अर्द्धपरिधि: Difference between revisions

From Vigyanwiki
No edit summary
Line 77: Line 77:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 17/03/2023]]
[[Category:Created On 17/03/2023]]
[[Category:Vigyan Ready]]

Revision as of 17:04, 17 October 2023

ज्यामिति में, बहुभुज की अर्द्धपरिधि उसकी परिधि की आधी होती है। चूँकि इसकी परिधि से इतनी सरल व्युत्पत्ति है, त्रिकोण और अन्य आकृतियों के सूत्रों में सेमीपरिमीटर अधिकांशतः पर्याप्त रूप से दिखाई देता है कि इसे अलग नाम दिया जाता है। जब अर्द्धपरिधि सूत्र के भाग के रूप में होती है, तो इसे सामान्यतः अक्षर s द्वारा निरूपित किया जाता है।

त्रिकोण

किसी भी त्रिभुज में, त्रिकोण की सीमा के साथ-साथ शीर्ष से विपरीत किनारे पर स्थित बिंदु तक की दूरी बाह्यवृत्त द्वारा स्पर्श की जाती है जो सेमीपरिमीटर के बराबर होती है।

अर्धपरिधि का प्रयोग प्रायः त्रिभुजों के लिए किया जाता है; भुजाओं की लंबाई वाले त्रिभुज की अर्द्धपरिधि का सूत्र a, b, c

गुण

किसी भी त्रिभुज में, कोई भी शीर्ष और वह बिंदु जहां विपरीत बहिर्वृत्त त्रिभुज की परिधि को दो समान लंबाई में विभाजित करता है, इस प्रकार दो पथ बनाता है जिनमें से प्रत्येक की लंबाई अर्धपरिधि के बराबर होती है। यदि A, B, B', C' जैसा कि चित्र में दिखाया गया है, फिर वर्टेक्स को विपरीत बाह्य वृत्त स्पर्शरेखा से जोड़ने वाले खंड (AA', BB', CC', आरेख में लाल रंग में दिखाया गया है) स्प्लिटर (ज्यामिति) के रूप में जाना जाता है, और

त्रिभुज के नागल बिंदु पर तीन विभाजक समवर्ती रेखाएँ

त्रिभुज का क्लीवर (ज्यामिति) रेखा खंड है जो त्रिभुज की परिधि को द्विभाजित करता है और तीन भुजाओं में से एक के मध्य बिंदु पर अंत बिंदु होता है। तो कोई भी क्लीवर, किसी भी स्प्लिटर की तरह, त्रिभुज को दो रास्तों में विभाजित करता है, जिनमें से प्रत्येक की लंबाई अर्धपरिधि के बराबर होती है। तीन क्लीवर स्पाइकर केंद्र पर मिलते हैं, जो औसत दर्जे का त्रिभुज का अंतःवृत्त है; स्पाइकर केंद्र त्रिभुज के किनारों पर सभी बिंदुओं के द्रव्यमान का केंद्र है।

त्रिभुज के मध्य से निकलने वाली रेखा परिधि को द्विभाजित करती है यदि और केवल यदि यह क्षेत्र को भी समद्विभाजित करती है।

एक त्रिभुज का अर्धपरिधि उसके औसत दर्जे के त्रिभुज के परिमाप के बराबर होता है।

त्रिभुज असमानता से, त्रिभुज की सबसे लंबी भुजा की लंबाई अर्धपरिमाप से कम होती है।

अर्धपरिधि का आह्वान करने वाले सूत्र

त्रिकोण के लिए

किसी भी त्रिभुज का क्षेत्रफल A उसकी अंतःत्रिज्या (उसके खुदे हुए वृत्त की त्रिज्या) और उसके अर्द्धपरिधि का गुणनफल होता है:

हीरोन के सूत्र का उपयोग करके त्रिभुज के क्षेत्रफल की गणना उसके अर्धपरिधि और भुजाओं की लंबाई a, b, c से भी की जा सकती है:

परिधि R त्रिभुज की अर्धपरिधि और भुजाओं की लंबाई से भी गणना की जा सकती है:

यह सूत्र जीवा के नियम से प्राप्त किया जा सकता है।

अंतःत्रिज्या है

कॉटैंगेंट्स का कानून अर्ध-परिधि, पक्षों और अंतःत्रिज्या के संदर्भ में त्रिभुज के शीर्ष पर आधे कोणों के स्पर्शरेखा देता है।

लंबाई a की भुजा के विपरीत कोण के आंतरिक द्विभाजक की लंबाई है[1]

एक समकोण त्रिभुज में, कर्ण पर बहिर्वृत्त की त्रिज्या अर्धपरिधि के बराबर होती है। अर्द्धपरिधि अंतःत्रिज्या का योग और दो बार परित्रिज्या है। समकोण त्रिभुज का क्षेत्रफल है जहाँ a, b पैर हैं।

चतुर्भुजों के लिए

भुजाओं की लंबाई वाले चतुर्भुज की अर्द्धपरिधि का सूत्र a, b, c, d है

अर्धपरिधि को सम्मिलित करने वाले त्रिकोण क्षेत्र के सूत्रों में से एक स्पर्शरेखा चतुर्भुज पर भी लागू होता है, जिसमें अंतःवृत्त होता है और जिसमें (पिटोट के प्रमेय के अनुसार) विपरीत पक्षों के जोड़े की लंबाई अर्धवृत्ताकार होती है - अर्थात्, क्षेत्र अंतःत्रिज्या का उत्पाद है और अर्धपरिधि:

चक्रीय चतुर्भुज के क्षेत्र के लिए ब्रह्मगुप्त के सूत्र का सबसे सरल रूप त्रिकोण क्षेत्र के लिए हीरोन के सूत्र के समान है:

ब्रेत्श्नाइडर का सूत्र इसे सभी उत्तल बहुभुज चतुर्भुजों के लिए सामान्यीकृत करता है:

जिसमें α और γ दो विपरीत कोण हैं।

द्विकेंद्रित चतुर्भुज की चार भुजाएँ अर्द्धपरिधि, अंतःत्रिज्या और परित्रिज्या द्वारा पैरामीट्राइज़ किए गए चतुर्थक समीकरण के चार समाधान हैं।

नियमित बहुभुज

एक उत्तल बहुभुज नियमित बहुभुज का क्षेत्रफल उसके अर्धपरिमाप और अंतःत्रिज्या का गुणनफल होता है।

यह भी देखें

संदर्भ

  1. Johnson, Roger A. (2007). उन्नत यूक्लिडियन ज्यामिति. Mineola, New York: Dover. p. 70. ISBN 9780486462370.

बाहरी संबंध