्वांटम-यांत्रिकीय प्रकृति के कारण होता है।[14] इसका अर्थ यह है कि हमारे ब्रह्मांड के भविष्य में एक बिंदु और ब्रह्मांड विरोधी के दूरस्थ अतीत में एक बिंदु निश्चित शास्त्रीय बिंदु प्रदान करेगा, जबकि सभी संभावित क्वांटम-आधारित क्रमपरिवर्तन मध्य में उपस्तिथ होंगे। क्वांटम अनिश्चितता ब्रह्मांड और ब्रह्मांड विरोधी को एक दूसरे के सटीक दर्पण प्रतिबिंब नहीं होने का कारण बनती है।[15]

इस निर्देश ने यह नहीं दिखाया है कि क्या यह मुद्रास्फीति के परिदृश्य के बारे में कुछ टिप्पणियों को पुन: दिखाई दे सकता है, जैसे बड़े पैमाने पर ब्रह्मांड की एकरूपता की व्याख्या करना है। यद्यपि, यह गहरे द्रव्य के लिए एक प्राकृतिक और सीधी व्याख्या प्रदान करता है। इस तरह की एक ब्रह्मांड-विरोधी जोड़ी बड़ी संख्या में अतिभारी न्युट्रीनो का उत्पादन करेगी, जिसे बंध्य न्यूट्रिनो के रूप में भी जाना जाता है। ये न्यूट्रिनो उच्च-ऊर्जा ब्रह्मांडीय किरणों के अभिनव देखे गए विस्फोटों के स्रोत भी हो सकते हैं।[16]

बेरियन विषमता प्राचल

फिर भौतिकी के सिद्धांतों का निर्देशार्थ यह है कि प्रतिद्रव्य पर पदार्थ की प्रबलता और इस विषमता के परिमाण को कैसे उत्पन्न किया जाए, इसकी व्याख्या कैसे की जाए। विषमता प्राचल एक महत्वपूर्ण परिमाणवाचक है,

यह मात्रा बेरोन और ऐन्टिबेरियॉन (क्रमशः nB और nB) के मध्य समग्र संख्या घनत्व अंतर और ब्रह्मांडीय पृष्ठभूमि विकिरण फोटोन की संख्या घनत्व nγ की संख्या घनत्व से संबंधित है।

बिग बैंग निर्देश के अनुसार, लगभग 3000 केल्विन के तापमान पर ब्रह्माण्ड पृष्‍ठभूमि विकिरण (सीबीआर) से अलग हुआ पदार्थ, 3000 K / (10.08×103 K/eV) = 0.3 eV की औसत गतिज ऊर्जा के अनुरूप है। वियुग्मन के बाद, सीबीआर फोटोन की कुल संख्या स्थिर रहती है। इसलिए, समष्टि-समय के विस्तार के कारण फोटॉन घनत्व कम हो जाता है। संतुलन तापमान T के प्रति घन सेंटीमीटर पर फोटॉन घनत्व द्वारा दिया जाता है।

बोल्ट्ज़मैन स्थिरांक के रूप में kB के साथ, ħ प्लैंक स्थिरांक के रूप में 2π और c द्वारा निर्वात में प्रकाश की गति के रूप में विभाजित, और ζ(3) एपेरी स्थिरांक के रूप में है। 2.725 K के वर्तमान सीबीआर फोटॉन तापमान पर, यह लगभग 411 सीबीआर फोटोन प्रति घन सेंटीमीटर के फोटॉन घनत्व nγ के अनुरूप है।

इसलिए, विषमता प्राचल η, जैसा कि ऊपर परिभाषित किया गया है, ''अच्छा'' प्राचल नहीं है। इसके बदले, वरीय विषमता प्राचल एन्ट्रापी घनत्व s का उपयोग करता है,

क्योंकि ब्रह्मांड का एन्ट्रापी घनत्व इसके अधिकांश विकास के समय यथोचित रूप से स्थिर रहा है। एन्ट्रापी घनत्व

ऊर्जा घनत्व प्रदिश Tμν से दबाव और घनत्व के रूप में p और ρ के साथ, और g* तापमान T पर "द्रव्यमान रहित" कणों (जितना mc2 ≪ kBT धारण करता है) के लिए स्वतंत्रता की डिग्री की प्रभावी संख्या के रूप में,

,

Ti और Tj तापमान पर स्वतंत्रता की gi और gj डिग्री के साथ बोसॉन और फर्मिअन के लिए है। वर्तमान में, s = 7.04nγ है।

यह भी देखें

संदर्भ

  1. "पदार्थ-प्रतिपदार्थ विषमता समस्या". CERN. Retrieved April 3, 2018.
  2. Sather, Eric. "पदार्थ विषमता का रहस्य" (PDF). Vanderbilt University. Retrieved April 3, 2018.
  3. Sarkar, Utpal (2007). कण और खगोल कण भौतिकी. CRC Press. p. 429. ISBN 978-1-58488-931-1.
  4. 4.0 4.1 Canetti, L.; Drewes, M.; Shaposhnikov, M. (2012). "ब्रह्मांड में पदार्थ और एंटीमैटर". New J. Phys. 14 (9): 095012. arXiv:1204.4186. Bibcode:2012NJPh...14i5012C. doi:10.1088/1367-2630/14/9/095012. S2CID 119233888.
  5. A. D. Sakharov (1967). "Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe". Journal of Experimental and Theoretical Physics Letters. 5: 24–27. and in Russian, A. D. Sakharov (1967). "Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe". ZhETF Pis'ma. 5: 32–35. republished as A. D. Sakharov (1991). "Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe". Soviet Physics Uspekhi (in русский and English). 34 (5): 392–393. Bibcode:1991SvPhU..34..392S. doi:10.1070/PU1991v034n05ABEH002497.
  6. A. A. Penzias; R. W. Wilson (1965). "A Measurement of Excess Antenna Temperature at 4080 Mc/s". Astrophysical Journal. 142: 419–421. Bibcode:1965ApJ...142..419P. doi:10.1086/148307.
  7. J. W. Cronin; V. L. Fitch; et al. (1964). "Evidence for the 2π decay of the
    K0
    2
    meson"
    . Physical Review Letters. 13 (4): 138–140. Bibcode:1964PhRvL..13..138C. doi:10.1103/PhysRevLett.13.138.
  8. M. E. Shaposhnikov; G. R. Farrar (1993). "Baryon Asymmetry of the Universe in the Minimal Standard Model". Physical Review Letters. 70 (19): 2833–2836. arXiv:hep-ph/9305274. Bibcode:1993PhRvL..70.2833F. doi:10.1103/PhysRevLett.70.2833. PMID 10053665. S2CID 15937666.
  9. "New source of asymmetry between matter and antimatter | CERN". home.cern (in English). Retrieved 2017-12-05.
  10. A. Riotto; M. Trodden (1999). "Recent progress in baryogenesis". Annual Review of Nuclear and Particle Science. 49: 46. arXiv:hep-ph/9901362. Bibcode:1999ARNPS..49...35R. doi:10.1146/annurev.nucl.49.1.35. S2CID 10901646.
  11. Davidson, Keay; Smoot, George (2008). समय में झुर्रियाँ. New York: Avon. pp. 158–163. ISBN 978-0061344442.
  12. Silk, Joseph (1977). महा विस्फोट. New York: Freeman. p. 299. ISBN 9780805072563.
  13. The ACME Collaboration; et al. (17 January 2014). "इलेक्ट्रॉन के विद्युत द्विध्रुव आघूर्ण पर परिमाण की छोटी सीमा का क्रम". Science. 343 (269): 269–72. arXiv:1310.7534. Bibcode:2014Sci...343..269B. doi:10.1126/science.1248213. PMID 24356114. S2CID 564518.
  14. "भौतिकविदों का कहना है कि हमारे ब्रह्मांड में बिग बैंग के दूसरी तरफ एंटीमैटर पार्टनर है". Physics World (in British English). 2019-01-03. Retrieved 2020-02-04.
  15. Boyle, Latham; Finn, Kieran; Turok, Neil (2018-12-20). "सी पी टी - सममित ब्रह्मांड". Physical Review Letters (in English). 121 (25): 251301. arXiv:1803.08928. Bibcode:2018PhRvL.121y1301B. doi:10.1103/PhysRevLett.121.251301. ISSN 0031-9007. PMID 30608856. S2CID 58638592.
  16. Boyle, L.; Finn, K.; Turok, N. (2018-12-20). "Synopsis: Universe Preceded by an Antiuniverse?". Physics (in English). 121 (25): 251301. doi:10.1103/PhysRevLett.121.251301. PMID 30608856.