अर्द्धपरिधि: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Half of the sum of side lengths of a polygon}} ज्यामिति में, एक बहुभुज की अर्द्धपरिध...")
 
No edit summary
Line 1: Line 1:
{{Short description|Half of the sum of side lengths of a polygon}}
{{Short description|Half of the sum of side lengths of a polygon}}
[[ज्यामिति]] में, एक [[बहुभुज]] की अर्द्धपरिधि उसकी परिधि की आधी होती है। हालांकि इसकी परिधि से इतनी सरल व्युत्पत्ति है, त्रिकोण और अन्य आकृतियों के सूत्रों में सेमीपरिमीटर अक्सर पर्याप्त रूप से दिखाई देता है कि इसे एक अलग नाम दिया जाता है। जब अर्द्धपरिधि एक सूत्र के भाग के रूप में होती है, तो इसे आमतौर पर अक्षर द्वारा निरूपित किया जाता है {{mvar|s}}.
[[ज्यामिति]] में, [[बहुभुज]] की अर्द्धपरिधि उसकी परिधि की आधी होती है। हालांकि इसकी परिधि से इतनी सरल व्युत्पत्ति है, त्रिकोण और अन्य आकृतियों के सूत्रों में सेमीपरिमीटर अक्सर पर्याप्त रूप से दिखाई देता है कि इसे अलग नाम दिया जाता है। जब अर्द्धपरिधि सूत्र के भाग के रूप में होती है, तो इसे आमतौर पर अक्षर द्वारा निरूपित किया जाता है {{mvar|s}}.


== त्रिकोण ==
== त्रिकोण ==
[[Image:Nagel point.svg|thumb|300px|किसी भी त्रिभुज में, त्रिकोण की सीमा के साथ-साथ एक शीर्ष से विपरीत किनारे पर स्थित बिंदु तक की दूरी एक बाह्यवृत्त द्वारा स्पर्श की जाती है जो सेमीपरिमीटर के बराबर होती है।]]अर्धपरिधि का प्रयोग प्रायः त्रिभुजों के लिए किया जाता है; भुजाओं की लंबाई वाले त्रिभुज की अर्द्धपरिधि का सूत्र {{mvar|a, b, c}}
[[Image:Nagel point.svg|thumb|300px|किसी भी त्रिभुज में, त्रिकोण की सीमा के साथ-साथ शीर्ष से विपरीत किनारे पर स्थित बिंदु तक की दूरी बाह्यवृत्त द्वारा स्पर्श की जाती है जो सेमीपरिमीटर के बराबर होती है।]]अर्धपरिधि का प्रयोग प्रायः त्रिभुजों के लिए किया जाता है; भुजाओं की लंबाई वाले त्रिभुज की अर्द्धपरिधि का सूत्र {{mvar|a, b, c}}
:<math>s = \frac{a+b+c}{2}.</math>
:<math>s = \frac{a+b+c}{2}.</math>
=== गुण ===
=== गुण ===


किसी भी त्रिभुज में, कोई भी शीर्ष और वह बिंदु जहां विपरीत बहिर्वृत्त त्रिभुज की परिधि को दो समान लंबाई में विभाजित करता है, इस प्रकार दो पथ बनाता है जिनमें से प्रत्येक की लंबाई अर्धपरिधि के बराबर होती है। अगर {{mvar|A, B, B', C'}} जैसा कि चित्र में दिखाया गया है, फिर एक वर्टेक्स को विपरीत बाह्य वृत्त स्पर्शरेखा से जोड़ने वाले खंड ({{mvar|{{overline|AA'}}, {{overline|BB'}}, {{overline|CC'}}}}, आरेख में लाल रंग में दिखाया गया है) [[स्प्लिटर (ज्यामिति)]] के रूप में जाना जाता है, और
किसी भी त्रिभुज में, कोई भी शीर्ष और वह बिंदु जहां विपरीत बहिर्वृत्त त्रिभुज की परिधि को दो समान लंबाई में विभाजित करता है, इस प्रकार दो पथ बनाता है जिनमें से प्रत्येक की लंबाई अर्धपरिधि के बराबर होती है। अगर {{mvar|A, B, B', C'}} जैसा कि चित्र में दिखाया गया है, फिर वर्टेक्स को विपरीत बाह्य वृत्त स्पर्शरेखा से जोड़ने वाले खंड ({{mvar|{{overline|AA'}}, {{overline|BB'}}, {{overline|CC'}}}}, आरेख में लाल रंग में दिखाया गया है) [[स्प्लिटर (ज्यामिति)]] के रूप में जाना जाता है, और


<math>\begin{align}
<math>\begin{align}
Line 17: Line 15:
त्रिभुज के [[नागल बिंदु]] पर तीन विभाजक [[समवर्ती रेखाएँ]]।
त्रिभुज के [[नागल बिंदु]] पर तीन विभाजक [[समवर्ती रेखाएँ]]।


त्रिभुज का एक [[क्लीवर (ज्यामिति)]] एक रेखा खंड है जो त्रिभुज की परिधि को द्विभाजित करता है और तीन भुजाओं में से एक के मध्य बिंदु पर एक अंत बिंदु होता है। तो कोई भी क्लीवर, किसी भी स्प्लिटर की तरह, त्रिभुज को दो रास्तों में विभाजित करता है, जिनमें से प्रत्येक की लंबाई अर्धपरिधि के बराबर होती है। तीन क्लीवर [[स्पाइकर केंद्र]] पर मिलते हैं, जो औसत दर्जे का त्रिभुज का अंतःवृत्त है; स्पाइकर केंद्र त्रिभुज के किनारों पर सभी बिंदुओं के द्रव्यमान का केंद्र है।
त्रिभुज का [[क्लीवर (ज्यामिति)]] रेखा खंड है जो त्रिभुज की परिधि को द्विभाजित करता है और तीन भुजाओं में से एक के मध्य बिंदु पर अंत बिंदु होता है। तो कोई भी क्लीवर, किसी भी स्प्लिटर की तरह, त्रिभुज को दो रास्तों में विभाजित करता है, जिनमें से प्रत्येक की लंबाई अर्धपरिधि के बराबर होती है। तीन क्लीवर [[स्पाइकर केंद्र]] पर मिलते हैं, जो औसत दर्जे का त्रिभुज का अंतःवृत्त है; स्पाइकर केंद्र त्रिभुज के किनारों पर सभी बिंदुओं के द्रव्यमान का केंद्र है।


त्रिभुज के मध्य से गुजरने वाली रेखा परिधि को द्विभाजित करती है यदि और केवल यदि यह क्षेत्र को भी समद्विभाजित करती है।
त्रिभुज के मध्य से गुजरने वाली रेखा परिधि को द्विभाजित करती है यदि और केवल यदि यह क्षेत्र को भी समद्विभाजित करती है।
Line 41: Line 39:


: <math>r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}. </math>
: <math>r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}. </math>
कॉटैंगेंट्स का कानून अर्ध-परिधि, पक्षों और अंतःत्रिज्या के संदर्भ में एक त्रिभुज के शीर्ष पर आधे कोणों के [[स्पर्शरेखा]] देता है।
कॉटैंगेंट्स का कानून अर्ध-परिधि, पक्षों और अंतःत्रिज्या के संदर्भ में त्रिभुज के शीर्ष पर आधे कोणों के [[स्पर्शरेखा]] देता है।


द्विभाजन की लंबाई#लंबाई की भुजा के विपरीत कोण समद्विभाजक {{mvar|a}} है<ref name=Johnson>{{cite book|last=Johnson|first=Roger A.|title=उन्नत यूक्लिडियन ज्यामिति|year=2007|publisher=Dover|location=Mineola, New York|isbn=9780486462370|page=70}}</ref>
द्विभाजन की लंबाई#लंबाई की भुजा के विपरीत कोण समद्विभाजक {{mvar|a}} है<ref name=Johnson>{{cite book|last=Johnson|first=Roger A.|title=उन्नत यूक्लिडियन ज्यामिति|year=2007|publisher=Dover|location=Mineola, New York|isbn=9780486462370|page=70}}</ref>
Line 50: Line 48:
भुजाओं की लंबाई वाले चतुर्भुज की अर्द्धपरिधि का सूत्र {{mvar|a, b, c, d}} है
भुजाओं की लंबाई वाले चतुर्भुज की अर्द्धपरिधि का सूत्र {{mvar|a, b, c, d}} है
:<math>s = \frac{a+b+c+d}{2}.</math>
:<math>s = \frac{a+b+c+d}{2}.</math>
अर्धपरिधि को शामिल करने वाले त्रिकोण क्षेत्र के सूत्रों में से एक [[स्पर्शरेखा चतुर्भुज]] पर भी लागू होता है, जिसमें एक अंतःवृत्त होता है और जिसमें (पिटोट के प्रमेय के अनुसार) विपरीत पक्षों के जोड़े की लंबाई अर्धवृत्ताकार होती है - अर्थात्, क्षेत्र अंतःत्रिज्या का उत्पाद है और अर्धपरिधि:
अर्धपरिधि को शामिल करने वाले त्रिकोण क्षेत्र के सूत्रों में से एक [[स्पर्शरेखा चतुर्भुज]] पर भी लागू होता है, जिसमें अंतःवृत्त होता है और जिसमें (पिटोट के प्रमेय के अनुसार) विपरीत पक्षों के जोड़े की लंबाई अर्धवृत्ताकार होती है - अर्थात्, क्षेत्र अंतःत्रिज्या का उत्पाद है और अर्धपरिधि:


:<math> K = rs.</math>
:<math> K = rs.</math>
Line 61: Line 59:
जिसमें {{mvar|α}} और {{mvar|γ}} दो विपरीत कोण हैं।
जिसमें {{mvar|α}} और {{mvar|γ}} दो विपरीत कोण हैं।


एक [[द्विकेंद्रित चतुर्भुज]] की चार भुजाएं द्विकेन्द्रीय चतुर्भुज के चार समाधान हैं#इनत्रिज्या और परित्रिज्या|अर्द्धपरिधि, अन्तःत्रिज्या, और परित्रिज्या द्वारा पैरामीट्रिज्ड एक चतुर्थांश समीकरण।
एक [[द्विकेंद्रित चतुर्भुज]] की चार भुजाएं द्विकेन्द्रीय चतुर्भुज के चार समाधान हैं#इनत्रिज्या और परित्रिज्या|अर्द्धपरिधि, अन्तःत्रिज्या, और परित्रिज्या द्वारा पैरामीट्रिज्ड चतुर्थांश समीकरण।


==== [[नियमित बहुभुज]] ====
==== [[नियमित बहुभुज]] ====
Line 71: Line 69:
==संदर्भ==
==संदर्भ==
{{Reflist}}
{{Reflist}}
== बाहरी संबंध ==
== बाहरी संबंध ==
*{{mathworld | title = Semiperimeter | urlname = Semiperimeter}}
*{{mathworld | title = Semiperimeter | urlname = Semiperimeter}}

Revision as of 21:00, 24 March 2023

ज्यामिति में, बहुभुज की अर्द्धपरिधि उसकी परिधि की आधी होती है। हालांकि इसकी परिधि से इतनी सरल व्युत्पत्ति है, त्रिकोण और अन्य आकृतियों के सूत्रों में सेमीपरिमीटर अक्सर पर्याप्त रूप से दिखाई देता है कि इसे अलग नाम दिया जाता है। जब अर्द्धपरिधि सूत्र के भाग के रूप में होती है, तो इसे आमतौर पर अक्षर द्वारा निरूपित किया जाता है s.

त्रिकोण

किसी भी त्रिभुज में, त्रिकोण की सीमा के साथ-साथ शीर्ष से विपरीत किनारे पर स्थित बिंदु तक की दूरी बाह्यवृत्त द्वारा स्पर्श की जाती है जो सेमीपरिमीटर के बराबर होती है।

अर्धपरिधि का प्रयोग प्रायः त्रिभुजों के लिए किया जाता है; भुजाओं की लंबाई वाले त्रिभुज की अर्द्धपरिधि का सूत्र a, b, c

गुण

किसी भी त्रिभुज में, कोई भी शीर्ष और वह बिंदु जहां विपरीत बहिर्वृत्त त्रिभुज की परिधि को दो समान लंबाई में विभाजित करता है, इस प्रकार दो पथ बनाता है जिनमें से प्रत्येक की लंबाई अर्धपरिधि के बराबर होती है। अगर A, B, B', C' जैसा कि चित्र में दिखाया गया है, फिर वर्टेक्स को विपरीत बाह्य वृत्त स्पर्शरेखा से जोड़ने वाले खंड (AA', BB', CC', आरेख में लाल रंग में दिखाया गया है) स्प्लिटर (ज्यामिति) के रूप में जाना जाता है, और

त्रिभुज के नागल बिंदु पर तीन विभाजक समवर्ती रेखाएँ

त्रिभुज का क्लीवर (ज्यामिति) रेखा खंड है जो त्रिभुज की परिधि को द्विभाजित करता है और तीन भुजाओं में से एक के मध्य बिंदु पर अंत बिंदु होता है। तो कोई भी क्लीवर, किसी भी स्प्लिटर की तरह, त्रिभुज को दो रास्तों में विभाजित करता है, जिनमें से प्रत्येक की लंबाई अर्धपरिधि के बराबर होती है। तीन क्लीवर स्पाइकर केंद्र पर मिलते हैं, जो औसत दर्जे का त्रिभुज का अंतःवृत्त है; स्पाइकर केंद्र त्रिभुज के किनारों पर सभी बिंदुओं के द्रव्यमान का केंद्र है।

त्रिभुज के मध्य से गुजरने वाली रेखा परिधि को द्विभाजित करती है यदि और केवल यदि यह क्षेत्र को भी समद्विभाजित करती है।

एक त्रिभुज का अर्धपरिधि उसके औसत दर्जे के त्रिभुज के परिमाप के बराबर होता है।

त्रिभुज असमानता से, त्रिभुज की सबसे लंबी भुजा की लंबाई अर्धपरिमाप से कम होती है।

अर्धपरिधि का आह्वान करने वाले सूत्र

त्रिकोण के लिए

क्षेत्र {{mvar|A}किसी भी त्रिकोण का } उसके अंतर्त्रिज्या (उसके खुदे हुए वृत्त की त्रिज्या) और उसके अर्धपरिधि का गुणनफल होता है:

किसी त्रिभुज के क्षेत्रफल की गणना उसके अर्द्धपरिधि और भुजाओं की लंबाई से भी की जा सकती है a, b, c हीरोन के सूत्र का उपयोग करना:

परिधि R त्रिभुज की अर्धपरिधि और भुजाओं की लंबाई से भी गणना की जा सकती है:

यह सूत्र जीवा के नियम से प्राप्त किया जा सकता है।

अंतःत्रिज्या है

कॉटैंगेंट्स का कानून अर्ध-परिधि, पक्षों और अंतःत्रिज्या के संदर्भ में त्रिभुज के शीर्ष पर आधे कोणों के स्पर्शरेखा देता है।

द्विभाजन की लंबाई#लंबाई की भुजा के विपरीत कोण समद्विभाजक a है[1]

एक समकोण त्रिभुज में, कर्ण पर बहिर्वृत्त की त्रिज्या अर्धपरिधि के बराबर होती है। अर्द्धपरिधि अंतःत्रिज्या का योग और दो बार परित्रिज्या है। समकोण त्रिभुज का क्षेत्रफल है कहाँ a, b पैर हैं।

चतुर्भुजों के लिए

भुजाओं की लंबाई वाले चतुर्भुज की अर्द्धपरिधि का सूत्र a, b, c, d है

अर्धपरिधि को शामिल करने वाले त्रिकोण क्षेत्र के सूत्रों में से एक स्पर्शरेखा चतुर्भुज पर भी लागू होता है, जिसमें अंतःवृत्त होता है और जिसमें (पिटोट के प्रमेय के अनुसार) विपरीत पक्षों के जोड़े की लंबाई अर्धवृत्ताकार होती है - अर्थात्, क्षेत्र अंतःत्रिज्या का उत्पाद है और अर्धपरिधि:

चक्रीय चतुर्भुज के क्षेत्र के लिए ब्रह्मगुप्त के सूत्र का सबसे सरल रूप त्रिकोण क्षेत्र के लिए हीरोन के सूत्र के समान है:

Bretschneider का सूत्र इसे सभी उत्तल बहुभुज चतुर्भुजों के लिए सामान्यीकृत करता है:

जिसमें α और γ दो विपरीत कोण हैं।

एक द्विकेंद्रित चतुर्भुज की चार भुजाएं द्विकेन्द्रीय चतुर्भुज के चार समाधान हैं#इनत्रिज्या और परित्रिज्या|अर्द्धपरिधि, अन्तःत्रिज्या, और परित्रिज्या द्वारा पैरामीट्रिज्ड चतुर्थांश समीकरण।

नियमित बहुभुज

एक उत्तल बहुभुज नियमित बहुभुज का क्षेत्रफल उसके अर्धपरिमाप और अंतःत्रिज्या का गुणनफल होता है।

यह भी देखें

संदर्भ

  1. Johnson, Roger A. (2007). उन्नत यूक्लिडियन ज्यामिति. Mineola, New York: Dover. p. 70. ISBN 9780486462370.

बाहरी संबंध