सजातीय विविधता: Difference between revisions
(→परिचय) |
(→परिचय) |
||
Line 7: | Line 7: | ||
== परिचय == | == परिचय == | ||
एफ़ाइन बीजगणितीय सेट {{math|''k''}} में गुणांक वाले बहुपद समीकरणों की प्रणाली के बीजगणितीय रूप से बंद क्षेत्र {{math|''k''}} में समाधान का सेट | एफ़ाइन बीजगणितीय सेट {{math|''k''}} में गुणांक वाले बहुपद समीकरणों की प्रणाली के बीजगणितीय रूप से बंद क्षेत्र {{math|''k''}} में समाधान का सेट है। यदि <math>f_1, \ldots, f_m</math> में गुणांक वाले बहुपद है, वे एफ़ाइन बीजगणितीय सेट को परिभाषित करते हैं | ||
:<math> V(f_1,\ldots, f_m) = \left\{(a_1,\ldots,a_n)\in k^n \;|\;f_1(a_1,\ldots, a_n)=\ldots=f_m(a_1,\ldots, a_n)=0\right\}.</math> | :<math> V(f_1,\ldots, f_m) = \left\{(a_1,\ldots,a_n)\in k^n \;|\;f_1(a_1,\ldots, a_n)=\ldots=f_m(a_1,\ldots, a_n)=0\right\}.</math> | ||
एफ़ाइन (बीजीय) विविधता एफ़ाइन बीजगणितीय सेट है जो दो उचित एफ़ाइन बीजगणितीय उपसमुच्चय का मिलन नहीं है। इस प्रकार के सजातीय बीजगणितीय सेट को अक्सर ''अलघुकरणीय '' कहा जाता है। | एफ़ाइन (बीजीय) विविधता एफ़ाइन बीजगणितीय सेट है जो दो उचित एफ़ाइन बीजगणितीय उपसमुच्चय का मिलन नहीं है। इस प्रकार के सजातीय बीजगणितीय सेट को अक्सर ''अलघुकरणीय '' कहा जाता है। | ||
यदि {{math|''X''}} सजातीय बीजगणितीय समुच्चय है, और {{math|''I''}} उन सभी बहुपदों की गुणजावली है जिन | यदि {{math|''X''}} सजातीय बीजगणितीय समुच्चय है, और {{math|''I''}} उन सभी बहुपदों की गुणजावली है जिन {{mvar|X}} पर शून्य है , फिर [[भागफल की अंगूठी|भागफल वलय]] <math>R=k[x_1, \ldots, x_n]/I</math> को ''X'' का ऑर्डिनेट रिंग कहा जाता है यदि ''X'' संबधित विविधता है, तो ''I'' अभाज्य है, इसलिए निर्देशांक वलय ''R'' के तत्वों को विविधता पर ''नियमित कार्य'' या ''बहुपद कार्य'' भी कहा जाता है। वे विविधता पर ''नियमित कार्यों की अंगूठी'' बनाते हैं, या, बस, ''विविधता की अंगूठी''; दूसरे शब्दों में (#स्ट्रक्चर शीफ देखें), यह एक्स के स्ट्रक्चर शीफ के ग्लोबल सेक्शन का स्पेस है। | ||
विविधता का आयाम प्रत्येक विविधता से जुड़ा पूर्णांक है, और यहां तक कि प्रत्येक बीजगणितीय सेट के लिए, जिसका महत्व बड़ी संख्या में इसकी समकक्ष परिभाषाओं पर निर्भर करता है (बीजगणितीय विविधता का आयाम देखें)। | विविधता का आयाम प्रत्येक विविधता से जुड़ा पूर्णांक है, और यहां तक कि प्रत्येक बीजगणितीय सेट के लिए, जिसका महत्व बड़ी संख्या में इसकी समकक्ष परिभाषाओं पर निर्भर करता है (बीजगणितीय विविधता का आयाम देखें)। | ||
Line 18: | Line 18: | ||
* एफ़ाइन विविधता में hypersurface का पूरक {{math|''X''}} (वह है {{math|1=''X'' - { ''f'' = 0 } }} कुछ बहुपद के लिए {{math|''f''}}) एफ़िन है। इसके परिभाषित समीकरण [[संतृप्ति (कम्यूटेटिव बीजगणित)]] द्वारा प्राप्त किए जाते हैं {{mvar|f}} का परिभाषित आदर्श {{math|''X''}}. इस प्रकार निर्देशांक वलय वलय का स्थानीयकरण है <math>k[X][f^{-1}]</math>. | * एफ़ाइन विविधता में hypersurface का पूरक {{math|''X''}} (वह है {{math|1=''X'' - { ''f'' = 0 } }} कुछ बहुपद के लिए {{math|''f''}}) एफ़िन है। इसके परिभाषित समीकरण [[संतृप्ति (कम्यूटेटिव बीजगणित)]] द्वारा प्राप्त किए जाते हैं {{mvar|f}} का परिभाषित आदर्श {{math|''X''}}. इस प्रकार निर्देशांक वलय वलय का स्थानीयकरण है <math>k[X][f^{-1}]</math>. | ||
* विशेष रूप से, <math>\mathbb C - 0</math> (मूल के साथएफ़ाइन रेखा हटा दी गई है)एफ़ाइन है। | * विशेष रूप से, <math>\mathbb C - 0</math> (मूल के साथएफ़ाइन रेखा हटा दी गई है)एफ़ाइन है। | ||
* वहीं दूसरी ओर, <math>\mathbb C^2 - 0</math> (मूल के साथ संबधित तल) सजातीय विविधता नहीं है; सी एफ | * वहीं दूसरी ओर, <math>\mathbb C^2 - 0</math> (मूल के साथ संबधित तल) सजातीय विविधता नहीं है; सी एफ हार्टोगएक्सका विस्तार प्रमेय। | ||
* एफ़िन स्पेस में कोडिमेंशन वन की उप- विविधता ें <math>k^n</math> वास्तव में | * एफ़िन स्पेस में कोडिमेंशन वन की उप- विविधता ें <math>k^n</math> वास्तव में हाइपरसर्फएक्सहैं, जो कि बहुपद द्वारा परिभाषित विविधता ें हैं। | ||
* इरेड्यूसिबल एफाइन विविधता की [[सामान्य योजना]] एफाइन है; सामान्यीकरण का समन्वय वलय विविधता के समन्वय वलय का अभिन्न समापन है। (इसी तरह, प्रक्षेपी विविधता का सामान्यीकरण प्रक्षेपी विविधता है।) | * इरेड्यूसिबल एफाइन विविधता की [[सामान्य योजना]] एफाइन है; सामान्यीकरण का समन्वय वलय विविधता के समन्वय वलय का अभिन्न समापन है। (इसी तरह, प्रक्षेपी विविधता का सामान्यीकरण प्रक्षेपी विविधता है।) | ||
Line 28: | Line 28: | ||
एफ़िन विविधता के लिए <math>V\subseteq K^n</math> बीजगणितीय रूप से बंद क्षेत्र पर {{math|''K''}}, और उपक्षेत्र {{math|''k''}} का {{math|''K''}}, ए {{math|''k''}}-तार्किक बिंदु {{math|''V''}} बिंदु है <math>p\in V\cap k^n.</math> यानी बिंदु {{math|''V''}} जिसके निर्देशांक तत्व हैं {{math|''k''}}. का संग्रह {{math|''k''}}- सजातीय विविधता के तर्कसंगत बिंदु {{math|''V''}} को अक्सर निरूपित किया जाता है <math>V(k).</math> अक्सर, यदि आधार क्षेत्र सम्मिश्र संख्याएँ होती हैं {{math|'''C'''}}, बिंदु जो हैं {{math|'''R'''}}-तर्कसंगत (जहां {{math|'''R'''}} वास्तविक संख्या है) विविधता के वास्तविक बिंदु कहलाते हैं, और {{math|'''Q'''}}-तर्कसंगत अंक ({{math|'''Q'''}} परिमेय संख्याएँ) अक्सर केवल परिमेय बिंदु कहलाते हैं। | एफ़िन विविधता के लिए <math>V\subseteq K^n</math> बीजगणितीय रूप से बंद क्षेत्र पर {{math|''K''}}, और उपक्षेत्र {{math|''k''}} का {{math|''K''}}, ए {{math|''k''}}-तार्किक बिंदु {{math|''V''}} बिंदु है <math>p\in V\cap k^n.</math> यानी बिंदु {{math|''V''}} जिसके निर्देशांक तत्व हैं {{math|''k''}}. का संग्रह {{math|''k''}}- सजातीय विविधता के तर्कसंगत बिंदु {{math|''V''}} को अक्सर निरूपित किया जाता है <math>V(k).</math> अक्सर, यदि आधार क्षेत्र सम्मिश्र संख्याएँ होती हैं {{math|'''C'''}}, बिंदु जो हैं {{math|'''R'''}}-तर्कसंगत (जहां {{math|'''R'''}} वास्तविक संख्या है) विविधता के वास्तविक बिंदु कहलाते हैं, और {{math|'''Q'''}}-तर्कसंगत अंक ({{math|'''Q'''}} परिमेय संख्याएँ) अक्सर केवल परिमेय बिंदु कहलाते हैं। | ||
उदाहरण के लिए, {{math|(1, 0)}} है {{math|'''Q'''}}-तर्कसंगत और {{math|'''R'''}}- विविधता का तर्कसंगत बिंदु <math>V = V(x^2+y^2-1)\subseteq\mathbf{C}^2,</math> जैसा इसमें है {{math|''V''}} और इसके सभी निर्देशांक पूर्णांक हैं। बिंदु {{math|({{sqrt|2}}/2, {{sqrt|2}}/2)}} का वास्तविक बिंदु है {{mvar|V}} जो कि नहीं {{math|'''Q'''}}-तर्कसंगत, और <math>(i,\sqrt{2})</math> का बिन्दु है {{math|''V''}} जो कि नहीं {{math|'''R'''}}-तर्कसंगत। इस विविधता को वृत्त कहा जाता है, क्योंकि इसका सेट {{math|'''R'''}}-रेशनल | उदाहरण के लिए, {{math|(1, 0)}} है {{math|'''Q'''}}-तर्कसंगत और {{math|'''R'''}}- विविधता का तर्कसंगत बिंदु <math>V = V(x^2+y^2-1)\subseteq\mathbf{C}^2,</math> जैसा इसमें है {{math|''V''}} और इसके सभी निर्देशांक पूर्णांक हैं। बिंदु {{math|({{sqrt|2}}/2, {{sqrt|2}}/2)}} का वास्तविक बिंदु है {{mvar|V}} जो कि नहीं {{math|'''Q'''}}-तर्कसंगत, और <math>(i,\sqrt{2})</math> का बिन्दु है {{math|''V''}} जो कि नहीं {{math|'''R'''}}-तर्कसंगत। इस विविधता को वृत्त कहा जाता है, क्योंकि इसका सेट {{math|'''R'''}}-रेशनल पॉइंटएक्स[[यूनिट सर्कल]] है। इसमें अपरिमित रूप से अनेक हैं {{math|'''Q'''}}-तर्कसंगत बिंदु जो बिंदु हैं | ||
:<math>\left(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2}\right)</math> | :<math>\left(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2}\right)</math> | ||
कहाँ {{mvar|t}} परिमेय संख्या है। | कहाँ {{mvar|t}} परिमेय संख्या है। | ||
Line 44: | Line 44: | ||
होने देना {{mvar|V}} बहुपदों द्वारा परिभाषित सजातीय विविधता हो <math>f_1, \dots, f_r\in k[x_1, \dots, x_n],</math> और <math>a=(a_1, \dots,a_n)</math> का बिंदु हो {{mvar|V}}. | होने देना {{mvar|V}} बहुपदों द्वारा परिभाषित सजातीय विविधता हो <math>f_1, \dots, f_r\in k[x_1, \dots, x_n],</math> और <math>a=(a_1, \dots,a_n)</math> का बिंदु हो {{mvar|V}}. | ||
[[जैकबियन मैट्रिक्स]] {{math|''J''{{sub|''V''}}(''a'')}} का {{mvar|V}} पर {{mvar|a}} आंशिक डेरिवेटिव का | [[जैकबियन मैट्रिक्स|जैकबियन मैट्रिक]]एक्स{{math|''J''{{sub|''V''}}(''a'')}} का {{mvar|V}} पर {{mvar|a}} आंशिक डेरिवेटिव का मैट्रिकएक्सहै | ||
:<math> \frac{\partial f_j} {\partial {x_i}}(a_1, \dots, a_n).</math> | :<math> \frac{\partial f_j} {\partial {x_i}}(a_1, \dots, a_n).</math> | ||
बिंदु {{mvar|a}} की रैंक नियमित है {{math|''J''{{sub|''V''}}(''a'')}} बीजगणितीय विविधता के आयाम के बराबर है {{mvar|V}}, और वचन अन्यथा। | बिंदु {{mvar|a}} की रैंक नियमित है {{math|''J''{{sub|''V''}}(''a'')}} बीजगणितीय विविधता के आयाम के बराबर है {{mvar|V}}, और वचन अन्यथा। | ||
Line 93: | Line 93: | ||
बीजगणितीय रूप से बंद क्षेत्र पर एफ़ाइन विविधताओं के आकारिकी के बीच -से- पत्राचार होता है {{math|''k'',}} औरएफ़ाइन विविधताओं के समन्वय के छल्ले के समरूपता {{math|''k''}} विपरीत दिशा में जा रहा है। इस वजह से, इस तथ्य के साथ कि वहाँएफ़ाइन विविधताओं के बीच -से- पत्राचार है {{math|''k''}} और उनके निर्देशांक के छल्ले,एफ़ाइन विविधताओं की श्रेणी {{math|''k''}}एफ़ाइन विविधताओं के समन्वय के छल्ले की श्रेणी के लिए [[दोहरी (श्रेणी सिद्धांत)]] है {{math|''k''.}}एफ़ाइन विविधताओं के समन्वय के छल्ले की श्रेणी {{math|''k''}} ठीक-ठीक जनित, निलपोटेंट-मुक्त बीजगणित की श्रेणी है {{math|''k''.}} | बीजगणितीय रूप से बंद क्षेत्र पर एफ़ाइन विविधताओं के आकारिकी के बीच -से- पत्राचार होता है {{math|''k'',}} औरएफ़ाइन विविधताओं के समन्वय के छल्ले के समरूपता {{math|''k''}} विपरीत दिशा में जा रहा है। इस वजह से, इस तथ्य के साथ कि वहाँएफ़ाइन विविधताओं के बीच -से- पत्राचार है {{math|''k''}} और उनके निर्देशांक के छल्ले,एफ़ाइन विविधताओं की श्रेणी {{math|''k''}}एफ़ाइन विविधताओं के समन्वय के छल्ले की श्रेणी के लिए [[दोहरी (श्रेणी सिद्धांत)]] है {{math|''k''.}}एफ़ाइन विविधताओं के समन्वय के छल्ले की श्रेणी {{math|''k''}} ठीक-ठीक जनित, निलपोटेंट-मुक्त बीजगणित की श्रेणी है {{math|''k''.}} | ||
अधिक सटीक, प्रत्येक रूपवाद के लिए {{math | ''φ'' : ''V'' → ''W''}}एफ़ाइन विविधताओं में, समरूपता है {{math | ''φ''<sup>#</sup> : ''k''[''W''] → ''k''[''V'']}} निर्देशांक वलयों के बीच (विपरीत दिशा में जा रहा है), और इस प्रकारके प्रत्येक समरूपता के लिए, समन्वय वलयों से जुड़ी विविधताओं का रूपवाद है। इसे स्पष्ट रूप से दिखाया जा सकता है: let {{math|''V'' ⊆ ''k''<sup>''n''</sup>}} और {{math|''W'' ⊆ ''k''<sup>''m''</sup>}} कोआर्डिनेट | अधिक सटीक, प्रत्येक रूपवाद के लिए {{math | ''φ'' : ''V'' → ''W''}}एफ़ाइन विविधताओं में, समरूपता है {{math | ''φ''<sup>#</sup> : ''k''[''W''] → ''k''[''V'']}} निर्देशांक वलयों के बीच (विपरीत दिशा में जा रहा है), और इस प्रकारके प्रत्येक समरूपता के लिए, समन्वय वलयों से जुड़ी विविधताओं का रूपवाद है। इसे स्पष्ट रूप से दिखाया जा सकता है: let {{math|''V'' ⊆ ''k''<sup>''n''</sup>}} और {{math|''W'' ⊆ ''k''<sup>''m''</sup>}} कोआर्डिनेट रिंगएक्सके साथ एफिन विविधता ें बनें {{math| ''k''[''V''] {{=}} ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>] / ''I''}} और {{math| ''k''[''W''] {{=}} ''k''[''Y''<sub>1</sub>, ..., ''Y''<sub>''m''</sub>] / ''J''}} क्रमश। होने देना {{math | ''φ'' : ''V'' → ''W''}} रूपवाद हो। दरअसल, बहुपद के छल्ले के बीच समरूपता {{math | ''θ'' : ''k''[''Y''<sub>1</sub>, ..., ''Y''<sub>''m''</sub>] / ''J'' → ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>] / ''I''}} अंगूठी के माध्यम से अद्वितीय कारक {{math | ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>],}} और समरूपता {{math | ''ψ'' : ''k''[''Y''<sub>1</sub>, ..., ''Y''<sub>''m''</sub>] / ''J'' → ''k''[''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>]}} की छवियों द्वारा विशिष्ट रूप से निर्धारित किया जाता है {{math | ''Y''<sub>1</sub>, ..., ''Y''<sub>''m''</sub>.}} इसलिए, प्रत्येक समरूपता {{math | ''φ''<sup>#</sup> : ''k''[''W''] → ''k''[''V'']}} प्रत्येक के लिए विशिष्ट रूप से छवि के विकल्प से मेल खाता है {{math | ''Y''<sub>''i''</sub>}}. फिर कोई रूपवाद दिया {{math | ''φ'' {{=}} (''f''<sub>1</sub>, ..., ''f''<sub>''m''</sub>)}} से {{math | ''V''}} को {{math | ''W'',}} समरूपता का निर्माण किया जा सकता है {{math | ''φ''<sup>#</sup> : ''k''[''W''] → ''k''[''V'']}} जो भेजता है {{math | ''Y''<sub>''i''</sub>}} को <math>\overline{f_i},</math> कहाँ <math>\overline{f_i}</math> का तुल्यता वर्ग है {{math | ''f''<sub>''i''</sub>}} में {{math | ''k''[''V''].}} | ||
इसी तरह, समन्वय के छल्ले के प्रत्येक समरूपता के लिए, विपरीत दिशा में चक्करदार विविधताओं का रूपवाद बनाया जा सकता है। उपरोक्त पैराग्राफ को प्रतिबिंबित करना, समरूपता {{math | ''φ''<sup>#</sup> : ''k''[''W''] → ''k''[''V'']}} भेजता है {{math | ''Y''<sub>''i''</sub>}} बहुपद के लिए <math>f_i(X_1,\dots,X_n)</math> में {{math | ''k''[''V'']}}. यह विविधताओं के आकारिकी से मेल खाता है {{math | ''φ'' : ''V'' → ''W''}} द्वारा परिभाषित {{math | ''φ''(''a''<sub>1</sub>, ... , ''a''<sub>''n''</sub>) {{=}} (''f''<sub>1</sub>(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>), ..., ''f''<sub>''m''</sub>(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>)).}} | इसी तरह, समन्वय के छल्ले के प्रत्येक समरूपता के लिए, विपरीत दिशा में चक्करदार विविधताओं का रूपवाद बनाया जा सकता है। उपरोक्त पैराग्राफ को प्रतिबिंबित करना, समरूपता {{math | ''φ''<sup>#</sup> : ''k''[''W''] → ''k''[''V'']}} भेजता है {{math | ''Y''<sub>''i''</sub>}} बहुपद के लिए <math>f_i(X_1,\dots,X_n)</math> में {{math | ''k''[''V'']}}. यह विविधताओं के आकारिकी से मेल खाता है {{math | ''φ'' : ''V'' → ''W''}} द्वारा परिभाषित {{math | ''φ''(''a''<sub>1</sub>, ... , ''a''<sub>''n''</sub>) {{=}} (''f''<sub>1</sub>(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>), ..., ''f''<sub>''m''</sub>(''a''<sub>1</sub>, ..., ''a''<sub>''n''</sub>)).}} | ||
Line 102: | Line 102: | ||
कोऑर्डिनेट रिंग A के साथ एफ़ाइन वैरायटी X दी गई है, जो k-अलजेब्रस का शीफ है <math>\mathcal{O}_X</math> देकर परिभाषित किया गया है <math>\mathcal{O}_X(U) = \Gamma(U, \mathcal{O}_X)</math> यू पर नियमित कार्यों की अंगूठी बनें। | कोऑर्डिनेट रिंग A के साथ एफ़ाइन वैरायटी X दी गई है, जो k-अलजेब्रस का शीफ है <math>\mathcal{O}_X</math> देकर परिभाषित किया गया है <math>\mathcal{O}_X(U) = \Gamma(U, \mathcal{O}_X)</math> यू पर नियमित कार्यों की अंगूठी बनें। | ||
माना D(f) = { x | ए में प्रत्येक एफ के लिए एफ (्स) ≠ 0}। वे | माना D(f) = { x | ए में प्रत्येक एफ के लिए एफ (्स) ≠ 0}। वे एकएक्सके टोपोलॉजी के लिए आधार बनाते हैं और इसलिए <math>\mathcal{O}_X</math> खुले सेट डी (एफ) पर इसके मूल्यों से निर्धारित होता है। (यह भी देखें: मॉड्यूल का शीफ#मॉड्यूल से जुड़ा शीफ।) | ||
मुख्य तथ्य, जो आवश्यक रूप से [[हिल्बर्ट शून्य प्रमेय]] पर निर्भर करता है, निम्नलिखित है: | मुख्य तथ्य, जो आवश्यक रूप से [[हिल्बर्ट शून्य प्रमेय]] पर निर्भर करता है, निम्नलिखित है: | ||
{{math_theorem|name=Claim|math_statement=<math>\Gamma(D(f), \mathcal{O}_X) = A[f^{-1}]</math> for any ''f'' in ''A''.}} | {{math_theorem|name=Claim|math_statement=<math>\Gamma(D(f), \mathcal{O}_X) = A[f^{-1}]</math> for any ''f'' in ''A''.}} | ||
सबूत:<ref>{{harvnb|Mumford|1999|loc=Ch. I, § 4. Proposition 1.}}</ref> समावेश ⊃ स्पष्ट है। इसके विपरीत के लिए, जी को बाएं हाथ की ओर होने दें और <math>J = \{ h \in A | hg \in A \}</math>है, जो आदर्श है। यदि | सबूत:<ref>{{harvnb|Mumford|1999|loc=Ch. I, § 4. Proposition 1.}}</ref> समावेश ⊃ स्पष्ट है। इसके विपरीत के लिए, जी को बाएं हाथ की ओर होने दें और <math>J = \{ h \in A | hg \in A \}</math>है, जो आदर्श है। यदि एक्सडी (एफ) में है, तो चूंकि जी एक्सके पास नियमित है, एक्सके कुछ खुले संबंध पड़ोस डी (एच) हैं जैसे कि <math>g \in k[D(h)] = A[h^{-1}]</math>; वह है, एच<sup>m</sup> g, A में है और इसलिए x, V(J) में नहीं है। दूसरे शब्दों में, <math>V(J) \subset \{ x | f(x) = 0 \}</math> और इस प्रकार हिल्बर्ट नलस्टेलेंसैट्ज का अर्थ है कि एफ जे के रेडिकल में है; अर्थात।, <math>f^n g \in A</math>. <math>\square</math> | ||
दावा, सबसे पहले, यह दर्शाता है कि X तब से स्थानीय रूप से रिंग किया हुआ स्थान है | दावा, सबसे पहले, यह दर्शाता है कि X तब से स्थानीय रूप से रिंग किया हुआ स्थान है | ||
:<math>\mathcal{O}_{X, x} = \varinjlim_{f(x) \ne 0} A[f^{-1}] = A_{\mathfrak{m}_x}</math> | :<math>\mathcal{O}_{X, x} = \varinjlim_{f(x) \ne 0} A[f^{-1}] = A_{\mathfrak{m}_x}</math> | ||
Line 118: | Line 118: | ||
{{main|आत्मीयता पर सेरे की प्रमेय}} | {{main|आत्मीयता पर सेरे की प्रमेय}} | ||
आत्मीयता पर सेरे का प्रमेय सजातीय विविधता का को होमोलॉजिकल लक्षण वर्णन देती है; यह कहता है कि बीजगणितीय विविधता एफ़ाइन है यदि <math>H^i(X, F) = 0</math> किसी के लिए भी <math>i > 0</math> और | आत्मीयता पर सेरे का प्रमेय सजातीय विविधता का को होमोलॉजिकल लक्षण वर्णन देती है; यह कहता है कि बीजगणितीय विविधता एफ़ाइन है यदि <math>H^i(X, F) = 0</math> किसी के लिए भी <math>i > 0</math> और एकएक्सपर कोई भी [[अर्ध-सुसंगत शीफ]] एफ। (cf. कार्टन की प्रमेय बी।) यह प्रक्षेपी स्तिथि के विपरीत, जिसमें लाइन बंडलों के कोहोलॉजी समूह होते हैं , के विपरीत, गैर-अस्तित्व में एफ़ाइन विविधता का कोहोलॉजिकल अध्ययन करता है।केंद्रीय हित के . | ||
== एफ़ाइन बीजगणितीय समूह == | == एफ़ाइन बीजगणितीय समूह == |
Revision as of 21:42, 8 April 2023
बीजगणितीय ज्यामिति में, बीजगणितीय रूप से बंद क्षेत्र पर, संबधित विविधता, या बीजगणितीय विविधता, k एफ़ाइन स्थान में शून्य-स्थल है kn के बहुपदों के कुछ परिमित परिवार का n में गुणांक के साथ चर k जो प्रमुख आदर्श उत्पन्न करता है। यदि अभाज्य गुणज उत्पन्न करने की स्थिति को हटा दिया जाता है, तो ऐसे समुच्चय को बीजगणितीय समुच्चय ( एफ़ाइन) कहा जाता है। जरिस्की टोपोलॉजी संबधित विविधता की उप-प्रजाति को अर्ध-एफ़ाइन विविधता कहा जाता है।
कुछ ग्रंथों को प्रमुख आदर्श की आवश्यकता नहीं होती है, और प्रधान आदर्श द्वारा परिभाषित बीजगणितीय विविधता को इरिड्यूसिबल कहते हैं। यह लेख आवश्यक रूप से प्रमुख आदर्शों के शून्य-लोकी को संदर्भित नहीं करता है जैसे कि बीजीय बीजगणितीय सेट है।
कुछ संदर्भों में, बीजगणितीय रूप से बंद क्षेत्र K (युक्त k) से k को अलग करना उपयोगी होता है जिसमें गुणांक माना जाता है, जिस पर शून्य-लोकस माना जाता है (अर्थात् एफ़ाइन विविधता के बिंदु अंद होते हैं Knमें हैं) . इस स्तिथि में, विविधता को k पर परिभाषित कहा जाता है , और k से संबंधित विविधता के बिंदु k तर्कसंगत या k तर्कसंगत कहा जाता है। सामान्य स्थिति में जहाँ k वास्तविक संख्याओं का क्षेत्र है, k- रामेय बिंदु को वास्तविक बिंदु कहते हैं।[1] जब मैदान k निर्दिष्ट नहीं होता है, परिमेय बिंदु वह बिंदु है जो परिमेय संख्याओं पर परिमेय होता है। उदाहरण के लिए, फ़र्मेट की अंतिम प्रमेय का दावा है कि xn + yn − 1 = 0 द्वारा परिभाषित एफ़ाइन बीजगणितीय विविधता (यह वक्र है) में दो से अधिक पूर्णांक के n लिए कोई परिमेय बिंदु नहीं है।
परिचय
एफ़ाइन बीजगणितीय सेट k में गुणांक वाले बहुपद समीकरणों की प्रणाली के बीजगणितीय रूप से बंद क्षेत्र k में समाधान का सेट है। यदि में गुणांक वाले बहुपद है, वे एफ़ाइन बीजगणितीय सेट को परिभाषित करते हैं
एफ़ाइन (बीजीय) विविधता एफ़ाइन बीजगणितीय सेट है जो दो उचित एफ़ाइन बीजगणितीय उपसमुच्चय का मिलन नहीं है। इस प्रकार के सजातीय बीजगणितीय सेट को अक्सर अलघुकरणीय कहा जाता है।
यदि X सजातीय बीजगणितीय समुच्चय है, और I उन सभी बहुपदों की गुणजावली है जिन X पर शून्य है , फिर भागफल वलय को X का ऑर्डिनेट रिंग कहा जाता है यदि X संबधित विविधता है, तो I अभाज्य है, इसलिए निर्देशांक वलय R के तत्वों को विविधता पर नियमित कार्य या बहुपद कार्य भी कहा जाता है। वे विविधता पर नियमित कार्यों की अंगूठी बनाते हैं, या, बस, विविधता की अंगूठी; दूसरे शब्दों में (#स्ट्रक्चर शीफ देखें), यह एक्स के स्ट्रक्चर शीफ के ग्लोबल सेक्शन का स्पेस है।
विविधता का आयाम प्रत्येक विविधता से जुड़ा पूर्णांक है, और यहां तक कि प्रत्येक बीजगणितीय सेट के लिए, जिसका महत्व बड़ी संख्या में इसकी समकक्ष परिभाषाओं पर निर्भर करता है (बीजगणितीय विविधता का आयाम देखें)।
उदाहरण
- एफ़ाइन विविधता में hypersurface का पूरक X (वह है X - { f = 0 } कुछ बहुपद के लिए f) एफ़िन है। इसके परिभाषित समीकरण संतृप्ति (कम्यूटेटिव बीजगणित) द्वारा प्राप्त किए जाते हैं f का परिभाषित आदर्श X. इस प्रकार निर्देशांक वलय वलय का स्थानीयकरण है .
- विशेष रूप से, (मूल के साथएफ़ाइन रेखा हटा दी गई है)एफ़ाइन है।
- वहीं दूसरी ओर, (मूल के साथ संबधित तल) सजातीय विविधता नहीं है; सी एफ हार्टोगएक्सका विस्तार प्रमेय।
- एफ़िन स्पेस में कोडिमेंशन वन की उप- विविधता ें वास्तव में हाइपरसर्फएक्सहैं, जो कि बहुपद द्वारा परिभाषित विविधता ें हैं।
- इरेड्यूसिबल एफाइन विविधता की सामान्य योजना एफाइन है; सामान्यीकरण का समन्वय वलय विविधता के समन्वय वलय का अभिन्न समापन है। (इसी तरह, प्रक्षेपी विविधता का सामान्यीकरण प्रक्षेपी विविधता है।)
वाजिब बिंदु
एफ़िन विविधता के लिए बीजगणितीय रूप से बंद क्षेत्र पर K, और उपक्षेत्र k का K, ए k-तार्किक बिंदु V बिंदु है यानी बिंदु V जिसके निर्देशांक तत्व हैं k. का संग्रह k- सजातीय विविधता के तर्कसंगत बिंदु V को अक्सर निरूपित किया जाता है अक्सर, यदि आधार क्षेत्र सम्मिश्र संख्याएँ होती हैं C, बिंदु जो हैं R-तर्कसंगत (जहां R वास्तविक संख्या है) विविधता के वास्तविक बिंदु कहलाते हैं, और Q-तर्कसंगत अंक (Q परिमेय संख्याएँ) अक्सर केवल परिमेय बिंदु कहलाते हैं।
उदाहरण के लिए, (1, 0) है Q-तर्कसंगत और R- विविधता का तर्कसंगत बिंदु जैसा इसमें है V और इसके सभी निर्देशांक पूर्णांक हैं। बिंदु (√2/2, √2/2) का वास्तविक बिंदु है V जो कि नहीं Q-तर्कसंगत, और का बिन्दु है V जो कि नहीं R-तर्कसंगत। इस विविधता को वृत्त कहा जाता है, क्योंकि इसका सेट R-रेशनल पॉइंटएक्सयूनिट सर्कल है। इसमें अपरिमित रूप से अनेक हैं Q-तर्कसंगत बिंदु जो बिंदु हैं
कहाँ t परिमेय संख्या है।
वृत्त डिग्री दो के बीजगणितीय वक्र का उदाहरण है जिसमें कोई नहीं है Q-तर्कसंगत बिंदु। इसका अंदाजा इस बात से लगाया जा सकता है कि, मॉड्यूलर अंकगणित 4, दो वर्गों का योग नहीं हो सकता 3.
यह सिद्ध किया जा सकता है कि a के साथ डिग्री दो का बीजगणितीय वक्र Q-रेशनल पॉइंट के अपरिमित रूप से कई अन्य होते हैं Q-तर्कसंगत अंक; ऐसा प्रत्येक बिंदु वक्र का दूसरा प्रतिच्छेदन बिंदु है और परिमेय बिंदु से गुजरने वाली परिमेय ढलान वाली रेखा है।
जटिल विविधता है कोई R-तर्कसंगत बिंदु, लेकिन कई जटिल बिंदु हैं।
यदि V में एफ़ाइन विविधता है C2 जटिल संख्याओं पर परिभाषित C, द R-तर्कसंगत अंक V को कागज के टुकड़े पर या रेखांकन सॉफ्टवेयर द्वारा खींचा जा सकता है। दाईं ओर का आंकड़ा दिखाता है R-तर्कसंगत अंक
वचन बिंदु और स्पर्शरेखा स्थान
होने देना V बहुपदों द्वारा परिभाषित सजातीय विविधता हो और का बिंदु हो V.
जैकबियन मैट्रिकएक्सJV(a) का V पर a आंशिक डेरिवेटिव का मैट्रिकएक्सहै
बिंदु a की रैंक नियमित है JV(a) बीजगणितीय विविधता के आयाम के बराबर है V, और वचन अन्यथा।
यदि a नियमित है, स्पर्शरेखा स्थान V पर a का एफिन उपस्थान है रैखिक समीकरणों द्वारा परिभाषित[2]
यदि बिंदु वचन है, तो इन समीकरणों द्वारा परिभाषित एफ़िन उप-स्थान को कुछ लेखकों द्वारा स्पर्शरेखा स्थान भी कहा जाता है, जबकि अन्य लेखकों का कहना है कि वचन बिंदु पर कोई स्पर्शरेखा स्थान नहीं है।[3] अधिक आंतरिक परिभाषा, जो निर्देशांक का उपयोग नहीं करती है, ज़रिस्की स्पर्शरेखा स्थान द्वारा दी गई है।
जारिस्की टोपोलॉजी
के केएफ़ाइन बीजगणितीय सेटn k पर टोपोलॉजी के बंद सेट बनाते हैंn, जिसे 'ज़ारिस्की टोपोलॉजी' कहा जाता है। यह इस तथ्य से अनुसरण करता है कि और (वास्तव में,एफ़ाइन बीजगणितीय सेटों का गणनीय प्रतिच्छेदन एफ़ाइन बीजगणितीय सेट है)।
ज़ारिस्की टोपोलॉजी को बेस (टोपोलॉजी) के माध्यम से भी वर्णित किया जा सकता है, जहाँ ज़ारिस्की-ओपन सेट फॉर्म के सेटों के गणनीय संघ हैं के लिए ये बुनियादी खुले सेट k में पूरक हैंn बंद सेटों में से ल बहुपद का शून्य लोकी। यदि k नोथेरियन वलय है (उदाहरण के लिए, यदि k क्षेत्र (गणित) या प्रमुख आदर्श डोमेन है), तो k का प्रत्येक आदर्श अंतिम रूप से उत्पन्न होता है, इसलिए प्रत्येक खुला सेट बुनियादी खुले सेटों का परिमित संघ है।
यदि V, k की सजातीय उप- विविधता हैn V पर ज़ारिस्की टोपोलॉजी केवल k पर ज़ारिस्की टोपोलॉजी से विरासत में मिली सबस्पेस टोपोलॉजी हैएन.
ज्यामिति-बीजगणित पत्राचार
सजातीय विविधता की ज्यामितीय संरचना इसके समन्वय वलय की बीजगणितीय संरचना से गहरे तरीके से जुड़ी हुई है। I और J को k [V] के आदर्श होने दें, जो एफ़ाइन विविधता V का समन्वय वलय है। I (V) को सभी बहुपदों का समुच्चय होने दें जो वी पर गायब हो जाता है, और जाने दो आदर्श I के आदर्श के रेडिकल को निरूपित करें, बहुपद f का सेट जिसके लिए f की कुछ शक्ति I में है। आधार क्षेत्र को बीजगणितीय रूप से बंद करने की आवश्यकता का कारण यह है किएफ़ाइन विविधता ें स्वचालित रूप से हिल्बर्ट के नलस्टेलेंसैट्ज को संतुष्ट करती हैं: आदर्श के लिए जे में जहाँ k बीजगणितीय रूप से बंद क्षेत्र है, के [वी] के कट्टरपंथी आदर्श (आदर्श जो अपने स्वयं के कट्टरपंथी हैं) वी के बीजगणितीय उपसमुच्चय के अनुरूप हैं। वास्तव में, कट्टरपंथी आदर्शों I और J के लिए, यदि और केवल यदि इसलिए V(I)=V(J) यदि और केवल यदि I=J. इसके अलावा, फलन बीजगणितीय सेट W को ग्रहण करता है और I(W) लौटाता है, सभी कार्यों का सेट जो W के सभी बिंदुओं पर भी गायब हो जाता है, फ़ंक्शन का व्युत्क्रम होता है, जो बीजगणितीय सेट को कट्टरपंथी आदर्श के लिए निर्दिष्ट करता है, नलस्टेलेंसैट द्वारा। इसलिएएफ़ाइन बीजगणितीय सेट और कट्टरपंथी आदर्शों के बीच पत्राचार आपत्ति है। एफ़ाइन बीजगणितीय सेट का समन्वय रिंग कम रिंग (nilpotent-free) है, रिंग R में आदर्श I के रूप में कट्टरपंथी है यदि और केवल यदि भागफल रिंग R/I कम हो जाता है।
समन्वयित वलय के प्रधान आदर्श एफ़िन उप- विविधताओं के अनुरूप होते हैं। सजातीय बीजीय समुच्चय V(I) को दो अन्य बीजगणितीय समुच्चयों के मिलन के रूप में लिखा जा सकता है यदि और केवल यदि I=JK उचित आदर्शों के लिए J और K I के बराबर नहीं है (किस स्तिथि में ). यह मामला है यदि और केवल यदि मैं प्रधान नहीं हूं।एफ़ाइन उपप्रकार ठीक वे हैं जिनकी समन्वय रिंग अभिन्न डोमेन है। ऐसा इसलिए है क्योंकि आदर्श प्रधान है यदि और केवल यदि आदर्श द्वारा रिंग का भागफल अभिन्न डोमेन है।
के [वी] के अधिकतम आदर्श वी के बिंदुओं के अनुरूप हैं। यदि मैं और जे कट्टरपंथी आदर्श हैं, तो यदि और केवल यदि जैसा कि अधिकतम आदर्श कट्टरपंथी हैं, अधिकतम आदर्श न्यूनतम बीजगणितीय सेट (जिनमें कोई उचित बीजगणितीय उपसमुच्चय नहीं है) के अनुरूप हैं, जो V में बिंदु हैं। यदि V समन्वय वलय के साथ परिशोधित विविधता है यह पत्राचार मानचित्र के माध्यम से स्पष्ट हो जाता है कहाँ बहुपद के भागफल बीजगणित आर में छवि को दर्शाता है बीजगणितीय उपसमुच्चय बिंदु है यदि और केवल यदि उपसमुच्चय का समन्वय वलय क्षेत्र है, क्योंकि अधिकतम आदर्श द्वारा वलय का भागफल क्षेत्र है।
निम्न तालिका इस पत्राचार को सारांशित करती है, सजातीय विविधता के बीजगणितीय उपसमुच्चय और संबंधित समन्वय अंगूठी के आदर्शों के लिए:
Type of algebraic set | Type of ideal | Type of coordinate ring |
---|---|---|
एफ़ाइन algebraic subset | radical ideal | reduced ring |
एफ़ाइन subvariety | prime ideal | integral domain |
point | maximal ideal | field |
एफ़ाइन विविधताओं के उत्पाद
समरूप विविधताओं के उत्पाद को समरूपता का उपयोग करके परिभाषित किया जा सकता है An × Am = An+m, फिर उत्पाद को इस नएएफ़ाइन स्थान में एम्बेड करना। होने देना An और Am में समन्वय के छल्ले हैं k[x1,..., xn] और k[y1,..., ym] क्रमशः, ताकि उनका उत्पाद An+m में निर्देशांक वलय है k[x1,..., xn, y1,..., ym]. होने देना V = V( f1,..., fN) का बीजगणितीय उपसमुच्चय हो An, और W = V( g1,..., gM) का बीजगणितीय उपसमुच्चय Am. फिर प्रत्येक fi में बहुपद है k[x1,..., xn], और प्रत्येक gj में है k[y1,..., ym]. का उत्पाद V और W को बीजगणितीय सेट के रूप में परिभाषित किया गया है V × W = V( f1,..., fN, g1,..., gM) में An+m. यदि प्रत्येक उत्पाद अप्रासंगिक है V, W अलघुकरणीय है।[4] जरिस्की टोपोलॉजी ऑन An × Am दो स्थानों पर ज़ारिस्की टोपोलॉजी का उत्पाद टोपोलॉजी नहीं है। दरअसल, उत्पाद टोपोलॉजी मूल खुले सेट के उत्पादों द्वारा उत्पन्न होती है Uf = An − V( f ) और Tg = Am − V( g ). इसलिए, बहुपद जो अंदर हैं k[x1,..., xn, y1,..., ym] लेकिन बहुपद के उत्पाद के रूप में प्राप्त नहीं किया जा सकता है k[x1,..., xn] में बहुपद के साथ k[y1,..., ym] उन बीजगणितीय सेटों को परिभाषित करेगा जो ज़रिस्की टोपोलॉजी में हैं An × Am , लेकिन उत्पाद टोपोलॉजी में नहीं।
सजातीय विविधताओं की रूपात्मकता
एफ़िन विविधताओं का रूपवाद, या नियमित मानचित्र, एफ़िन विविधताओं के बीच कार्य है जो प्रत्येक समन्वय में बहुपद है: अधिक सटीक रूप से, एफ़िन विविधताओं के लिए V ⊆ kn और W ⊆ km, रूपवाद से V को W नक्शा है φ : V → W फॉर्म का φ(a1, ..., an) = (f1(a1, ..., an), ..., fm(a1, ..., an)), कहाँ fi ∈ k[X1, ..., Xn] प्रत्येक के लिए i = 1, ..., m. ये एफ़ाइन विविधताओं की श्रेणी (गणित) में आकारिकी हैं।
बीजगणितीय रूप से बंद क्षेत्र पर एफ़ाइन विविधताओं के आकारिकी के बीच -से- पत्राचार होता है k, औरएफ़ाइन विविधताओं के समन्वय के छल्ले के समरूपता k विपरीत दिशा में जा रहा है। इस वजह से, इस तथ्य के साथ कि वहाँएफ़ाइन विविधताओं के बीच -से- पत्राचार है k और उनके निर्देशांक के छल्ले,एफ़ाइन विविधताओं की श्रेणी kएफ़ाइन विविधताओं के समन्वय के छल्ले की श्रेणी के लिए दोहरी (श्रेणी सिद्धांत) है k.एफ़ाइन विविधताओं के समन्वय के छल्ले की श्रेणी k ठीक-ठीक जनित, निलपोटेंट-मुक्त बीजगणित की श्रेणी है k.
अधिक सटीक, प्रत्येक रूपवाद के लिए φ : V → Wएफ़ाइन विविधताओं में, समरूपता है φ# : k[W] → k[V] निर्देशांक वलयों के बीच (विपरीत दिशा में जा रहा है), और इस प्रकारके प्रत्येक समरूपता के लिए, समन्वय वलयों से जुड़ी विविधताओं का रूपवाद है। इसे स्पष्ट रूप से दिखाया जा सकता है: let V ⊆ kn और W ⊆ km कोआर्डिनेट रिंगएक्सके साथ एफिन विविधता ें बनें k[V] = k[X1, ..., Xn] / I और k[W] = k[Y1, ..., Ym] / J क्रमश। होने देना φ : V → W रूपवाद हो। दरअसल, बहुपद के छल्ले के बीच समरूपता θ : k[Y1, ..., Ym] / J → k[X1, ..., Xn] / I अंगूठी के माध्यम से अद्वितीय कारक k[X1, ..., Xn], और समरूपता ψ : k[Y1, ..., Ym] / J → k[X1, ..., Xn] की छवियों द्वारा विशिष्ट रूप से निर्धारित किया जाता है Y1, ..., Ym. इसलिए, प्रत्येक समरूपता φ# : k[W] → k[V] प्रत्येक के लिए विशिष्ट रूप से छवि के विकल्प से मेल खाता है Yi. फिर कोई रूपवाद दिया φ = (f1, ..., fm) से V को W, समरूपता का निर्माण किया जा सकता है φ# : k[W] → k[V] जो भेजता है Yi को कहाँ का तुल्यता वर्ग है fi में k[V].
इसी तरह, समन्वय के छल्ले के प्रत्येक समरूपता के लिए, विपरीत दिशा में चक्करदार विविधताओं का रूपवाद बनाया जा सकता है। उपरोक्त पैराग्राफ को प्रतिबिंबित करना, समरूपता φ# : k[W] → k[V] भेजता है Yi बहुपद के लिए में k[V]. यह विविधताओं के आकारिकी से मेल खाता है φ : V → W द्वारा परिभाषित φ(a1, ... , an) = (f1(a1, ..., an), ..., fm(a1, ..., an)).
संरचना शीफ
नीचे वर्णित संरचना शीफ से सुसज्जित, सजातीय विविधता स्थानीय रूप से चक्राकार स्थान है।
कोऑर्डिनेट रिंग A के साथ एफ़ाइन वैरायटी X दी गई है, जो k-अलजेब्रस का शीफ है देकर परिभाषित किया गया है यू पर नियमित कार्यों की अंगूठी बनें।
माना D(f) = { x | ए में प्रत्येक एफ के लिए एफ (्स) ≠ 0}। वे एकएक्सके टोपोलॉजी के लिए आधार बनाते हैं और इसलिए खुले सेट डी (एफ) पर इसके मूल्यों से निर्धारित होता है। (यह भी देखें: मॉड्यूल का शीफ#मॉड्यूल से जुड़ा शीफ।)
मुख्य तथ्य, जो आवश्यक रूप से हिल्बर्ट शून्य प्रमेय पर निर्भर करता है, निम्नलिखित है:
Claim — for any f in A.
सबूत:[5] समावेश ⊃ स्पष्ट है। इसके विपरीत के लिए, जी को बाएं हाथ की ओर होने दें और है, जो आदर्श है। यदि एक्सडी (एफ) में है, तो चूंकि जी एक्सके पास नियमित है, एक्सके कुछ खुले संबंध पड़ोस डी (एच) हैं जैसे कि ; वह है, एचm g, A में है और इसलिए x, V(J) में नहीं है। दूसरे शब्दों में, और इस प्रकार हिल्बर्ट नलस्टेलेंसैट्ज का अर्थ है कि एफ जे के रेडिकल में है; अर्थात।, . दावा, सबसे पहले, यह दर्शाता है कि X तब से स्थानीय रूप से रिंग किया हुआ स्थान है
कहाँ . दूसरे, दावा का तात्पर्य है पुलिया है; वास्तव में, यह कहता है कि यदि कोई फ़ंक्शन डी (एफ) पर नियमित (बिंदुवार) है, तो यह डी (एफ) की समन्वय अंगूठी में होना चाहिए; यानी, रेगुलर-नेस को साथ पैच किया जा सकता है।
इस तरह, स्थानीय रूप से चक्राकार स्थान है।
आत्मीयता पर सेरे का प्रमेय
आत्मीयता पर सेरे का प्रमेय सजातीय विविधता का को होमोलॉजिकल लक्षण वर्णन देती है; यह कहता है कि बीजगणितीय विविधता एफ़ाइन है यदि किसी के लिए भी और एकएक्सपर कोई भी अर्ध-सुसंगत शीफ एफ। (cf. कार्टन की प्रमेय बी।) यह प्रक्षेपी स्तिथि के विपरीत, जिसमें लाइन बंडलों के कोहोलॉजी समूह होते हैं , के विपरीत, गैर-अस्तित्व में एफ़ाइन विविधता का कोहोलॉजिकल अध्ययन करता है।केंद्रीय हित के .
एफ़ाइन बीजगणितीय समूह
बीजगणितीय रूप से बंद क्षेत्र पर k पर एफ़िन विविधता G को एफ़ाइन बीजगणितीय समूह कहा जाता है यदि इसमें:
- गुणन μ: G × G → G, जो नियमित रूपवाद है जो सहयोगीता स्वयंसिद्ध का अनुसरण करता है-अर्थात्, जैसे कि μ(μ(f, g), h) = μ(f, μ(g, h)) के लिए G में सभी बिंदु f, g और h है ;
- पहचान तत्व e ऐसा है कि G के लिए μ(e, g) = μ(g, e) = g है;
- व्युत्क्रम रूपवाद, नियमित आक्षेप ι: G → G ऐसा है कि μ(ι(g), g) = μ(g, ι(g)) = e G में प्रत्येक g के लिए है;
साथ में, ये विविधता पर समूह (संरचना) को परिभाषित करते हैं। उपरोक्त रूपवाद अक्सर साधारण समूह संकेतन का उपयोग करते हुए लिखा जाता है: μ(f, g) को f + g, f⋅g, या fg के रूप में लिखा जा सकता है; व्युत्क्रम ι(g) को −g या g−1 के रूप में लिखा जा सकता है गुणात्मक संकेतन का उपयोग करके, साहचर्य, पहचान और व्युत्क्रम कानूनों को फिर से लिखा जा सकता है: f(gh) = (fg)h, ge = eg = g और gg−1 = g−1g = e.
एफ़िन बीजगणितीय समूह का सबसे प्रमुख उदाहरण GLn(k) है, डिग्री n का सामान्य रैखिक समूह है। यह सदिश स्थान kn के रैखिक परिवर्तनों का समूह है; यदि kn का आधार (रैखिक बीजगणित) का नियत है, यह k में प्रविष्टियों के साथ n×n व्युत्क्रमणीय आव्यूहों के समूह के समतुल्य है। यह दिखाया जा सकता है कि कोई भी बीजगणितीय समूह GLn(k) केउपसमूह के लिए आइसोमोर्फिक है। इस कारण से, एफ़ाइन बीजगणितीय समूहों को अक्सर रैखिक बीजगणितीय समूह कहा जाता है।
एफ़िन बीजगणितीय समूह परिमित सरल समूहों के वर्गीकरण में महत्वपूर्ण भूमिका निभाते हैं, क्योंकि असत्य प्रकार के समूह एफ़िन बीजगणितीय समूह के Fq तर्कसंगत बिंदुओं के सभी सेट हैं , जहां Fq परिमित क्षेत्र है।
सामान्यीकरण
- यदि लेखक को बीजगणितीय रूप से बंद होने के लिए एफ़ाइन विविधता के आधार क्षेत्र की आवश्यकता होती है (जैसा कि यह लेख करता है), गैर-बीजगणितीय रूप से बंद क्षेत्रों पर इरेड्यूसिबल एफ़ाइन बीजगणितीय सेट एफ़ाइन विविधता का सामान्यीकरण है। इस सामान्यीकरण में विशेष रूप से वास्तविक संख्याओं पर एफ़िन विविधताओं को समिलित किया गया है।
- बीजगणितीय विविधताओं के लिए स्थानीय विविधता स्थानीय चार्ट की भूमिका निभाती है; कहने का तात्पर्य यह है कि सामान्य बीजगणितीय विविधताओं जैसे कि प्रोजेक्टिव विविधता ग्लूइंग एफाइन विविधताओं द्वारा प्राप्त किया जाता है। रेखीय संरचनाएं जो विविधताओं से जुड़ी होती हैं, वे भी (तुच्छ रूप से) एफ़िन विविधता होती हैं; उदाहरण के लिए, स्पर्शरेखा रिक्त स्थान, बीजगणितीय वेक्टर बंडलों के तंतु।
- एफ़ाइन विविधता एफ़ाइन योजना की विशेष स्थिति, है, स्थानीय रूप से रिंग वाली जगह जो कम्यूटेटिव रिंग (श्रेणियों की समानता तक) के स्पेक्ट्रम के लिए आइसोमोर्फिक है। प्रत्येक एफ़ाइन विविधता से जुड़ी एफ़ाइन योजना होती है: यदि V(I) kn में समन्वयित रिंग R = k[x1, ..., xn] / I, के साथ एफ़ाइन विविधता है, V(I) से संबंधित योजना है Spec(R), R.के प्रमुख आदर्शों का सेट। एफ़िन योजना में शास्त्रीय बिंदु होते हैं जो विविधता के बिंदुओं के अनुरूप होते हैं (और इसलिए विविधता के समन्वय रिंग के अधिकतम आदर्श), और प्रत्येक बंद उप- विविधता के लिए बिंदु भी विविधता के (ये बिंदु समन्वय वलय के अभाज्य, गैर-अधिकतम आदर्शों के अनुरूप हैं) । यह प्रत्येक बंद उप- विविधता को खुला बिंदु निर्दिष्ट करके, जो उप- विविधता में घना है, संबधित विविधता के "जेनेरिक बिंदु" की अधिक अच्छी प्रकारसे परिभाषित धारणा बनाता है। अधिक सामान्यतः, एफ़िन योजना एफ़िन विविधता है यदि यह बीजगणितीय रूप से बंद क्षेत्र k पर कम, इर्रेड्यूसबल और परिमित प्रकार की है।
टिप्पणियाँ
- ↑ Reid (1988)
- ↑ Milne (2017), Ch. 5
- ↑ Reid (1988), p. 94.
- ↑ This is because, over an algebraically closed field, the tensor product of integral domains is an integral domain; see integral domain#Properties.
- ↑ Mumford 1999, Ch. I, § 4. Proposition 1.
यह भी देखें
- बीजगणितीय विविधता
- एफ़िन योजना
- निर्देशांक वलयों पर प्रतिनिधित्व
संदर्भ
The original article was written as a partial human translation of the corresponding French article.
- Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157
- Fulton, William (1969). Algebraic Curves (PDF). Addison-Wesley. ISBN 0-201-510103.
- Milne, J.S. (2017). "Algebraic Geometry" (PDF). www.jmilne.org. Retrieved 16 July 2021.
- Milne, Lectures on Étale cohomology
- Mumford, David (1999). The Red Book of Varieties and Schemes: Includes the Michigan Lectures (1974) on Curves and Their Jacobians. Lecture Notes in Mathematics. Vol. 1358 (2nd ed.). Springer-Verlag. doi:10.1007/b62130. ISBN 354063293X.
- Reid, Miles (1988). Undergraduate Algebraic Geometry. Cambridge University Press. ISBN 0-521-35662-8.